Minimal chaotic models from the Volterra gyrostat
Low-order models obtained through Galerkin projection of several physically important systems (e.g., Rayleigh–Bénard convection, mid-latitude quasi-geostrophic dynamics, and vorticity dynamics) appear in the form of coupled gyrostats. Forced dissipative chaos is an important phenomenon in these mode...
Ausführliche Beschreibung
Autor*in: |
Seshadri, Ashwin K. [verfasserIn] Lakshmivarahan, S [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Physica / D - Amsterdam [u.a.] : Elsevier, 1980, 456 |
---|---|
Übergeordnetes Werk: |
volume:456 |
DOI / URN: |
10.1016/j.physd.2023.133948 |
---|
Katalog-ID: |
ELV065415345 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV065415345 | ||
003 | DE-627 | ||
005 | 20231123093059.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231103s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.physd.2023.133948 |2 doi | |
035 | |a (DE-627)ELV065415345 | ||
035 | |a (ELSEVIER)S0167-2789(23)00302-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 30.20 |2 bkl | ||
084 | |a 33.25 |2 bkl | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Seshadri, Ashwin K. |e verfasserin |0 (orcid)0000-0002-1801-5708 |4 aut | |
245 | 1 | 0 | |a Minimal chaotic models from the Volterra gyrostat |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Low-order models obtained through Galerkin projection of several physically important systems (e.g., Rayleigh–Bénard convection, mid-latitude quasi-geostrophic dynamics, and vorticity dynamics) appear in the form of coupled gyrostats. Forced dissipative chaos is an important phenomenon in these models, and this paper introduces and identifies “minimal chaotic models” (MCMs), in the sense of having the fewest external forcing and linear dissipation terms, for the class of models arising from an underlying gyrostat core. The identification of MCMs reveals common conditions for chaos across a wide variety of physical systems. It is shown here that a critical distinction is whether the gyrostat core (without forcing or dissipation) conserves energy, depending on whether the sum of the quadratic coefficients is zero. The paper demonstrates that, for the energy-conserving condition of the gyrostat core, the requirement of a characteristic pair of fixed points that repel the chaotic flow dictates placement of forcing and dissipation in the minimal chaotic models. In contrast if the core does not conserve energy, the forcing can be arranged in additional ways for chaos to appear in the subclasses where linear feedbacks render fewer invariants in the gyrostat core. In all cases, the linear mode must experience dissipation for chaos to arise. The Volterra gyrostat presents a clear example where the arrangement of fixed points circumscribes more complex dynamics. | ||
650 | 4 | |a Volterra gyrostat | |
650 | 4 | |a Low-order models | |
650 | 4 | |a Galerkin projection | |
650 | 4 | |a Minimal chaotic models | |
650 | 4 | |a Forced-dissipative chaos | |
650 | 4 | |a Energy conservation | |
700 | 1 | |a Lakshmivarahan, S |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Physica / D |d Amsterdam [u.a.] : Elsevier, 1980 |g 456 |h Online-Ressource |w (DE-627)266015166 |w (DE-600)1466587-6 |w (DE-576)074959867 |x 1872-8022 |7 nnns |
773 | 1 | 8 | |g volume:456 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 30.20 |j Nichtlineare Dynamik |q VZ |
936 | b | k | |a 33.25 |j Thermodynamik |j statistische Physik |q VZ |
936 | b | k | |a 31.00 |j Mathematik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 456 |
author_variant |
a k s ak aks s l sl |
---|---|
matchkey_str |
article:18728022:2023----::iiacatcoesrmhvl |
hierarchy_sort_str |
2023 |
bklnumber |
30.20 33.25 31.00 |
publishDate |
2023 |
allfields |
10.1016/j.physd.2023.133948 doi (DE-627)ELV065415345 (ELSEVIER)S0167-2789(23)00302-0 DE-627 ger DE-627 rda eng 530 VZ 30.20 bkl 33.25 bkl 31.00 bkl Seshadri, Ashwin K. verfasserin (orcid)0000-0002-1801-5708 aut Minimal chaotic models from the Volterra gyrostat 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Low-order models obtained through Galerkin projection of several physically important systems (e.g., Rayleigh–Bénard convection, mid-latitude quasi-geostrophic dynamics, and vorticity dynamics) appear in the form of coupled gyrostats. Forced dissipative chaos is an important phenomenon in these models, and this paper introduces and identifies “minimal chaotic models” (MCMs), in the sense of having the fewest external forcing and linear dissipation terms, for the class of models arising from an underlying gyrostat core. The identification of MCMs reveals common conditions for chaos across a wide variety of physical systems. It is shown here that a critical distinction is whether the gyrostat core (without forcing or dissipation) conserves energy, depending on whether the sum of the quadratic coefficients is zero. The paper demonstrates that, for the energy-conserving condition of the gyrostat core, the requirement