Evaluation of heat resistance of SiC-based ceramic fibers via in situ elastic modulus and electrical conductivity measurement at elevated temperatures
SiC-based ceramic fibers have numerous applications as reinforcement materials. Herein, the in situ thermal stability of four types of SiC-based ceramic fibers from three generations was investigated in terms of elastic modulus and electrical conductivity at temperatures up to 1800 °C in a vacuum un...
Ausführliche Beschreibung
Autor*in: |
Shimoda, Kazuya [verfasserIn] Colin, Christian [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of the European Ceramic Society - European Ceramic Society ; ID: gnd/814932-X, Amsterdam [u.a.] : Elsevier Science, 1989, 44, Seite 802-814 |
---|---|
Übergeordnetes Werk: |
volume:44 ; pages:802-814 |
DOI / URN: |
10.1016/j.jeurceramsoc.2023.10.008 |
---|
Katalog-ID: |
ELV065404289 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV065404289 | ||
003 | DE-627 | ||
005 | 20231103093206.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231103s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jeurceramsoc.2023.10.008 |2 doi | |
035 | |a (DE-627)ELV065404289 | ||
035 | |a (ELSEVIER)S0955-2219(23)00806-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
084 | |a 51.60 |2 bkl | ||
084 | |a 58.45 |2 bkl | ||
100 | 1 | |a Shimoda, Kazuya |e verfasserin |0 (orcid)0000-0001-9051-6534 |4 aut | |
245 | 1 | 0 | |a Evaluation of heat resistance of SiC-based ceramic fibers via in situ elastic modulus and electrical conductivity measurement at elevated temperatures |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a SiC-based ceramic fibers have numerous applications as reinforcement materials. Herein, the in situ thermal stability of four types of SiC-based ceramic fibers from three generations was investigated in terms of elastic modulus and electrical conductivity at temperatures up to 1800 °C in a vacuum under low pressure (<10–4 Pa). A specific tensile test device (MacaSiC) for single fibers was used. Mechanical and physical properties were monitored during heating and cooling at 1200, 1500, and 1800 °C for 10 min. Fibers exposed at 1200, 1500, and 1800 °C for 10 min were evaluated by measuring tensile strength retention, and correlating them with fiber crystallinity and microstructural evolution. Third-generation fibers exhibited excellent thermal stability at temperatures up to 1800 °C. The strength degradation of the third-generation SiC fibers was associated with the enlargement of apparent β-SiC crystallites and carbonization caused by the release of Si in the annular region of the fibers. | ||
650 | 4 | |a Silicon carbide | |
650 | 4 | |a Ceramic fiber | |
650 | 4 | |a Mechanical property | |
650 | 4 | |a Physical property | |
650 | 4 | |a Microstructural analysis | |
700 | 1 | |a Colin, Christian |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |a European Ceramic Society ; ID: gnd/814932-X |t Journal of the European Ceramic Society |d Amsterdam [u.a.] : Elsevier Science, 1989 |g 44, Seite 802-814 |h Online-Ressource |w (DE-627)320516237 |w (DE-600)2013983-4 |w (DE-576)096806621 |x 0955-2219 |7 nnns |
773 | 1 | 8 | |g volume:44 |g pages:802-814 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 51.60 |j Keramische Werkstoffe |j Hartstoffe |x Werkstoffkunde |q VZ |
936 | b | k | |a 58.45 |j Gesteinshüttenkunde |q VZ |
951 | |a AR | ||
952 | |d 44 |h 802-814 |
author_variant |
k s ks c c cc |
---|---|
matchkey_str |
article:09552219:2023----::vlainfeteitnefibsdeaifbrvaniulsimdlsneetiacnutvt |
hierarchy_sort_str |
2023 |
bklnumber |
51.60 58.45 |
publishDate |
2023 |
allfields |
10.1016/j.jeurceramsoc.2023.10.008 doi (DE-627)ELV065404289 (ELSEVIER)S0955-2219(23)00806-3 DE-627 ger DE-627 rda eng 660 VZ 51.60 bkl 58.45 bkl Shimoda, Kazuya verfasserin (orcid)0000-0001-9051-6534 aut Evaluation of heat resistance of SiC-based ceramic fibers via in situ elastic modulus and electrical conductivity measurement at elevated temperatures 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier SiC-based ceramic fibers have numerous applications as reinforcement materials. Herein, the in situ thermal stability of four types of SiC-based ceramic fibers from three generations was investigated in terms of elastic modulus and electrical conductivity at temperatures up to 1800 °C in a vacuum under low pressure (<10–4 Pa). A specific tensile test device (MacaSiC) for single fibers was