Particle size distribution of aggregate effects on the dynamic compressive behavior of cement waste rock backfill
Cement waste rock backfill (CWRB) is an essential component of green mining. Recent studies have demonstrated that the CWRB can slow surface settlement and provide economic advantages. However, there has been only limited research into the susceptibility of CWRB to dynamic impacts such as rock burst...
Ausführliche Beschreibung
Autor*in: |
Li, Guangzhi [verfasserIn] Shi, Xinshuai [verfasserIn] Ning, Jianguo [verfasserIn] Chen, Weiqiang [verfasserIn] Zhang, Zhaohui [verfasserIn] Wang, Jun [verfasserIn] Yang, Shang [verfasserIn] Gao, Yuan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Engineering fracture mechanics - Kidlington : Elsevier Science, 1968, 292 |
---|---|
Übergeordnetes Werk: |
volume:292 |
DOI / URN: |
10.1016/j.engfracmech.2023.109596 |
---|
Katalog-ID: |
ELV065323866 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV065323866 | ||
003 | DE-627 | ||
005 | 20240120093008.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231030s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.engfracmech.2023.109596 |2 doi | |
035 | |a (DE-627)ELV065323866 | ||
035 | |a (ELSEVIER)S0013-7944(23)00554-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 51.32 |2 bkl | ||
100 | 1 | |a Li, Guangzhi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Particle size distribution of aggregate effects on the dynamic compressive behavior of cement waste rock backfill |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Cement waste rock backfill (CWRB) is an essential component of green mining. Recent studies have demonstrated that the CWRB can slow surface settlement and provide economic advantages. However, there has been only limited research into the susceptibility of CWRB to dynamic impacts such as rock bursts, especially as mining depth increases. This study aims to investigate the dynamic peak stress, elastic modulus, and dissipated energy of CWRB specimens using a split Hopkinson pressure bar system. The results demonstrated that the responses of aggregate with different particle size distributions to the system’s impact strain rate (ISR) were inconsistent. Specifically, the highest dynamic peak stress of 23.71 MPa was achieved for the CWRB (Talbot index = 0.6) at a low ISR (30 s−1–35 s−1) and 62.33 MPa for the CWRB (Talbot index = 0.4) at a high ISR (40 s−1–50 s−1). A strain nephogram and fractal dimension analysis further suggested that the CWRB (Talbot index = 0.4, 0.6) could continue to provide partial compressive resistance after impact. Moreover, a compressive model was developed to determine the “change point” between the low and high ISR. The model indicated that different particle size distributions influenced the porosity, and at a high ISR, the pore structures further worsened the dynamic compressive behavior of CWRB. This study not only enhances our understanding of the compressive performance of CWRB under dynamic impact, but also contributes to the safety and efficiency of filling mining operations. In addition, it offers a theoretical explanation of the effects on the dynamic compressive behavior of CWRB. | ||
650 | 4 | |a Cement waste rock backfill | |
650 | 4 | |a Dynamic compressive behavior | |
650 | 4 | |a Fractal dimension | |
650 | 4 | |a Compressive model | |
700 | 1 | |a Shi, Xinshuai |e verfasserin |4 aut | |
700 | 1 | |a Ning, Jianguo |e verfasserin |4 aut | |
700 | 1 | |a Chen, Weiqiang |e verfasserin |0 (orcid)0000-0002-5355-6710 |4 aut | |
700 | 1 | |a Zhang, Zhaohui |e verfasserin |4 aut | |
700 | 1 | |a Wang, Jun |e verfasserin |4 aut | |
700 | 1 | |a Yang, Shang |e verfasserin |4 aut | |
700 | 1 | |a Gao, Yuan |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Engineering fracture mechanics |d Kidlington : Elsevier Science, 1968 |g 292 |h Online-Ressource |w (DE-627)320505006 |w (DE-600)2012718-2 |w (DE-576)094752575 |7 nnns |
773 | 1 | 8 | |g volume:292 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 51.32 |j Werkstoffmechanik |q VZ |
951 | |a AR | ||
952 | |d 292 |
author_variant |
g l gl x s xs j n jn w c wc z z zz j w jw s y sy y g yg |
---|---|
matchkey_str |
liguangzhishixinshuainingjianguochenweiq:2023----:atceieitiuinfgrgtefcsnhdnmcopesvbhvo |
hierarchy_sort_str |
2023 |
bklnumber |
51.32 |
publishDate |
2023 |
allfields |
