Integrating multiple probes for simplifying signal-on photoelectrochemical biosensing of microRNA with ultrasensitivity and wide detection range based on biofunctionalized porous ferroferric oxide and hypotoxic quaternary semiconductor
A facile and signal-on photoelectrochemical (PEC) biosensing strategy was designed based on hypotoxic Cu2ZnSnS4 NPs nanoparticles (NPs) and biofunctionalized Fe3O4 NPs that integrated recognition units with signal elements, without the need for immobilization of probes on the electrode. Cu2ZnSnS4 NP...
Ausführliche Beschreibung
Autor*in: |
Tu, Wenwen [verfasserIn] Zhu, Lingling [verfasserIn] Cai, Tingting [verfasserIn] Li, Zijun [verfasserIn] Dai, Zhihui [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Biosensors and bioelectronics - Amsterdam [u.a.] : Elsevier Science, 1989, 243 |
---|---|
Übergeordnetes Werk: |
volume:243 |
DOI / URN: |
10.1016/j.bios.2023.115781 |
---|
Katalog-ID: |
ELV065429907 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV065429907 | ||
003 | DE-627 | ||
005 | 20231108093044.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231104s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.bios.2023.115781 |2 doi | |
035 | |a (DE-627)ELV065429907 | ||
035 | |a (ELSEVIER)S0956-5663(23)00723-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 610 |q VZ |
084 | |a 58.30 |2 bkl | ||
084 | |a 50.22 |2 bkl | ||
084 | |a 44.09 |2 bkl | ||
100 | 1 | |a Tu, Wenwen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Integrating multiple probes for simplifying signal-on photoelectrochemical biosensing of microRNA with ultrasensitivity and wide detection range based on biofunctionalized porous ferroferric oxide and hypotoxic quaternary semiconductor |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A facile and signal-on photoelectrochemical (PEC) biosensing strategy was designed based on hypotoxic Cu2ZnSnS4 NPs nanoparticles (NPs) and biofunctionalized Fe3O4 NPs that integrated recognition units with signal elements, without the need for immobilization of probes on the electrode. Cu2ZnSnS4 NPs were used as the PEC substrate to produce intensive and stable photocurrent. The porous magnetic Fe3O4 NPs displayed favorable loading capacity for CdS QDs and easy biofunctionalization by negatively charged capture DNA (cDNA). cDNA sealed the pore of Fe3O4 NPs, avoiding the escape of CdS QDs as a PEC sensitizer. After hybridizing with target microRNA (miRNA), cDNA split away off Fe3O4 NPs whose porous channel might open and release sealed CdS QDs (signal element), resulting in a dramatical enhancement of PEC response. Herein, miRNA hardly contacted with CdS QDs, effectively avoiding harm to the target miRNA. This proposed strategy simplified procedures of assembly and made the biorecognition process sufficient for promoting a stationary quantity of probes, which was expected to obtain satisfactory performance for bioassay. Using miRNA-155 as a model analyte and combining with duplex-specific nuclease (DSN)-assisted amplification, a simplified and signal-on PEC biosensing platform for miRNA-155 with wonderful performance was proposed. DSN-assisted amplification further promoted PEC signal increment, leading to ulteriorly improving sensitivity (detection limit of 0.17 fM) and linear range (6.5 orders of magnitude) for miRNA-155 assay. Moreover, the developed PEC biosensing platform exhibited satisfactory stability, excellent specificity, and favorable accuracy for miRNA-155, which would have a promising prospect for monitoring miRNA expression in tumor cells. | ||
650 | 4 | |a Biosensing | |
650 | 4 | |a MicroRNA | |
650 | 4 | |a Photoelectrochemistry | |
650 | 4 | |a Multiple probes | |
700 | 1 | |a Zhu, Lingling |e verfasserin |4 aut | |
700 | 1 | |a Cai, Tingting |e verfasserin |4 aut | |
700 | 1 | |a Li, Zijun |e verfasserin |4 aut | |
700 | 1 | |a Dai, Zhihui |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Biosensors and bioelectronics |d Amsterdam [u.a.] : Elsevier Science, 1989 |g 243 |h Online-Ressource |w (DE-627)30632122X |w (DE-600)1496379-6 |w (DE-576)094082596 |x 1873-4235 |7 nnns |
773 | 1 | 8 | |g volume:243 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 58.30 |j Biotechnologie |q VZ |
936 | b | k | |a 50.22 |j Sensorik |q VZ |
936 | b | k | |a 44.09 |j Medizintechnik |q VZ |
951 | |a AR | ||