used. Mechanical and physical properties were monitored during heating and cooling at 1200, 1500, and 1800 °C for 10 min. Fibers exposed at 1200, 1500, and 1800 °C for 10 min were evaluated by measuring tensile strength retention, and correlating them with fiber crystallinity and microstructural evolution. Third-generation fibers exhibited excellent thermal stability at temperatures up to 1800 °C. The strength degradation of the third-generation SiC fibers was associated with the enlargement of apparent β-SiC crystallites and carbonization caused by the release of Si in the annular region of the fibers. Silicon carbide Ceramic fiber Mechanical property Physical property Microstructural analysis Colin, Christian verfasserin aut Enthalten in European Ceramic Society ; ID: gnd/814932-X Journal of the European Ceramic Society Amsterdam [u.a.] : Elsevier Science, 1989 44, Seite 802-814 Online-Ressource (DE-627)320516237 (DE-600)2013983-4 (DE-576)096806621 0955-2219 nnns volume:44 pages:802-814 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 58.45 Gesteinshüttenkunde VZ AR 44 802-814 |
spelling |
10.1016/j.jeurceramsoc.2023.10.008 doi (DE-627)ELV065404289 (ELSEVIER)S0955-2219(23)00806-3 DE-627 ger DE-627 rda eng 660 VZ 51.60 bkl 58.45 bkl Shimoda, Kazuya verfasserin (orcid)0000-0001-9051-6534 aut Evaluation of heat resistance of SiC-based ceramic fibers via in situ elastic modulus and electrical conductivity measurement at elevated temperatures 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier SiC-based ceramic fibers have numerous applications as reinforcement materials. Herein, the in situ thermal stability of four types of SiC-based ceramic fibers from three generations was investigated in terms of elastic modulus and electrical conductivity at temperatures up to 1800 °C in a vacuum under low pressure (<10–4 Pa). A specific tensile test device (MacaSiC) for single fibers was used. Mechanical and physical properties were monitored during heating and cooling at 1200, 1500, and 1800 °C for 10 min. Fibers exposed at 1200, 1500, and 1800 °C for 10 min were evaluated by measuring tensile strength retention, and correlating them with fiber crystallinity and microstructural evolution. Third-generation fibers exhibited excellent thermal stability at temperatures up to 1800 °C. The strength degradation of the third-generation SiC fibers was associated with the enlargement of apparent β-SiC crystallites and carbonization caused by the release of Si in the annular region of the fibers. Silicon carbide Ceramic fiber Mechanical property Physical property Microstructural analysis Colin, Christian verfasserin aut Enthalten in European Ceramic Society ; ID: gnd/814932-X Journal of the European Ceramic Society Amsterdam [u.a.] : Elsevier Science, 1989 44, Seite 802-814 Online-Ressource (DE-627)320516237 (DE-600)2013983-4 (DE-576)096806621 0955-2219 nnns volume:44 pages:802-814 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 58.45 Gesteinshüttenkunde VZ AR 44 802-814 |
allfields_unstemmed |
10.1016/j.jeurceramsoc.2023.10.008 doi (DE-627)ELV065404289 (ELSEVIER)S0955-2219(23)00806-3 DE-627 ger DE-627 rda eng 660 VZ 51.60 bkl 58.45 bkl Shimoda, Kazuya verfasserin (orcid)0000-0001-9051-6534 aut Evaluation of heat resistance of SiC-based ceramic fibers via in situ elastic modulus and electrical conductivity measurement at elevated temperatures 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier SiC-based ceramic fibers have numerous applications as reinforcement materials. Herein, the in situ thermal stability of four types of SiC-based ceramic fibers from three generations was investigated in terms of elastic modulus and electrical conductivity at temperatures up to 1800 °C in a vacuum under low pressure (<10–4 Pa). A specific tensile test device (MacaSiC) for single fibers was used. Mechanical and physical properties were monitored during heating and cooling at 1200, 1500, and 1800 °C for 10 min. Fibers exposed at 1200, 1500, and 1800 °C for 10 min were evaluated by measuring tensile strength retention, and correlating them with fiber crystallinity and microstructural evolution. Third-generation fibers exhibited excellent thermal stability at temperatures up to 1800 °C. The strength degradation of the third-generation SiC fibers was associated with the enlargement of apparent β-SiC crystallites and carbonization caused by the release of Si in the annular region of the fibers. Silicon carbide Ceramic fiber Mechanical property Physical property Microstructural analysis Colin, Christian verfasserin aut Enthalten in European Ceramic Society ; ID: gnd/814932-X Journal of the European Ceramic Society Amsterdam [u.a.] : Elsevier Science, 1989 44, Seite 802-814 Online-Ressource (DE-627)320516237 (DE-600)2013983-4 (DE-576)096806621 0955-2219 nnns volume:44 pages:802-814 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 58.45 Gesteinshüttenkunde VZ AR 44 802-814 |