10.1016/j.engfracmech.2023.109596 doi (DE-627)ELV065323866 (ELSEVIER)S0013-7944(23)00554-4 DE-627 ger DE-627 rda eng 530 VZ 51.32 bkl Li, Guangzhi verfasserin aut Particle size distribution of aggregate effects on the dynamic compressive behavior of cement waste rock backfill 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cement waste rock backfill (CWRB) is an essential component of green mining. Recent studies have demonstrated that the CWRB can slow surface settlement and provide economic advantages. However, there has been only limited research into the susceptibility of CWRB to dynamic impacts such as rock bursts, especially as mining depth increases. This study aims to investigate the dynamic peak stress, elastic modulus, and dissipated energy of CWRB specimens using a split Hopkinson pressure bar system. The results demonstrated that the responses of aggregate with different particle size distributions to the system’s impact strain rate (ISR) were inconsistent. Specifically, the highest dynamic peak stress of 23.71 MPa was achieved for the CWRB (Talbot index = 0.6) at a low ISR (30 s−1–35 s−1) and 62.33 MPa for the CWRB (Talbot index = 0.4) at a high ISR (40 s−1–50 s−1). A strain nephogram and fractal dimension analysis further suggested that the CWRB (Talbot index = 0.4, 0.6) could continue to provide partial compressive resistance after impact. Moreover, a compressive model was developed to determine the “change point” between the low and high ISR. The model indicated that different particle size distributions influenced the porosity, and at a high ISR, the pore structures further worsened the dynamic compressive behavior of CWRB. This study not only enhances our understanding of the compressive performance of CWRB under dynamic impact, but also contributes to the safety and efficiency of filling mining operations. In addition, it offers a theoretical explanation of the effects on the dynamic compressive behavior of CWRB. Cement waste rock backfill Dynamic compressive behavior Fractal dimension Compressive model Shi, Xinshuai verfasserin aut Ning, Jianguo verfasserin aut Chen, Weiqiang verfasserin (orcid)0000-0002-5355-6710 aut Zhang, Zhaohui verfasserin aut Wang, Jun verfasserin aut Yang, Shang verfasserin aut Gao, Yuan verfasserin aut Enthalten in Engineering fracture mechanics Kidlington : Elsevier Science, 1968 292 Online-Ressource (DE-627)320505006 (DE-600)2012718-2 (DE-576)094752575 nnns volume:292 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.32 Werkstoffmechanik VZ AR 292 |
spelling |
10.1016/j.engfracmech.2023.109596 doi (DE-627)ELV065323866 (ELSEVIER)S0013-7944(23)00554-4 DE-627 ger DE-627 rda eng 530 VZ 51.32 bkl Li, Guangzhi verfasserin aut Particle size distribution of aggregate effects on the dynamic compressive behavior of cement waste rock backfill 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cement waste rock backfill (CWRB) is an essential component of green mining. Recent studies have demonstrated that the CWRB can slow surface settlement and provide economic advantages. However, there has been only limited research into the susceptibility of CWRB to dynamic impacts such as rock bursts, especially as mining depth increases. This study aims to investigate the dynamic peak stress, elastic modulus, and dissipated energy of CWRB specimens using a split Hopkinson pressure bar system. The results demonstrated that the responses of aggregate with different particle size distributions to the system’s impact strain rate (ISR) were inconsistent. Specifically, the highest dynamic peak stress of 23.71 MPa was achieved for the CWRB (Talbot index = 0.6) at a low ISR (30 s−1–35 s−1) and 62.33 MPa for the CWRB (Talbot index = 0.4) at a high ISR (40 s−1–50 s−1). A strain nephogram and fractal dimension analysis further suggested that the CWRB (Talbot index = 0.4, 0.6) could continue to provide partial compressive resistance after impact. Moreover, a compressive model was developed to determine the “change point” between the low and high ISR. The model indicated that different particle size distributions influenced the porosity, and at a high ISR, the pore structures further worsened the dynamic compressive behavior of CWRB. This study not only enhances our understanding of the compressive performance of CWRB under dynamic impact, but also contributes to the safety and efficiency of filling mining operations. In addition, it offers a theoretical explanation of the effects on the dynamic compressive behavior of CWRB. Cement waste rock backfill Dynamic compressive behavior Fractal dimension Compressive model Shi, Xinshuai verfasserin aut Ning, Jianguo verfasserin aut Chen, Weiqiang verfasserin (orcid)0000-0002-5355-6710 aut Zhang, Zhaohui verfasserin aut Wang, Jun verfasserin aut Yang, Shang verfasserin aut Gao, Yuan verfasserin aut Enthalten in Engineering fracture mechanics Kidlington : Elsevier Science, 1968 292 Online-Ressource (DE-627)320505006 (DE-600)2012718-2 (DE-576)094752575 nnns volume:292 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.32 Werkstoffmechanik VZ AR 292 |