952 | |d 243 |
author_variant |
w t wt l z lz t c tc z l zl z d zd |
---|---|
matchkey_str |
article:18734235:2023----::nertnmlilpoefripiynsgaopoolcrceiaboesnomconwtutaestvtadieeetorneaeoboucinlzdoo |
hierarchy_sort_str |
2023 |
bklnumber |
58.30 50.22 44.09 |
publishDate |
2023 |
allfields |
10.1016/j.bios.2023.115781 doi (DE-627)ELV065429907 (ELSEVIER)S0956-5663(23)00723-6 DE-627 ger DE-627 rda eng 570 610 VZ 58.30 bkl 50.22 bkl 44.09 bkl Tu, Wenwen verfasserin aut Integrating multiple probes for simplifying signal-on photoelectrochemical biosensing of microRNA with ultrasensitivity and wide detection range based on biofunctionalized porous ferroferric oxide and hypotoxic quaternary semiconductor 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A facile and signal-on photoelectrochemical (PEC) biosensing strategy was designed based on hypotoxic Cu2ZnSnS4 NPs nanoparticles (NPs) and biofunctionalized Fe3O4 NPs that integrated recognition units with signal elements, without the need for immobilization of probes on the electrode. Cu2ZnSnS4 NPs were used as the PEC substrate to produce intensive and stable photocurrent. The porous magnetic Fe3O4 NPs displayed favorable loading capacity for CdS QDs and easy biofunctionalization by negatively charged capture DNA (cDNA). cDNA sealed the pore of Fe3O4 NPs, avoiding the escape of CdS QDs as a PEC sensitizer. After hybridizing with target microRNA (miRNA), cDNA split away off Fe3O4 NPs whose porous channel might open and release sealed CdS QDs (signal element), resulting in a dramatical enhancement of PEC response. Herein, miRNA hardly contacted with CdS QDs, effectively avoiding harm to the target miRNA. This proposed strategy simplified procedures of assembly and made the biorecognition process sufficient for promoting a stationary quantity of probes, which was expected to obtain satisfactory performance for bioassay. Using miRNA-155 as a model analyte and combining with duplex-specific nuclease (DSN)-assisted amplification, a simplified and signal-on PEC biosensing platform for miRNA-155 with wonderful performance was proposed. DSN-assisted amplification further promoted PEC signal increment, leading to ulteriorly improving sensitivity (detection limit of 0.17 fM) and linear range (6.5 orders of magnitude) for miRNA-155 assay. Moreover, the developed PEC biosensing platform exhibited satisfactory stability, excellent specificity, and favorable accuracy for miRNA-155, which would have a promising prospect for monitoring miRNA expression in tumor cells. Biosensing MicroRNA Photoelectrochemistry Multiple probes Zhu, Lingling verfasserin aut Cai, Tingting verfasserin aut Li, Zijun verfasserin aut Dai, Zhihui verfasserin aut Enthalten in Biosensors and bioelectronics Amsterdam [u.a.] : Elsevier Science, 1989 243 Online-Ressource (DE-627)30632122X (DE-600)1496379-6 (DE-576)094082596 1873-4235 nnns volume:243 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.30 Biotechnologie VZ 50.22 Sensorik VZ 44.09 Medizintechnik VZ AR 243 |
spelling |
10.1016/j.bios.2023.115781 doi (DE-627)ELV065429907 (ELSEVIER)S0956-5663(23)00723-6 DE-627 ger DE-627 rda eng 570 610 VZ 58.30 bkl 50.22 bkl 44.09 bkl Tu, Wenwen verfasserin aut Integrating multiple probes for simplifying signal-on photoelectrochemical biosensing of microRNA with ultrasensitivity and wide detection range based on biofunctionalized porous ferroferric oxide and hypotoxic quaternary semiconductor 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A facile and signal-on photoelectrochemical (PEC) biosensing strategy was designed based on hypotoxic Cu2ZnSnS4 NPs nanoparticles (NPs) and biofunctionalized Fe3O4 NPs that integrated recognition units with signal elements, without the need for immobilization of probes on the electrode. Cu2ZnSnS4 NPs were used as the PEC substrate to produce intensive and stable photocurrent. The porous magnetic Fe3O4 NPs displayed favorable loading capacity for CdS QDs and easy biofunctionalization by negatively charged capture DNA (cDNA). cDNA sealed the pore of Fe3O4 NPs, avoiding the escape of CdS QDs as a PEC sensitizer. After hybridizing with target microRNA (miRNA), cDNA split away off Fe3O4 NPs whose porous channel might open and release sealed CdS QDs (signal element), resulting in a dramatical enhancement of PEC response. Herein, miRNA hardly