allfieldsGer |
10.1016/j.jeurceramsoc.2023.10.008 doi (DE-627)ELV065404289 (ELSEVIER)S0955-2219(23)00806-3 DE-627 ger DE-627 rda eng 660 VZ 51.60 bkl 58.45 bkl Shimoda, Kazuya verfasserin (orcid)0000-0001-9051-6534 aut Evaluation of heat resistance of SiC-based ceramic fibers via in situ elastic modulus and electrical conductivity measurement at elevated temperatures 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier SiC-based ceramic fibers have numerous applications as reinforcement materials. Herein, the in situ thermal stability of four types of SiC-based ceramic fibers from three generations was investigated in terms of elastic modulus and electrical conductivity at temperatures up to 1800 °C in a vacuum under low pressure (<10–4 Pa). A specific tensile test device (MacaSiC) for single fibers was used. Mechanical and physical properties were monitored during heating and cooling at 1200, 1500, and 1800 °C for 10 min. Fibers exposed at 1200, 1500, and 1800 °C for 10 min were evaluated by measuring tensile strength retention, and correlating them with fiber crystallinity and microstructural evolution. Third-generation fibers exhibited excellent thermal stability at temperatures up to 1800 °C. The strength degradation of the third-generation SiC fibers was associated with the enlargement of apparent β-SiC crystallites and carbonization caused by the release of Si in the annular region of the fibers. Silicon carbide Ceramic fiber Mechanical property Physical property Microstructural analysis Colin, Christian verfasserin aut Enthalten in European Ceramic Society ; ID: gnd/814932-X Journal of the European Ceramic Society Amsterdam [u.a.] : Elsevier Science, 1989 44, Seite 802-814 Online-Ressource (DE-627)320516237 (DE-600)2013983-4 (DE-576)096806621 0955-2219 nnns volume:44 pages:802-814 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 58.45 Gesteinshüttenkunde VZ AR 44 802-814 |
allfieldsSound |
10.1016/j.jeurceramsoc.2023.10.008 doi (DE-627)ELV065404289 (ELSEVIER)S0955-2219(23)00806-3 DE-627 ger DE-627 rda eng 660 VZ 51.60 bkl 58.45 bkl Shimoda, Kazuya verfasserin (orcid)0000-0001-9051-6534 aut Evaluation of heat resistance of SiC-based ceramic fibers via in situ elastic modulus and electrical conductivity measurement at elevated temperatures 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier SiC-based ceramic fibers have numerous applications as reinforcement materials. Herein, the in situ thermal stability of four types of SiC-based ceramic fibers from three generations was investigated in terms of elastic modulus and electrical conductivity at temperatures up to 1800 °C in a vacuum under low pressure (<10–4 Pa). A specific tensile test device (MacaSiC) for single fibers was used. Mechanical and physical properties were monitored during heating and cooling at 1200, 1500, and 1800 °C for 10 min. Fibers exposed at 1200, 1500, and 1800 °C for 10 min were evaluated by measuring tensile strength retention, and correlating them with fiber crystallinity and microstructural evolution. Third-generation fibers exhibited excellent thermal stability at temperatures up to 1800 °C. The strength degradation of the third-generation SiC fibers was associated with the enlargement of apparent β-SiC crystallites and carbonization caused by the release of Si in the annular region of the fibers. Silicon carbide Ceramic fiber Mechanical property Physical property Microstructural analysis Colin, Christian verfasserin aut Enthalten in European Ceramic Society ; ID: gnd/814932-X Journal of the European Ceramic Society Amsterdam [u.a.] : Elsevier Science, 1989 44, Seite 802-814 Online-Ressource (DE-627)320516237 (DE-600)2013983-4 (DE-576)096806621 0955-2219 nnns volume:44 pages:802-814 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 58.45 Gesteinshüttenkunde VZ AR 44 802-814 |
language |
English |
source |
Enthalten in Journal of the European Ceramic Society 44, Seite 802-814 volume:44 pages:802-814 |