allfields_unstemmed |
10.1016/j.engfracmech.2023.109596 doi (DE-627)ELV065323866 (ELSEVIER)S0013-7944(23)00554-4 DE-627 ger DE-627 rda eng 530 VZ 51.32 bkl Li, Guangzhi verfasserin aut Particle size distribution of aggregate effects on the dynamic compressive behavior of cement waste rock backfill 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cement waste rock backfill (CWRB) is an essential component of green mining. Recent studies have demonstrated that the CWRB can slow surface settlement and provide economic advantages. However, there has been only limited research into the susceptibility of CWRB to dynamic impacts such as rock bursts, especially as mining depth increases. This study aims to investigate the dynamic peak stress, elastic modulus, and dissipated energy of CWRB specimens using a split Hopkinson pressure bar system. The results demonstrated that the responses of aggregate with different particle size distributions to the system’s impact strain rate (ISR) were inconsistent. Specifically, the highest dynamic peak stress of 23.71 MPa was achieved for the CWRB (Talbot index = 0.6) at a low ISR (30 s−1–35 s−1) and 62.33 MPa for the CWRB (Talbot index = 0.4) at a high ISR (40 s−1–50 s−1). A strain nephogram and fractal dimension analysis further suggested that the CWRB (Talbot index = 0.4, 0.6) could continue to provide partial compressive resistance after impact. Moreover, a compressive model was developed to determine the “change point” between the low and high ISR. The model indicated that different particle size distributions influenced the porosity, and at a high ISR, the pore structures further worsened the dynamic compressive behavior of CWRB. This study not only enhances our understanding of the compressive performance of CWRB under dynamic impact, but also contributes to the safety and efficiency of filling mining operations. In addition, it offers a theoretical explanation of the effects on the dynamic compressive behavior of CWRB. Cement waste rock backfill Dynamic compressive behavior Fractal dimension Compressive model Shi, Xinshuai verfasserin aut Ning, Jianguo verfasserin aut Chen, Weiqiang verfasserin (orcid)0000-0002-5355-6710 aut Zhang, Zhaohui verfasserin aut Wang, Jun verfasserin aut Yang, Shang verfasserin aut Gao, Yuan verfasserin aut Enthalten in Engineering fracture mechanics Kidlington : Elsevier Science, 1968 292 Online-Ressource (DE-627)320505006 (DE-600)2012718-2 (DE-576)094752575 nnns volume:292 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.32 Werkstoffmechanik VZ AR 292 |
allfieldsGer |
10.1016/j.engfracmech.2023.109596 doi (DE-627)ELV065323866 (ELSEVIER)S0013-7944(23)00554-4 DE-627 ger DE-627 rda eng 530 VZ 51.32 bkl Li, Guangzhi verfasserin aut Particle size distribution of aggregate effects on the dynamic compressive behavior of cement waste rock backfill 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cement waste rock backfill (CWRB) is an essential component of green mining. Recent studies have demonstrated that the CWRB can slow surface settlement and provide economic advantages. However, there has been only limited research into the susceptibility of CWRB to dynamic impacts such as rock bursts, especially as mining depth increases. This study aims to investigate the dynamic peak stress, elastic modulus, and dissipated energy of CWRB specimens using a split Hopkinson pressure bar system. The results demonstrated that the responses of aggregate with different particle size distributions to the system’s impact strain rate (ISR) were inconsistent. Specifically, the highest dynamic peak stress of 23.71 MPa was achieved for the CWRB (Talbot index = 0.6) at a low ISR (30 s−1–35 s−1) and 62.33 MPa for the CWRB (Talbot index = 0.4) at a high ISR (40 s−1–50 s−1). A strain nephogram and fractal dimension analysis further suggested that the CWRB (Talbot index = 0.4, 0.6) could continue to provide partial compressive resistance after impact. Moreover, a compressive model was developed to determine the “change point” between the low and high ISR. The model indicated that different particle size distributions influenced the porosity, and at a high ISR, the pore structures further worsened the dynamic compressive behavior of CWRB. This study not only enhances our understanding of the compressive performance of CWRB under dynamic impact, but also contributes to the safety and efficiency of filling mining operations. In addition, it offers a theoretical explanation of the effects on the dynamic compressive behavior of CWRB. Cement waste rock backfill Dynamic compressive behavior Fractal dimension Compressive model Shi, Xinshuai verfasserin aut Ning, Jianguo verfasserin aut Chen, Weiqiang verfasserin (orcid)0000-0002-5355-6710 aut Zhang, Zhaohui verfasserin aut Wang, Jun verfasserin aut Yang, Shang verfasserin aut Gao, Yuan verfasserin aut Enthalten in Engineering fracture mechanics Kidlington : Elsevier Science, 1968 292 Online-Ressource (DE-627)320505006 (DE-600)2012718-2 (DE-576)094752575 nnns volume:292 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.32 Werkstoffmechanik VZ AR 292 |