of a characteristic pair of fixed points that repel the chaotic flow dictates placement of forcing and dissipation in the minimal chaotic models. In contrast if the core does not conserve energy, the forcing can be arranged in additional ways for chaos to appear in the subclasses where linear feedbacks render fewer invariants in the gyrostat core. In all cases, the linear mode must experience dissipation for chaos to arise. The Volterra gyrostat presents a clear example where the arrangement of fixed points circumscribes more complex dynamics. Volterra gyrostat Low-order models Galerkin projection Minimal chaotic models Forced-dissipative chaos Energy conservation Lakshmivarahan, S verfasserin aut Enthalten in Physica / D Amsterdam [u.a.] : Elsevier, 1980 456 Online-Ressource (DE-627)266015166 (DE-600)1466587-6 (DE-576)074959867 1872-8022 nnns volume:456 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 30.20 Nichtlineare Dynamik VZ 33.25 Thermodynamik statistische Physik VZ 31.00 Mathematik: Allgemeines VZ AR 456 |
spelling |
10.1016/j.physd.2023.133948 doi (DE-627)ELV065415345 (ELSEVIER)S0167-2789(23)00302-0 DE-627 ger DE-627 rda eng 530 VZ 30.20 bkl 33.25 bkl 31.00 bkl Seshadri, Ashwin K. verfasserin (orcid)0000-0002-1801-5708 aut Minimal chaotic models from the Volterra gyrostat 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Low-order models obtained through Galerkin projection of several physically important systems (e.g., Rayleigh–Bénard convection, mid-latitude quasi-geostrophic dynamics, and vorticity dynamics) appear in the form of coupled gyrostats. Forced dissipative chaos is an important phenomenon in these models, and this paper introduces and identifies “minimal chaotic models” (MCMs), in the sense of having the fewest external forcing and linear dissipation terms, for the class of models arising from an underlying gyrostat core. The identification of MCMs reveals common conditions for chaos across a wide variety of physical systems. It is shown here that a critical distinction is whether the gyrostat core (without forcing or dissipation) conserves energy, depending on whether the sum of the quadratic coefficients is zero. The paper demonstrates that, for the energy-conserving condition of the gyrostat core, the requirement of a characteristic pair of fixed points that repel the chaotic flow dictates placement of forcing and dissipation in the minimal chaotic models. In contrast if the core does not conserve energy, the forcing can be arranged in additional ways for chaos to appear in the subclasses where linear feedbacks render fewer invariants in the gyrostat core. In all cases, the linear mode must experience dissipation for chaos to arise. The Volterra gyrostat presents a clear example where the arrangement of fixed points circumscribes more complex dynamics. Volterra gyrostat Low-order models Galerkin projection Minimal chaotic models Forced-dissipative chaos Energy conservation Lakshmivarahan, S verfasserin aut Enthalten in Physica / D Amsterdam [u.a.] : Elsevier, 1980 456 Online-Ressource (DE-627)266015166 (DE-600)1466587-6 (DE-576)074959867 1872-8022 nnns volume:456 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 30.20 Nichtlineare Dynamik VZ 33.25 Thermodynamik statistische Physik VZ 31.00 Mathematik: Allgemeines VZ AR 456 |
allfields_unstemmed |
10.1016/j.physd.2023.133948 doi (DE-627)ELV065415345 (ELSEVIER)S0167-2789(23)00302-0 DE-627 ger DE-627 rda eng 530 VZ 30.20 bkl 33.25 bkl 31.00 bkl Seshadri, Ashwin K. verfasserin (orcid)0000-0002-1801-5708 aut Minimal chaotic models from the Volterra gyrostat 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Low-order models obtained through Galerkin projection of several physically important systems (e.g., Rayleigh–Bénard convection, mid-latitude quasi-geostrophic dynamics, and vorticity dynamics) appear in the form of coupled gyrostats. Forced dissipative chaos is an important phenomenon in these models, and this paper introduces and identifies “minimal chaotic models” (MCMs), in the sense of having the fewest external forcing and linear dissipation terms, for the class of models arising from an underlying gyrostat core. The identification of MCMs reveals common conditions for chaos across a wide variety of physical systems. It is shown here that a critical distinction is whether the gyrostat core (without forcing or dissipation) conserves energy, depending on whether the sum of the quadratic coefficients is zero. The paper demonstrates that, for the energy-conserving condition of the gyrostat core, the requirement of a characteristic pair of fixed points that repel the chaotic flow dictates placement of forcing and dissipation in the minimal chaotic models. In contrast if the core does not conserve energy, the forcing can be arranged in additional ways for chaos to appear in the subclasses where linear feedbacks render fewer invariants in the gyrostat core. In all cases, the linear mode must experience dissipation for chaos to arise. The Volterra gyrostat presents a clear example where the arrangement of fixed points circumscribes more complex dynamics. Volterra gyrostat Low-order models Galerkin projection Minimal chaotic models Forced-dissipative chaos Energy conservation Lakshmivarahan, S verfasserin aut Enthalten in Physica / D Amsterdam [u.a.] : Elsevier, 1980 456 Online-Ressource (DE-627)266015166 (DE-600)1466587-6 (DE-576)074959867 1872-8022 nnns volume:456 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 30.20 Nichtlineare Dynamik VZ 33.25 Thermodynamik statistische Physik VZ 31.00 Mathematik: Allgemeines VZ AR 456 |