sourceStr |
Enthalten in Journal of the European Ceramic Society 44, Seite 802-814 volume:44 pages:802-814 |
format_phy_str_mv |
Article |
bklname |
Keramische Werkstoffe Hartstoffe Gesteinshüttenkunde |
institution |
findex.gbv.de |
topic_facet |
Silicon carbide Ceramic fiber Mechanical property Physical property Microstructural analysis |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Journal of the European Ceramic Society |
authorswithroles_txt_mv |
Shimoda, Kazuya @@aut@@ Colin, Christian @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320516237 |
dewey-sort |
3660 |
id |
ELV065404289 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065404289</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231103093206.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231103s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jeurceramsoc.2023.10.008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065404289</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0955-2219(23)00806-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shimoda, Kazuya</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9051-6534</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of heat resistance of SiC-based ceramic fibers via in situ elastic modulus and electrical conductivity measurement at elevated temperatures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">SiC-based ceramic fibers have numerous applications as reinforcement materials. Herein, the in situ thermal stability of four types of SiC-based ceramic fibers from three generations was investigated in terms of elastic modulus and electrical conductivity at temperatures up to 1800 °C in a vacuum under low pressure (<10–4 Pa). A specific tensile test device (MacaSiC) for single fibers was used. Mechanical and physical properties were monitored during heating and cooling at 1200, 1500, and 1800 °C for 10 min. Fibers exposed at 1200, 1500, and 1800 °C for 10 min were evaluated by measuring tensile strength retention, and correlating them with fiber crystallinity and microstructural evolution. Third-generation fibers exhibited excellent thermal stability at temperatures up to 1800 °C. The strength degradation of the third-generation SiC fibers was associated with the enlargement of apparent β-SiC crystallites and carbonization caused by the release of Si in the annular region of the fibers.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon carbide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ceramic fiber</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical property</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physical property</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microstructural analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Colin, Christian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">European Ceramic Society ; ID: gnd/814932-X</subfield><subfield code="t">Journal of the European Ceramic Society</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1989</subfield><subfield code="g">44, Seite 802-814</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320516237</subfield><subfield code="w">(DE-600)2013983-4</subfield><subfield code="w">(DE-576)096806621</subfield><subfield code="x">0955-2219</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">pages:802-814</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.60</subfield><subfield code="j">Keramische Werkstoffe</subfield><subfield code="j">Hartstoffe</subfield><subfield code="x">Werkstoffkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.45</subfield><subfield code="j">Gesteinshüttenkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="h">802-814</subfield></datafield></record></collection>
|
author |
Shimoda, Kazuya |
spellingShingle |
Shimoda, Kazuya ddc 660 bkl 51.60 bkl 58.45 misc Silicon carbide misc Ceramic fiber misc Mechanical property misc Physical property misc Microstructural analysis Evaluation of heat resistance of SiC-based ceramic fibers via in situ elastic modulus and electrical conductivity measurement at elevated temperatures |
authorStr |
Shimoda, Kazuya |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320516237 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0955-2219 |
topic_title |
660 VZ 51.60 bkl 58.45 bkl Evaluation of heat resistance of SiC-based ceramic fibers via in situ elastic modulus and electrical conductivity measurement at elevated temperatures Silicon carbide Ceramic fiber Mechanical property Physical property Microstructural analysis |