contacted with CdS QDs, effectively avoiding harm to the target miRNA. This proposed strategy simplified procedures of assembly and made the biorecognition process sufficient for promoting a stationary quantity of probes, which was expected to obtain satisfactory performance for bioassay. Using miRNA-155 as a model analyte and combining with duplex-specific nuclease (DSN)-assisted amplification, a simplified and signal-on PEC biosensing platform for miRNA-155 with wonderful performance was proposed. DSN-assisted amplification further promoted PEC signal increment, leading to ulteriorly improving sensitivity (detection limit of 0.17 fM) and linear range (6.5 orders of magnitude) for miRNA-155 assay. Moreover, the developed PEC biosensing platform exhibited satisfactory stability, excellent specificity, and favorable accuracy for miRNA-155, which would have a promising prospect for monitoring miRNA expression in tumor cells. Biosensing MicroRNA Photoelectrochemistry Multiple probes Zhu, Lingling verfasserin aut Cai, Tingting verfasserin aut Li, Zijun verfasserin aut Dai, Zhihui verfasserin aut Enthalten in Biosensors and bioelectronics Amsterdam [u.a.] : Elsevier Science, 1989 243 Online-Ressource (DE-627)30632122X (DE-600)1496379-6 (DE-576)094082596 1873-4235 nnns volume:243 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.30 Biotechnologie VZ 50.22 Sensorik VZ 44.09 Medizintechnik VZ AR 243 |
allfields_unstemmed |
10.1016/j.bios.2023.115781 doi (DE-627)ELV065429907 (ELSEVIER)S0956-5663(23)00723-6 DE-627 ger DE-627 rda eng 570 610 VZ 58.30 bkl 50.22 bkl 44.09 bkl Tu, Wenwen verfasserin aut Integrating multiple probes for simplifying signal-on photoelectrochemical biosensing of microRNA with ultrasensitivity and wide detection range based on biofunctionalized porous ferroferric oxide and hypotoxic quaternary semiconductor 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A facile and signal-on photoelectrochemical (PEC) biosensing strategy was designed based on hypotoxic Cu2ZnSnS4 NPs nanoparticles (NPs) and biofunctionalized Fe3O4 NPs that integrated recognition units with signal elements, without the need for immobilization of probes on the electrode. Cu2ZnSnS4 NPs were used as the PEC substrate to produce intensive and stable photocurrent. The porous magnetic Fe3O4 NPs displayed favorable loading capacity for CdS QDs and easy biofunctionalization by negatively charged capture DNA (cDNA). cDNA sealed the pore of Fe3O4 NPs, avoiding the escape of CdS QDs as a PEC sensitizer. After hybridizing with target microRNA (miRNA), cDNA split away off Fe3O4 NPs whose porous channel might open and release sealed CdS QDs (signal element), resulting in a dramatical enhancement of PEC response. Herein, miRNA hardly contacted with CdS QDs, effectively avoiding harm to the target miRNA. This proposed strategy simplified procedures of assembly and made the biorecognition process sufficient for promoting a stationary quantity of probes, which was expected to obtain satisfactory performance for bioassay. Using miRNA-155 as a model analyte and combining with duplex-specific nuclease (DSN)-assisted amplification, a simplified and signal-on PEC biosensing platform for miRNA-155 with wonderful performance was proposed. DSN-assisted amplification further promoted PEC signal increment, leading to ulteriorly improving sensitivity (detection limit of 0.17 fM) and linear range (6.5 orders of magnitude) for miRNA-155 assay. Moreover, the developed PEC biosensing platform exhibited satisfactory stability, excellent specificity, and favorable accuracy for miRNA-155, which would have a promising prospect for monitoring miRNA expression in tumor cells. Biosensing MicroRNA Photoelectrochemistry Multiple probes Zhu, Lingling verfasserin aut Cai, Tingting verfasserin aut Li, Zijun verfasserin aut Dai, Zhihui verfasserin aut Enthalten in Biosensors and bioelectronics Amsterdam [u.a.] : Elsevier Science, 1989 243 Online-Ressource (DE-627)30632122X (DE-600)1496379-6 (DE-576)094082596 1873-4235 nnns volume:243 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.30 Biotechnologie VZ 50.22 Sensorik VZ 44.09 Medizintechnik VZ AR 243 |
allfieldsGer |