allfieldsGer |
10.1016/j.physd.2023.133948 doi (DE-627)ELV065415345 (ELSEVIER)S0167-2789(23)00302-0 DE-627 ger DE-627 rda eng 530 VZ 30.20 bkl 33.25 bkl 31.00 bkl Seshadri, Ashwin K. verfasserin (orcid)0000-0002-1801-5708 aut Minimal chaotic models from the Volterra gyrostat 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Low-order models obtained through Galerkin projection of several physically important systems (e.g., Rayleigh–Bénard convection, mid-latitude quasi-geostrophic dynamics, and vorticity dynamics) appear in the form of coupled gyrostats. Forced dissipative chaos is an important phenomenon in these models, and this paper introduces and identifies “minimal chaotic models” (MCMs), in the sense of having the fewest external forcing and linear dissipation terms, for the class of models arising from an underlying gyrostat core. The identification of MCMs reveals common conditions for chaos across a wide variety of physical systems. It is shown here that a critical distinction is whether the gyrostat core (without forcing or dissipation) conserves energy, depending on whether the sum of the quadratic coefficients is zero. The paper demonstrates that, for the energy-conserving condition of the gyrostat core, the requirement of a characteristic pair of fixed points that repel the chaotic flow dictates placement of forcing and dissipation in the minimal chaotic models. In contrast if the core does not conserve energy, the forcing can be arranged in additional ways for chaos to appear in the subclasses where linear feedbacks render fewer invariants in the gyrostat core. In all cases, the linear mode must experience dissipation for chaos to arise. The Volterra gyrostat presents a clear example where the arrangement of fixed points circumscribes more complex dynamics. Volterra gyrostat Low-order models Galerkin projection Minimal chaotic models Forced-dissipative chaos Energy conservation Lakshmivarahan, S verfasserin aut Enthalten in Physica / D Amsterdam [u.a.] : Elsevier, 1980 456 Online-Ressource (DE-627)266015166 (DE-600)1466587-6 (DE-576)074959867 1872-8022 nnns volume:456 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 30.20 Nichtlineare Dynamik VZ 33.25 Thermodynamik statistische Physik VZ 31.00 Mathematik: Allgemeines VZ AR 456 |
allfieldsSound |
10.1016/j.physd.2023.133948 doi (DE-627)ELV065415345 (ELSEVIER)S0167-2789(23)00302-0 DE-627 ger DE-627 rda eng 530 VZ 30.20 bkl 33.25 bkl 31.00 bkl Seshadri, Ashwin K. verfasserin (orcid)0000-0002-1801-5708 aut Minimal chaotic models from the Volterra gyrostat 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Low-order models obtained through Galerkin projection of several physically important systems (e.g., Rayleigh–Bénard convection, mid-latitude quasi-geostrophic dynamics, and vorticity dynamics) appear in the form of coupled gyrostats. Forced dissipative chaos is an important phenomenon in these models, and this paper introduces and identifies “minimal chaotic models” (MCMs), in the sense of having the fewest external forcing and linear dissipation terms, for the class of models arising from an underlying gyrostat core. The identification of MCMs reveals common conditions for chaos across a wide variety of physical systems. It is shown here that a critical distinction is whether the gyrostat core (without forcing or dissipation) conserves energy, depending on whether the sum of the quadratic coefficients is zero. The paper demonstrates that, for the energy-conserving condition of the gyrostat core, the requirement of a characteristic pair of fixed points that repel the chaotic flow dictates placement of forcing and dissipation in the minimal chaotic models. In contrast if the core does not conserve energy, the forcing can be arranged in additional ways for chaos to appear in the subclasses where linear feedbacks render fewer invariants in the gyrostat core. In all cases, the linear mode must experience dissipation for chaos to arise. The Volterra gyrostat presents a clear example where the arrangement of fixed points circumscribes more complex dynamics. Volterra gyrostat Low-order models Galerkin projection Minimal chaotic models Forced-dissipative chaos Energy conservation Lakshmivarahan, S verfasserin aut Enthalten in Physica / D Amsterdam [u.a.] : Elsevier, 1980 456 Online-Ressource (DE-627)266015166 (DE-600)1466587-6 (DE-576)074959867 1872-8022 nnns volume:456 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 30.20 Nichtlineare Dynamik VZ 33.25 Thermodynamik statistische Physik VZ 31.00 Mathematik: Allgemeines VZ AR 456 |