allfieldsSound |
10.1016/j.engfracmech.2023.109596 doi (DE-627)ELV065323866 (ELSEVIER)S0013-7944(23)00554-4 DE-627 ger DE-627 rda eng 530 VZ 51.32 bkl Li, Guangzhi verfasserin aut Particle size distribution of aggregate effects on the dynamic compressive behavior of cement waste rock backfill 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cement waste rock backfill (CWRB) is an essential component of green mining. Recent studies have demonstrated that the CWRB can slow surface settlement and provide economic advantages. However, there has been only limited research into the susceptibility of CWRB to dynamic impacts such as rock bursts, especially as mining depth increases. This study aims to investigate the dynamic peak stress, elastic modulus, and dissipated energy of CWRB specimens using a split Hopkinson pressure bar system. The results demonstrated that the responses of aggregate with different particle size distributions to the system’s impact strain rate (ISR) were inconsistent. Specifically, the highest dynamic peak stress of 23.71 MPa was achieved for the CWRB (Talbot index = 0.6) at a low ISR (30 s−1–35 s−1) and 62.33 MPa for the CWRB (Talbot index = 0.4) at a high ISR (40 s−1–50 s−1). A strain nephogram and fractal dimension analysis further suggested that the CWRB (Talbot index = 0.4, 0.6) could continue to provide partial compressive resistance after impact. Moreover, a compressive model was developed to determine the “change point” between the low and high ISR. The model indicated that different particle size distributions influenced the porosity, and at a high ISR, the pore structures further worsened the dynamic compressive behavior of CWRB. This study not only enhances our understanding of the compressive performance of CWRB under dynamic impact, but also contributes to the safety and efficiency of filling mining operations. In addition, it offers a theoretical explanation of the effects on the dynamic compressive behavior of CWRB. Cement waste rock backfill Dynamic compressive behavior Fractal dimension Compressive model Shi, Xinshuai verfasserin aut Ning, Jianguo verfasserin aut Chen, Weiqiang verfasserin (orcid)0000-0002-5355-6710 aut Zhang, Zhaohui verfasserin aut Wang, Jun verfasserin aut Yang, Shang verfasserin aut Gao, Yuan verfasserin aut Enthalten in Engineering fracture mechanics Kidlington : Elsevier Science, 1968 292 Online-Ressource (DE-627)320505006 (DE-600)2012718-2 (DE-576)094752575 nnns volume:292 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.32 Werkstoffmechanik VZ AR 292 |
language |
English |
source |
Enthalten in Engineering fracture mechanics 292 volume:292 |
sourceStr |
Enthalten in Engineering fracture mechanics 292 volume:292 |
format_phy_str_mv |
Article |
bklname |
Werkstoffmechanik |
institution |
findex.gbv.de |
topic_facet |
Cement waste rock backfill Dynamic compressive behavior Fractal dimension Compressive model |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Engineering fracture mechanics |
authorswithroles_txt_mv |
Li, Guangzhi @@aut@@ Shi, Xinshuai @@aut@@ Ning, Jianguo @@aut@@ Chen, Weiqiang @@aut@@ Zhang, Zhaohui @@aut@@ Wang, Jun @@aut@@ Yang, Shang @@aut@@ Gao, Yuan @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320505006 |
dewey-sort |
3530 |
id |
ELV065323866 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065323866</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240120093008.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231030s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.engfracmech.2023.109596</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065323866</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0013-7944(23)00554-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Guangzhi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Particle size distribution of aggregate effects on the dynamic compressive behavior of cement waste rock backfill</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cement waste rock backfill (CWRB) is an essential component of green mining. Recent studies have demonstrated that the CWRB can slow surface settlement and provide economic advantages. However, there has been only limited research into the susceptibility of CWRB to dynamic impacts such as rock bursts, especially as mining depth increases. This study aims to