topic |
ddc 660 bkl 51.60 bkl 58.45 misc Silicon carbide misc Ceramic fiber misc Mechanical property misc Physical property misc Microstructural analysis |
topic_unstemmed |
ddc 660 bkl 51.60 bkl 58.45 misc Silicon carbide misc Ceramic fiber misc Mechanical property misc Physical property misc Microstructural analysis |
topic_browse |
ddc 660 bkl 51.60 bkl 58.45 misc Silicon carbide misc Ceramic fiber misc Mechanical property misc Physical property misc Microstructural analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of the European Ceramic Society |
hierarchy_parent_id |
320516237 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Journal of the European Ceramic Society |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320516237 (DE-600)2013983-4 (DE-576)096806621 |
title |
Evaluation of heat resistance of SiC-based ceramic fibers via in situ elastic modulus and electrical conductivity measurement at elevated temperatures |
ctrlnum |
(DE-627)ELV065404289 (ELSEVIER)S0955-2219(23)00806-3 |
title_full |
Evaluation of heat resistance of SiC-based ceramic fibers via in situ elastic modulus and electrical conductivity measurement at elevated temperatures |
author_sort |
Shimoda, Kazuya |
journal |
Journal of the European Ceramic Society |
journalStr |
Journal of the European Ceramic Society |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
container_start_page |
802 |
author_browse |
Shimoda, Kazuya Colin, Christian |
container_volume |
44 |
class |
660 VZ 51.60 bkl 58.45 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Shimoda, Kazuya |
doi_str_mv |
10.1016/j.jeurceramsoc.2023.10.008 |
normlink |
(ORCID)0000-0001-9051-6534 |
normlink_prefix_str_mv |
(orcid)0000-0001-9051-6534 |
dewey-full |
660 |
author2-role |
verfasserin |
title_sort |
evaluation of heat resistance of sic-based ceramic fibers via in situ elastic modulus and electrical conductivity measurement at elevated temperatures |
title_auth |
Evaluation of heat resistance of SiC-based ceramic fibers via in situ elastic modulus and electrical conductivity measurement at elevated temperatures |
abstract |
SiC-based ceramic fibers have numerous applications as reinforcement materials. Herein, the in situ thermal stability of four types of SiC-based ceramic fibers from three generations was investigated in terms of elastic modulus and electrical conductivity at temperatures up to 1800 °C in a vacuum under low pressure (<10–4 Pa). A specific tensile test device (MacaSiC) for single fibers was used. Mechanical and physical properties were monitored during heating and cooling at 1200, 1500, and 1800 °C for 10 min. Fibers exposed at 1200, 1500, and 1800 °C for 10 min were evaluated by measuring tensile strength retention, and correlating them with fiber crystallinity and microstructural evolution. Third-generation fibers exhibited excellent thermal stability at temperatures up to 1800 °C. The strength degradation of the third-generation SiC fibers was associated with the enlargement of apparent β-SiC crystallites and carbonization caused by the release of Si in the annular region of the fibers. |
abstractGer |
SiC-based ceramic fibers have numerous applications as reinforcement materials. Herein, the in situ thermal stability of four types of SiC-based ceramic fibers from three generations was investigated in terms of elastic modulus and electrical conductivity at temperatures up to 1800 °C in a vacuum under low pressure (<10–4 Pa). A specific tensile test device (MacaSiC) for single fibers was used. Mechanical and physical properties were monitored during heating and cooling at 1200, 1500, and 1800 °C for 10 min. Fibers exposed at 1200, 1500, and 1800 °C for 10 min were evaluated by measuring tensile strength retention, and correlating them with fiber crystallinity and microstructural evolution. Third-generation fibers exhibited excellent thermal stability at temperatures up to 1800 °C. The strength degradation of the third-generation SiC fibers was associated with the enlargement of apparent β-SiC crystallites and carbonization caused by the release of Si in the annular region of the fibers. |
abstract_unstemmed |