language |
English |
source |
Enthalten in Physica / D 456 volume:456 |
sourceStr |
Enthalten in Physica / D 456 volume:456 |
format_phy_str_mv |
Article |
bklname |
Nichtlineare Dynamik Thermodynamik statistische Physik Mathematik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Volterra gyrostat Low-order models Galerkin projection Minimal chaotic models Forced-dissipative chaos Energy conservation |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Physica / D |
authorswithroles_txt_mv |
Seshadri, Ashwin K. @@aut@@ Lakshmivarahan, S @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
266015166 |
dewey-sort |
3530 |
id |
ELV065415345 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065415345</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231123093059.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231103s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.physd.2023.133948</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065415345</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-2789(23)00302-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.25</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Seshadri, Ashwin K.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1801-5708</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Minimal chaotic models from the Volterra gyrostat</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Low-order models obtained through Galerkin projection of several physically important systems (e.g., Rayleigh–Bénard convection, mid-latitude quasi-geostrophic dynamics, and vorticity dynamics) appear in the form of coupled gyrostats. Forced dissipative chaos is an important phenomenon in these models, and this paper introduces and identifies “minimal chaotic models” (MCMs), in the sense of having the fewest external forcing and linear dissipation terms, for the class of models arising from an underlying gyrostat core. The identification of MCMs reveals common conditions for chaos across a wide variety of physical systems. It is shown here that a critical distinction is whether the gyrostat core (without forcing or dissipation) conserves energy, depending on whether the sum of the quadratic coefficients is zero. The paper demonstrates that, for the energy-conserving condition of the gyrostat core, the requirement of a characteristic pair of fixed points that repel the chaotic flow dictates placement of forcing and dissipation in the minimal chaotic models. In contrast if the core does not conserve energy, the forcing can be arranged in additional ways for chaos to appear in the subclasses where linear feedbacks render fewer invariants in the gyrostat core. In all cases, the linear mode must experience dissipation for chaos to arise. The Volterra gyrostat presents a clear example where the arrangement of fixed points circumscribes more complex dynamics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volterra gyrostat</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low-order models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galerkin projection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimal chaotic models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forced-dissipative chaos</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy conservation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lakshmivarahan, S</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physica / D</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1980</subfield><subfield code="g">456</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266015166</subfield><subfield code="w">(DE-600)1466587-6</subfield><subfield code="w">(DE-576)074959867</subfield><subfield code="x">1872-8022</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:456</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">30.20</subfield><subfield code="j">Nichtlineare Dynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.25</subfield><subfield code="j">Thermodynamik</subfield><subfield code="j">statistische Physik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">456</subfield></datafield></record></collection>
|
author |
Seshadri, Ashwin K. |
spellingShingle |
Seshadri, Ashwin K. ddc 530 bkl 30.20 bkl 33.25 bkl 31.00 misc Volterra gyrostat misc Low-order models misc Galerkin projection misc Minimal chaotic models misc Forced-dissipative chaos misc Energy conservation Minimal chaotic models from the Volterra gyrostat |
authorStr |
Seshadri, Ashwin K. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)266015166 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1872-8022 |
topic_title |
530 VZ 30.20 bkl 33.25 bkl 31.00 bkl Minimal chaotic models from the Volterra gyrostat Volterra gyrostat Low-order models Galerkin projection Minimal chaotic models Forced-dissipative chaos Energy conservation |