10.1016/j.bios.2023.115781 doi (DE-627)ELV065429907 (ELSEVIER)S0956-5663(23)00723-6 DE-627 ger DE-627 rda eng 570 610 VZ 58.30 bkl 50.22 bkl 44.09 bkl Tu, Wenwen verfasserin aut Integrating multiple probes for simplifying signal-on photoelectrochemical biosensing of microRNA with ultrasensitivity and wide detection range based on biofunctionalized porous ferroferric oxide and hypotoxic quaternary semiconductor 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A facile and signal-on photoelectrochemical (PEC) biosensing strategy was designed based on hypotoxic Cu2ZnSnS4 NPs nanoparticles (NPs) and biofunctionalized Fe3O4 NPs that integrated recognition units with signal elements, without the need for immobilization of probes on the electrode. Cu2ZnSnS4 NPs were used as the PEC substrate to produce intensive and stable photocurrent. The porous magnetic Fe3O4 NPs displayed favorable loading capacity for CdS QDs and easy biofunctionalization by negatively charged capture DNA (cDNA). cDNA sealed the pore of Fe3O4 NPs, avoiding the escape of CdS QDs as a PEC sensitizer. After hybridizing with target microRNA (miRNA), cDNA split away off Fe3O4 NPs whose porous channel might open and release sealed CdS QDs (signal element), resulting in a dramatical enhancement of PEC response. Herein, miRNA hardly contacted with CdS QDs, effectively avoiding harm to the target miRNA. This proposed strategy simplified procedures of assembly and made the biorecognition process sufficient for promoting a stationary quantity of probes, which was expected to obtain satisfactory performance for bioassay. Using miRNA-155 as a model analyte and combining with duplex-specific nuclease (DSN)-assisted amplification, a simplified and signal-on PEC biosensing platform for miRNA-155 with wonderful performance was proposed. DSN-assisted amplification further promoted PEC signal increment, leading to ulteriorly improving sensitivity (detection limit of 0.17 fM) and linear range (6.5 orders of magnitude) for miRNA-155 assay. Moreover, the developed PEC biosensing platform exhibited satisfactory stability, excellent specificity, and favorable accuracy for miRNA-155, which would have a promising prospect for monitoring miRNA expression in tumor cells. Biosensing MicroRNA Photoelectrochemistry Multiple probes Zhu, Lingling verfasserin aut Cai, Tingting verfasserin aut Li, Zijun verfasserin aut Dai, Zhihui verfasserin aut Enthalten in Biosensors and bioelectronics Amsterdam [u.a.] : Elsevier Science, 1989 243 Online-Ressource (DE-627)30632122X (DE-600)1496379-6 (DE-576)094082596 1873-4235 nnns volume:243 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.30 Biotechnologie VZ 50.22 Sensorik VZ 44.09 Medizintechnik VZ AR 243 |
allfieldsSound |
10.1016/j.bios.2023.115781 doi (DE-627)ELV065429907 (ELSEVIER)S0956-5663(23)00723-6 DE-627 ger DE-627 rda eng 570 610 VZ 58.30 bkl 50.22 bkl 44.09 bkl Tu, Wenwen verfasserin aut Integrating multiple probes for simplifying signal-on photoelectrochemical biosensing of microRNA with ultrasensitivity and wide detection range based on biofunctionalized porous ferroferric oxide and hypotoxic quaternary semiconductor 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A facile and signal-on photoelectrochemical (PEC) biosensing strategy was designed based on hypotoxic Cu2ZnSnS4 NPs nanoparticles (NPs) and biofunctionalized Fe3O4 NPs that integrated recognition units with signal elements, without the need for immobilization of probes on the electrode. Cu2ZnSnS4 NPs were used as the PEC substrate to produce intensive and stable photocurrent. The porous magnetic Fe3O4 NPs displayed favorable loading capacity for CdS QDs and easy biofunctionalization by negatively charged capture DNA (cDNA). cDNA sealed the pore of Fe3O4 NPs, avoiding the escape of CdS QDs as a PEC sensitizer. After hybridizing with target microRNA (miRNA), cDNA split away off Fe3O4 NPs whose porous channel might open and release sealed CdS QDs (signal element), resulting in a dramatical enhancement of PEC response. Herein, miRNA hardly contacted with CdS QDs, effectively avoiding harm to the target miRNA. This proposed strategy simplified procedures of assembly and made the biorecognition process sufficient for promoting a stationary quantity of probes, which was expected to obtain satisfactory performance for bioassay. Using miRNA-155 as a model analyte and combining with duplex-specific nuclease (DSN)-assisted amplification, a simplified and signal-on PEC biosensing