SiC-based ceramic fibers have numerous applications as reinforcement materials. Herein, the in situ thermal stability of four types of SiC-based ceramic fibers from three generations was investigated in terms of elastic modulus and electrical conductivity at temperatures up to 1800 °C in a vacuum under low pressure (<10–4 Pa). A specific tensile test device (MacaSiC) for single fibers was used. Mechanical and physical properties were monitored during heating and cooling at 1200, 1500, and 1800 °C for 10 min. Fibers exposed at 1200, 1500, and 1800 °C for 10 min were evaluated by measuring tensile strength retention, and correlating them with fiber crystallinity and microstructural evolution. Third-generation fibers exhibited excellent thermal stability at temperatures up to 1800 °C. The strength degradation of the third-generation SiC fibers was associated with the enlargement of apparent β-SiC crystallites and carbonization caused by the release of Si in the annular region of the fibers. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Evaluation of heat resistance of SiC-based ceramic fibers via in situ elastic modulus and electrical conductivity measurement at elevated temperatures |
remote_bool |
true |
author2 |
Colin, Christian |
author2Str |
Colin, Christian |
ppnlink |
320516237 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jeurceramsoc.2023.10.008 |
up_date |
2024-07-06T22:55:02.989Z |
_version_ |
1803872111680290816 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065404289</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231103093206.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231103s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jeurceramsoc.2023.10.008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065404289</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0955-2219(23)00806-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shimoda, Kazuya</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9051-6534</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of heat resistance of SiC-based ceramic fibers via in situ elastic modulus and electrical conductivity measurement at elevated temperatures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">SiC-based ceramic fibers have numerous applications as reinforcement materials. Herein, the in situ thermal stability of four types of SiC-based ceramic fibers from three generations was investigated in terms of elastic modulus and electrical conductivity at temperatures up to 1800 °C in a vacuum under low pressure (<10–4 Pa). A specific tensile test device (MacaSiC) for single fibers was used. Mechanical and physical properties were monitored during heating and cooling at 1200, 1500, and 1800 °C for 10 min. Fibers exposed at 1200, 1500, and 1800 °C for 10 min were evaluated by measuring tensile strength retention, and correlating them with fiber crystallinity and microstructural evolution. Third-generation fibers exhibited excellent thermal stability at temperatures up to 1800 °C. The strength degradation of the third-generation SiC fibers was associated with the enlargement of apparent β-SiC crystallites and carbonization caused by the release of Si in the annular region of the fibers.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon carbide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ceramic fiber</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical property</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physical property</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microstructural analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Colin, Christian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">European Ceramic Society ; ID: gnd/814932-X</subfield><subfield code="t">Journal of the European Ceramic Society</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1989</subfield><subfield code="g">44, Seite 802-814</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320516237</subfield><subfield code="w">(DE-600)2013983-4</subfield><subfield code="w">(DE-576)096806621</subfield><subfield code="x">0955-2219</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">pages:802-814</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.60</subfield><subfield code="j">Keramische Werkstoffe</subfield><subfield code="j">Hartstoffe</subfield><subfield code="x">Werkstoffkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.45</subfield><subfield code="j">Gesteinshüttenkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="h">802-814</subfield></datafield></record></collection>
|
score |
7.401165 |