topic |
ddc 530 bkl 30.20 bkl 33.25 bkl 31.00 misc Volterra gyrostat misc Low-order models misc Galerkin projection misc Minimal chaotic models misc Forced-dissipative chaos misc Energy conservation |
topic_unstemmed |
ddc 530 bkl 30.20 bkl 33.25 bkl 31.00 misc Volterra gyrostat misc Low-order models misc Galerkin projection misc Minimal chaotic models misc Forced-dissipative chaos misc Energy conservation |
topic_browse |
ddc 530 bkl 30.20 bkl 33.25 bkl 31.00 misc Volterra gyrostat misc Low-order models misc Galerkin projection misc Minimal chaotic models misc Forced-dissipative chaos misc Energy conservation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Physica / D |
hierarchy_parent_id |
266015166 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Physica / D |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)266015166 (DE-600)1466587-6 (DE-576)074959867 |
title |
Minimal chaotic models from the Volterra gyrostat |
ctrlnum |
(DE-627)ELV065415345 (ELSEVIER)S0167-2789(23)00302-0 |
title_full |
Minimal chaotic models from the Volterra gyrostat |
author_sort |
Seshadri, Ashwin K. |
journal |
Physica / D |
journalStr |
Physica / D |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Seshadri, Ashwin K. Lakshmivarahan, S |
container_volume |
456 |
class |
530 VZ 30.20 bkl 33.25 bkl 31.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Seshadri, Ashwin K. |
doi_str_mv |
10.1016/j.physd.2023.133948 |
normlink |
(ORCID)0000-0002-1801-5708 |
normlink_prefix_str_mv |
(orcid)0000-0002-1801-5708 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
minimal chaotic models from the volterra gyrostat |
title_auth |
Minimal chaotic models from the Volterra gyrostat |
abstract |
Low-order models obtained through Galerkin projection of several physically important systems (e.g., Rayleigh–Bénard convection, mid-latitude quasi-geostrophic dynamics, and vorticity dynamics) appear in the form of coupled gyrostats. Forced dissipative chaos is an important phenomenon in these models, and this paper introduces and identifies “minimal chaotic models” (MCMs), in the sense of having the fewest external forcing and linear dissipation terms, for the class of models arising from an underlying gyrostat core. The identification of MCMs reveals common conditions for chaos across a wide variety of physical systems. It is shown here that a critical distinction is whether the gyrostat core (without forcing or dissipation) conserves energy, depending on whether the sum of the quadratic coefficients is zero. The paper demonstrates that, for the energy-conserving condition of the gyrostat core, the requirement of a characteristic pair of fixed points that repel the chaotic flow dictates placement of forcing and dissipation in the minimal chaotic models. In contrast if the core does not conserve energy, the forcing can be arranged in additional ways for chaos to appear in the subclasses where linear feedbacks render fewer invariants in the gyrostat core. In all cases, the linear mode must experience dissipation for chaos to arise. The Volterra gyrostat presents a clear example where the arrangement of fixed points circumscribes more complex dynamics. |
abstractGer |
Low-order models obtained through Galerkin projection of several physically important systems (e.g., Rayleigh–Bénard convection, mid-latitude quasi-geostrophic dynamics, and vorticity dynamics) appear in the form of coupled gyrostats. Forced dissipative chaos is an important phenomenon in these models, and this paper introduces and identifies “minimal chaotic models” (MCMs), in the sense of having the fewest external forcing and linear dissipation terms, for the class of models arising from an underlying gyrostat core. The identification of MCMs reveals common conditions for chaos across a wide variety of physical systems. It is shown here that a critical distinction is whether the gyrostat core (without forcing or dissipation) conserves energy, depending on whether the sum of the quadratic coefficients is zero. The paper demonstrates that, for the energy-conserving condition of the gyrostat core, the requirement of a characteristic pair of fixed points that repel the chaotic flow dictates placement of forcing and dissipation in the minimal chaotic models. In contrast if the core does not conserve energy, the forcing can be arranged in additional ways for chaos to appear in the subclasses where linear feedbacks render fewer invariants in the gyrostat core. In all cases, the linear mode must experience dissipation for chaos to arise. The Volterra gyrostat presents a clear example where the arrangement of fixed points circumscribes more complex dynamics. |
abstract_unstemmed |