platform for miRNA-155 with wonderful performance was proposed. DSN-assisted amplification further promoted PEC signal increment, leading to ulteriorly improving sensitivity (detection limit of 0.17 fM) and linear range (6.5 orders of magnitude) for miRNA-155 assay. Moreover, the developed PEC biosensing platform exhibited satisfactory stability, excellent specificity, and favorable accuracy for miRNA-155, which would have a promising prospect for monitoring miRNA expression in tumor cells. Biosensing MicroRNA Photoelectrochemistry Multiple probes Zhu, Lingling verfasserin aut Cai, Tingting verfasserin aut Li, Zijun verfasserin aut Dai, Zhihui verfasserin aut Enthalten in Biosensors and bioelectronics Amsterdam [u.a.] : Elsevier Science, 1989 243 Online-Ressource (DE-627)30632122X (DE-600)1496379-6 (DE-576)094082596 1873-4235 nnns volume:243 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.30 Biotechnologie VZ 50.22 Sensorik VZ 44.09 Medizintechnik VZ AR 243 |
language |
English |
source |
Enthalten in Biosensors and bioelectronics 243 volume:243 |
sourceStr |
Enthalten in Biosensors and bioelectronics 243 volume:243 |
format_phy_str_mv |
Article |
bklname |
Biotechnologie Sensorik Medizintechnik |
institution |
findex.gbv.de |
topic_facet |
Biosensing MicroRNA Photoelectrochemistry Multiple probes |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Biosensors and bioelectronics |
authorswithroles_txt_mv |
Tu, Wenwen @@aut@@ Zhu, Lingling @@aut@@ Cai, Tingting @@aut@@ Li, Zijun @@aut@@ Dai, Zhihui @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
30632122X |
dewey-sort |
3570 |
id |
ELV065429907 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065429907</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231108093044.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231104s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.bios.2023.115781</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065429907</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0956-5663(23)00723-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.22</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tu, Wenwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Integrating multiple probes for simplifying signal-on photoelectrochemical biosensing of microRNA with ultrasensitivity and wide detection range based on biofunctionalized porous ferroferric oxide and hypotoxic quaternary semiconductor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A facile and signal-on photoelectrochemical (PEC) biosensing strategy was designed based on hypotoxic Cu2ZnSnS4 NPs nanoparticles (NPs) and biofunctionalized Fe3O4 NPs that integrated recognition units with signal elements, without the need for immobilization of probes on the electrode. Cu2ZnSnS4 NPs were used as the PEC substrate to produce intensive and stable photocurrent. The porous magnetic Fe3O4 NPs displayed favorable loading capacity for CdS QDs and easy biofunctionalization by negatively charged capture DNA (cDNA). cDNA sealed the pore of Fe3O4 NPs, avoiding the escape of CdS QDs as a PEC sensitizer. After hybridizing with target microRNA (miRNA), cDNA split away off Fe3O4 NPs whose porous channel might open and release sealed CdS QDs (signal element), resulting in a dramatical enhancement of PEC response. Herein, miRNA hardly contacted with CdS QDs, effectively avoiding harm to the target miRNA. This proposed strategy simplified procedures of assembly and made the biorecognition process sufficient for promoting a stationary quantity of probes, which was expected to obtain satisfactory performance for bioassay. Using miRNA-155 as a model analyte and combining with duplex-specific nuclease (DSN)-assisted amplification, a simplified and signal-on PEC biosensing platform for miRNA-155 with wonderful performance was proposed. DSN-assisted amplification further promoted PEC signal increment, leading to ulteriorly improving sensitivity (detection limit of 0.17 fM) and linear range (6.5 orders of magnitude) for miRNA-155 assay. Moreover, the developed PEC biosensing platform exhibited satisfactory stability, excellent specificity, and favorable accuracy for miRNA-155, which would have a promising prospect for monitoring miRNA expression in tumor cells.