investigate the dynamic peak stress, elastic modulus, and dissipated energy of CWRB specimens using a split Hopkinson pressure bar system. The results demonstrated that the responses of aggregate with different particle size distributions to the system’s impact strain rate (ISR) were inconsistent. Specifically, the highest dynamic peak stress of 23.71 MPa was achieved for the CWRB (Talbot index = 0.6) at a low ISR (30 s−1–35 s−1) and 62.33 MPa for the CWRB (Talbot index = 0.4) at a high ISR (40 s−1–50 s−1). A strain nephogram and fractal dimension analysis further suggested that the CWRB (Talbot index = 0.4, 0.6) could continue to provide partial compressive resistance after impact. Moreover, a compressive model was developed to determine the “change point” between the low and high ISR. The model indicated that different particle size distributions influenced the porosity, and at a high ISR, the pore structures further worsened the dynamic compressive behavior of CWRB. This study not only enhances our understanding of the compressive performance of CWRB under dynamic impact, but also contributes to the safety and efficiency of filling mining operations. In addition, it offers a theoretical explanation of the effects on the dynamic compressive behavior of CWRB.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cement waste rock backfill</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic compressive behavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractal dimension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compressive model</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Xinshuai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ning, Jianguo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Weiqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5355-6710</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zhaohui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Shang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Engineering fracture mechanics</subfield><subfield code="d">Kidlington : Elsevier Science, 1968</subfield><subfield code="g">292</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320505006</subfield><subfield code="w">(DE-600)2012718-2</subfield><subfield code="w">(DE-576)094752575</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:292</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.32</subfield><subfield code="j">Werkstoffmechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">292</subfield></datafield></record></collection>
|
author |
Li, Guangzhi |
spellingShingle |
Li, Guangzhi ddc 530 bkl 51.32 misc Cement waste rock backfill misc Dynamic compressive behavior misc Fractal dimension misc Compressive model Particle size distribution of aggregate effects on the dynamic compressive behavior of cement waste rock backfill |
authorStr |
Li, Guangzhi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320505006 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 VZ 51.32 bkl Particle size distribution of aggregate effects on the dynamic compressive behavior of cement waste rock backfill Cement waste rock backfill Dynamic compressive behavior Fractal dimension Compressive model |
topic |
ddc 530 bkl 51.32 misc Cement waste rock backfill misc Dynamic compressive behavior misc Fractal dimension misc Compressive model |
topic_unstemmed |
ddc 530 bkl 51.32 misc Cement waste rock backfill misc Dynamic compressive behavior misc Fractal dimension misc Compressive model |
topic_browse |
ddc 530 bkl 51.32 misc Cement waste rock backfill misc Dynamic compressive behavior misc Fractal dimension misc Compressive model |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Engineering fracture mechanics |
hierarchy_parent_id |
320505006 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Engineering fracture mechanics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320505006 (DE-600)2012718-2 (DE-576)094752575 |
title |
Particle size distribution of aggregate effects on the dynamic compressive behavior of cement waste rock backfill |
ctrlnum |
(DE-627)ELV065323866 (ELSEVIER)S0013-7944(23)00554-4 |
title_full |
Particle size distribution of aggregate effects on the dynamic compressive behavior of cement waste rock backfill |
author_sort |
Li, Guangzhi |
journal |
Engineering fracture mechanics |
journalStr |
Engineering fracture mechanics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Li, Guangzhi Shi, Xinshuai Ning, Jianguo Chen, Weiqiang Zhang, Zhaohui Wang, Jun Yang, Shang Gao, Yuan |
container_volume |
292 |
class |
530 VZ 51.32 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Guangzhi |
doi_str_mv |
10.1016/j.engfracmech.2023.109596 |
normlink |
(ORCID)0000-0002-5355-6710 |