Low-order models obtained through Galerkin projection of several physically important systems (e.g., Rayleigh–Bénard convection, mid-latitude quasi-geostrophic dynamics, and vorticity dynamics) appear in the form of coupled gyrostats. Forced dissipative chaos is an important phenomenon in these models, and this paper introduces and identifies “minimal chaotic models” (MCMs), in the sense of having the fewest external forcing and linear dissipation terms, for the class of models arising from an underlying gyrostat core. The identification of MCMs reveals common conditions for chaos across a wide variety of physical systems. It is shown here that a critical distinction is whether the gyrostat core (without forcing or dissipation) conserves energy, depending on whether the sum of the quadratic coefficients is zero. The paper demonstrates that, for the energy-conserving condition of the gyrostat core, the requirement of a characteristic pair of fixed points that repel the chaotic flow dictates placement of forcing and dissipation in the minimal chaotic models. In contrast if the core does not conserve energy, the forcing can be arranged in additional ways for chaos to appear in the subclasses where linear feedbacks render fewer invariants in the gyrostat core. In all cases, the linear mode must experience dissipation for chaos to arise. The Volterra gyrostat presents a clear example where the arrangement of fixed points circumscribes more complex dynamics. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Minimal chaotic models from the Volterra gyrostat |
remote_bool |
true |
author2 |
Lakshmivarahan, S |
author2Str |
Lakshmivarahan, S |
ppnlink |
266015166 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.physd.2023.133948 |
up_date |
2024-07-06T22:57:14.746Z |
_version_ |
1803872249837518848 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065415345</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231123093059.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231103s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.physd.2023.133948</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065415345</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-2789(23)00302-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.25</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Seshadri, Ashwin K.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1801-5708</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Minimal chaotic models from the Volterra gyrostat</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Low-order models obtained through Galerkin projection of several physically important systems (e.g., Rayleigh–Bénard convection, mid-latitude quasi-geostrophic dynamics, and vorticity dynamics) appear in the form of coupled gyrostats. Forced dissipative chaos is an important phenomenon in these models, and this paper introduces and identifies “minimal chaotic models” (MCMs), in the sense of having the fewest external forcing and linear dissipation terms, for the class of models arising from an underlying gyrostat core. The identification of MCMs reveals common conditions for chaos across a wide variety of physical systems. It is shown here that a critical distinction is whether the gyrostat core (without forcing or dissipation) conserves energy, depending on whether the sum of the quadratic coefficients is zero. The paper demonstrates that, for the energy-conserving condition of the gyrostat core, the requirement of a characteristic pair of fixed points that repel the chaotic flow dictates placement of forcing and dissipation in the minimal chaotic models. In contrast if the core does not conserve energy, the forcing can be arranged in additional ways for chaos to appear in the subclasses where linear feedbacks render fewer invariants in the gyrostat core. In all cases, the linear mode must experience dissipation for chaos to arise. The Volterra gyrostat presents a clear example where the arrangement of fixed points circumscribes more complex dynamics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volterra gyrostat</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low-order models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galerkin projection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimal chaotic models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forced-dissipative chaos</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy conservation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lakshmivarahan, S</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physica / D</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1980</subfield><subfield code="g">456</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266015166</subfield><subfield code="w">(DE-600)1466587-6</subfield><subfield code="w">(DE-576)074959867</subfield><subfield code="x">1872-8022</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:456</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">30.20</subfield><subfield code="j">Nichtlineare Dynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.25</subfield><subfield code="j">Thermodynamik</subfield><subfield code="j">statistische Physik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">456</subfield></datafield></record></collection>
|
score |
7.4003763 |