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biosensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MicroRNA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photoelectrochemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple probes</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Lingling</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Tingting</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Zijun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Zhihui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Biosensors and bioelectronics</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1989</subfield><subfield code="g">243</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)30632122X</subfield><subfield code="w">(DE-600)1496379-6</subfield><subfield code="w">(DE-576)094082596</subfield><subfield code="x">1873-4235</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:243</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.30</subfield><subfield code="j">Biotechnologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.22</subfield><subfield code="j">Sensorik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.09</subfield><subfield code="j">Medizintechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">243</subfield></datafield></record></collection>
|
author |
Tu, Wenwen |
spellingShingle |
Tu, Wenwen ddc 570 bkl 58.30 bkl 50.22 bkl 44.09 misc Biosensing misc MicroRNA misc Photoelectrochemistry misc Multiple probes Integrating multiple probes for simplifying signal-on photoelectrochemical biosensing of microRNA with ultrasensitivity and wide detection range based on biofunctionalized porous ferroferric oxide and hypotoxic quaternary semiconductor |
authorStr |
Tu, Wenwen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)30632122X |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-4235 |
topic_title |
570 610 VZ 58.30 bkl 50.22 bkl 44.09 bkl Integrating multiple probes for simplifying signal-on photoelectrochemical biosensing of microRNA with ultrasensitivity and wide detection range based on biofunctionalized porous ferroferric oxide and hypotoxic quaternary semiconductor Biosensing MicroRNA Photoelectrochemistry Multiple probes |
topic |
ddc 570 bkl 58.30 bkl 50.22 bkl 44.09 misc Biosensing misc MicroRNA misc Photoelectrochemistry misc Multiple probes |
topic_unstemmed |
ddc 570 bkl 58.30 bkl 50.22 bkl 44.09 misc Biosensing misc MicroRNA misc Photoelectrochemistry misc Multiple probes |
topic_browse |
ddc 570 bkl 58.30 bkl 50.22 bkl 44.09 misc Biosensing misc MicroRNA misc Photoelectrochemistry misc Multiple probes |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Biosensors and bioelectronics |
hierarchy_parent_id |
30632122X |
dewey-tens |
570 - Life sciences; biology 610 - Medicine & health |
hierarchy_top_title |
Biosensors and bioelectronics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)30632122X (DE-600)1496379-6 (DE-576)094082596 |
title |
Integrating multiple probes for simplifying signal-on photoelectrochemical biosensing of microRNA with ultrasensitivity and wide detection range based on biofunctionalized porous ferroferric oxide and hypotoxic quaternary semiconductor |
ctrlnum |
(DE-627)ELV065429907 (ELSEVIER)S0956-5663(23)00723-6 |
title_full |
Integrating multiple probes for simplifying signal-on photoelectrochemical biosensing of microRNA with ultrasensitivity and wide detection range based on biofunctionalized porous ferroferric oxide and hypotoxic quaternary semiconductor |
author_sort |
Tu, Wenwen |
journal |
Biosensors and bioelectronics |
journalStr |
Biosensors and bioelectronics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Tu, Wenwen Zhu, Lingling Cai, Tingting Li, Zijun Dai, Zhihui |
container_volume |
243 |
class |
570 610 VZ 58.30 bkl 50.22 bkl 44.09 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Tu, Wenwen |
doi_str_mv |
10.1016/j.bios.2023.115781 |
dewey-full |
570 610 |
author2-role |
verfasserin |
title_sort |
integrating multiple probes for simplifying signal-on photoelectrochemical biosensing of microrna with ultrasensitivity and wide detection range based on biofunctionalized porous ferroferric oxide and hypotoxic quaternary semiconductor |
title_auth |
Integrating multiple probes for simplifying signal-on photoelectrochemical biosensing of microRNA with ultrasensitivity and wide detection range based on biofunctionalized porous ferroferric oxide and hypotoxic quaternary semiconductor |