normlink_prefix_str_mv |
(orcid)0000-0002-5355-6710 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
particle size distribution of aggregate effects on the dynamic compressive behavior of cement waste rock backfill |
title_auth |
Particle size distribution of aggregate effects on the dynamic compressive behavior of cement waste rock backfill |
abstract |
Cement waste rock backfill (CWRB) is an essential component of green mining. Recent studies have demonstrated that the CWRB can slow surface settlement and provide economic advantages. However, there has been only limited research into the susceptibility of CWRB to dynamic impacts such as rock bursts, especially as mining depth increases. This study aims to investigate the dynamic peak stress, elastic modulus, and dissipated energy of CWRB specimens using a split Hopkinson pressure bar system. The results demonstrated that the responses of aggregate with different particle size distributions to the system’s impact strain rate (ISR) were inconsistent. Specifically, the highest dynamic peak stress of 23.71 MPa was achieved for the CWRB (Talbot index = 0.6) at a low ISR (30 s−1–35 s−1) and 62.33 MPa for the CWRB (Talbot index = 0.4) at a high ISR (40 s−1–50 s−1). A strain nephogram and fractal dimension analysis further suggested that the CWRB (Talbot index = 0.4, 0.6) could continue to provide partial compressive resistance after impact. Moreover, a compressive model was developed to determine the “change point” between the low and high ISR. The model indicated that different particle size distributions influenced the porosity, and at a high ISR, the pore structures further worsened the dynamic compressive behavior of CWRB. This study not only enhances our understanding of the compressive performance of CWRB under dynamic impact, but also contributes to the safety and efficiency of filling mining operations. In addition, it offers a theoretical explanation of the effects on the dynamic compressive behavior of CWRB. |
abstractGer |
Cement waste rock backfill (CWRB) is an essential component of green mining. Recent studies have demonstrated that the CWRB can slow surface settlement and provide economic advantages. However, there has been only limited research into the susceptibility of CWRB to dynamic impacts such as rock bursts, especially as mining depth increases. This study aims to investigate the dynamic peak stress, elastic modulus, and dissipated energy of CWRB specimens using a split Hopkinson pressure bar system. The results demonstrated that the responses of aggregate with different particle size distributions to the system’s impact strain rate (ISR) were inconsistent. Specifically, the highest dynamic peak stress of 23.71 MPa was achieved for the CWRB (Talbot index = 0.6) at a low ISR (30 s−1–35 s−1) and 62.33 MPa for the CWRB (Talbot index = 0.4) at a high ISR (40 s−1–50 s−1). A strain nephogram and fractal dimension analysis further suggested that the CWRB (Talbot index = 0.4, 0.6) could continue to provide partial compressive resistance after impact. Moreover, a compressive model was developed to determine the “change point” between the low and high ISR. The model indicated that different particle size distributions influenced the porosity, and at a high ISR, the pore structures further worsened the dynamic compressive behavior of CWRB. This study not only enhances our understanding of the compressive performance of CWRB under dynamic impact, but also contributes to the safety and efficiency of filling mining operations. In addition, it offers a theoretical explanation of the effects on the dynamic compressive behavior of CWRB. |
abstract_unstemmed |
Cement waste rock backfill (CWRB) is an essential component of green mining. Recent studies have demonstrated that the CWRB can slow surface settlement and provide economic advantages. However, there has been only limited research into the susceptibility of CWRB to dynamic impacts such as rock bursts, especially as mining depth increases. This study aims to investigate the dynamic peak stress, elastic modulus, and dissipated energy of CWRB specimens using a split Hopkinson pressure bar system. The results demonstrated that the responses of aggregate with different particle size distributions to the system’s impact strain rate (ISR) were inconsistent. Specifically, the highest dynamic peak stress of 23.71 MPa was achieved for the CWRB (Talbot index = 0.6) at a low ISR (30 s−1–35 s−1) and 62.33 MPa for the CWRB (Talbot index = 0.4) at a high ISR (40 s−1–50 s−1). A strain nephogram and fractal dimension analysis further suggested that the CWRB (Talbot index = 0.4, 0.6) could continue to provide partial compressive resistance after impact. Moreover, a compressive model was developed to determine the “change point” between the low and high ISR. The model indicated that different particle size distributions influenced the porosity, and at a high ISR, the pore structures further worsened the dynamic compressive behavior of CWRB. This study not only enhances our understanding of the compressive performance of CWRB under dynamic impact, but also contributes to the safety and efficiency of filling mining operations. In addition, it offers a theoretical explanation of the effects on the dynamic compressive behavior of CWRB. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Particle size distribution of aggregate effects on the dynamic compressive behavior of cement waste rock backfill |
remote_bool |
true |
author2 |
Shi, Xinshuai Ning, Jianguo Chen, Weiqiang Zhang, Zhaohui Wang, Jun Yang, Shang Gao, Yuan |
author2Str |
Shi, Xinshuai Ning, Jianguo Chen, Weiqiang Zhang, Zhaohui Wang, Jun Yang, Shang Gao, Yuan |
ppnlink |
320505006 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.engfracmech.2023.109596 |
up_date |
2024-07-06T22:37:51.296Z |
_version_ |
1803871029871771649 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065323866</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240120093008.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231030s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.engfracmech.2023.109596</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065323866</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0013-7944(23)00554-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Guangzhi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Particle size distribution of aggregate effects on the dynamic compressive behavior of cement waste rock backfill</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cement waste rock backfill (CWRB) is an essential component of green mining. Recent studies have demonstrated that the CWRB can slow surface settlement and provide economic advantages. However, there has been only limited research into the susceptibility of CWRB to dynamic impacts such as rock bursts, especially as mining depth increases. This study aims to investigate the dynamic peak stress, elastic modulus, and dissipated energy of CWRB specimens using a split Hopkinson pressure bar system. The results demonstrated that the responses of aggregate with different particle size distributions to the system’s impact strain rate (ISR) were inconsistent. Specifically, the highest dynamic peak stress of 23.71 MPa was achieved for the CWRB (Talbot index = 0.6) at a low ISR (30 s−1–35 s−1) and 62.33 MPa for the CWRB (Talbot index = 0.4) at a high ISR (40 s−1–50 s−1). A strain nephogram and fractal dimension analysis further suggested that the CWRB (Talbot index = 0.4, 0.6) could continue to provide partial compressive resistance after impact. Moreover, a compressive model was developed to determine the “change point” between the low and high ISR. The model indicated that different particle size distributions influenced the porosity, and at a high ISR, the pore structures further worsened the dynamic compressive behavior of CWRB. This study not only enhances our understanding of the compressive performance of CWRB under dynamic impact, but also contributes to the safety and efficiency of filling mining operations. In addition, it offers a theoretical explanation of the effects on the dynamic compressive behavior of CWRB.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cement waste rock backfill</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic compressive behavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractal dimension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compressive model</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Xinshuai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ning, Jianguo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Weiqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5355-6710</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zhaohui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Shang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Engineering fracture mechanics</subfield><subfield code="d">Kidlington : Elsevier Science, 1968</subfield><subfield code="g">292</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320505006</subfield><subfield code="w">(DE-600)2012718-2</subfield><subfield code="w">(DE-576)094752575</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:292</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.32</subfield><subfield code="j">Werkstoffmechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">292</subfield></datafield></record></collection>
|
score |
7.4015274 |