abstract |
A facile and signal-on photoelectrochemical (PEC) biosensing strategy was designed based on hypotoxic Cu2ZnSnS4 NPs nanoparticles (NPs) and biofunctionalized Fe3O4 NPs that integrated recognition units with signal elements, without the need for immobilization of probes on the electrode. Cu2ZnSnS4 NPs were used as the PEC substrate to produce intensive and stable photocurrent. The porous magnetic Fe3O4 NPs displayed favorable loading capacity for CdS QDs and easy biofunctionalization by negatively charged capture DNA (cDNA). cDNA sealed the pore of Fe3O4 NPs, avoiding the escape of CdS QDs as a PEC sensitizer. After hybridizing with target microRNA (miRNA), cDNA split away off Fe3O4 NPs whose porous channel might open and release sealed CdS QDs (signal element), resulting in a dramatical enhancement of PEC response. Herein, miRNA hardly contacted with CdS QDs, effectively avoiding harm to the target miRNA. This proposed strategy simplified procedures of assembly and made the biorecognition process sufficient for promoting a stationary quantity of probes, which was expected to obtain satisfactory performance for bioassay. Using miRNA-155 as a model analyte and combining with duplex-specific nuclease (DSN)-assisted amplification, a simplified and signal-on PEC biosensing platform for miRNA-155 with wonderful performance was proposed. DSN-assisted amplification further promoted PEC signal increment, leading to ulteriorly improving sensitivity (detection limit of 0.17 fM) and linear range (6.5 orders of magnitude) for miRNA-155 assay. Moreover, the developed PEC biosensing platform exhibited satisfactory stability, excellent specificity, and favorable accuracy for miRNA-155, which would have a promising prospect for monitoring miRNA expression in tumor cells. |
abstractGer |
A facile and signal-on photoelectrochemical (PEC) biosensing strategy was designed based on hypotoxic Cu2ZnSnS4 NPs nanoparticles (NPs) and biofunctionalized Fe3O4 NPs that integrated recognition units with signal elements, without the need for immobilization of probes on the electrode. Cu2ZnSnS4 NPs were used as the PEC substrate to produce intensive and stable photocurrent. The porous magnetic Fe3O4 NPs displayed favorable loading capacity for CdS QDs and easy biofunctionalization by negatively charged capture DNA (cDNA). cDNA sealed the pore of Fe3O4 NPs, avoiding the escape of CdS QDs as a PEC sensitizer. After hybridizing with target microRNA (miRNA), cDNA split away off Fe3O4 NPs whose porous channel might open and release sealed CdS QDs (signal element), resulting in a dramatical enhancement of PEC response. Herein, miRNA hardly contacted with CdS QDs, effectively avoiding harm to the target miRNA. This proposed strategy simplified procedures of assembly and made the biorecognition process sufficient for promoting a stationary quantity of probes, which was expected to obtain satisfactory performance for bioassay. Using miRNA-155 as a model analyte and combining with duplex-specific nuclease (DSN)-assisted amplification, a simplified and signal-on PEC biosensing platform for miRNA-155 with wonderful performance was proposed. DSN-assisted amplification further promoted PEC signal increment, leading to ulteriorly improving sensitivity (detection limit of 0.17 fM) and linear range (6.5 orders of magnitude) for miRNA-155 assay. Moreover, the developed PEC biosensing platform exhibited satisfactory stability, excellent specificity, and favorable accuracy for miRNA-155, which would have a promising prospect for monitoring miRNA expression in tumor cells. |
abstract_unstemmed |
A facile and signal-on photoelectrochemical (PEC) biosensing strategy was designed based on hypotoxic Cu2ZnSnS4 NPs nanoparticles (NPs) and biofunctionalized Fe3O4 NPs that integrated recognition units with signal elements, without the need for immobilization of probes on the electrode. Cu2ZnSnS4 NPs were used as the PEC substrate to produce intensive and stable photocurrent. The porous magnetic Fe3O4 NPs displayed favorable loading capacity for CdS QDs and easy biofunctionalization by negatively charged capture DNA (cDNA). cDNA sealed the pore of Fe3O4 NPs, avoiding the escape of CdS QDs as a PEC sensitizer. After hybridizing with target microRNA (miRNA), cDNA split away off Fe3O4 NPs whose porous channel might open and release sealed CdS QDs (signal element), resulting in a dramatical enhancement of PEC response. Herein, miRNA hardly contacted with CdS QDs, effectively avoiding harm to the target miRNA. This proposed strategy simplified procedures of assembly and made the biorecognition process sufficient for promoting a stationary quantity of probes, which was expected to obtain satisfactory performance for bioassay. Using miRNA-155 as a model analyte and combining with duplex-specific nuclease (DSN)-assisted amplification, a simplified and signal-on PEC biosensing platform for miRNA-155 with wonderful performance was proposed. DSN-assisted amplification further promoted PEC signal increment, leading to ulteriorly improving sensitivity (detection limit of 0.17 fM) and linear range (6.5 orders of magnitude) for miRNA-155 assay. Moreover, the developed PEC biosensing platform exhibited satisfactory stability, excellent specificity, and favorable accuracy for miRNA-155, which would have a promising prospect for monitoring miRNA expression in tumor cells. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Integrating multiple probes for simplifying signal-on photoelectrochemical biosensing of microRNA with ultrasensitivity and wide detection range based on biofunctionalized porous ferroferric oxide and hypotoxic quaternary semiconductor |
remote_bool |
true |
author2 |
Zhu, Lingling Cai, Tingting Li, Zijun Dai, Zhihui |
author2Str |
Zhu, Lingling Cai, Tingting Li, Zijun Dai, Zhihui |
ppnlink |
30632122X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.bios.2023.115781 |
up_date |
2024-07-06T23:00:18.390Z |
_version_ |
1803872442402209792 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065429907</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231108093044.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231104s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.bios.2023.115781</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065429907</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0956-5663(23)00723-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.22</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tu, Wenwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Integrating multiple probes for simplifying signal-on photoelectrochemical biosensing of microRNA with ultrasensitivity and wide detection range based on biofunctionalized porous ferroferric oxide and hypotoxic quaternary semiconductor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A facile and signal-on photoelectrochemical (PEC) biosensing strategy was designed based on hypotoxic Cu2ZnSnS4 NPs nanoparticles (NPs) and biofunctionalized Fe3O4 NPs that integrated recognition units with signal elements, without the need for immobilization of probes on the electrode. Cu2ZnSnS4 NPs were used as the PEC substrate to produce intensive and stable photocurrent. The porous magnetic Fe3O4 NPs displayed favorable loading capacity for CdS QDs and easy biofunctionalization by negatively charged capture DNA (cDNA). cDNA sealed the pore of Fe3O4 NPs, avoiding the escape of CdS QDs as a PEC sensitizer. After hybridizing with target microRNA (miRNA), cDNA split away off Fe3O4 NPs whose porous channel might open and release sealed CdS QDs (signal element), resulting in a dramatical enhancement of PEC response. Herein, miRNA hardly contacted with CdS QDs, effectively avoiding harm to the target miRNA. This proposed strategy simplified procedures of assembly and made the biorecognition process sufficient for promoting a stationary quantity of probes, which was expected to obtain satisfactory performance for bioassay. Using miRNA-155 as a model analyte and combining with duplex-specific nuclease (DSN)-assisted amplification, a simplified and signal-on PEC biosensing platform for miRNA-155 with wonderful performance was proposed. DSN-assisted amplification further promoted PEC signal increment, leading to ulteriorly improving sensitivity (detection limit of 0.17 fM) and linear range (6.5 orders of magnitude) for miRNA-155 assay. Moreover, the developed PEC biosensing platform exhibited satisfactory stability, excellent specificity, and favorable accuracy for miRNA-155, which would have a promising prospect for monitoring miRNA expression in tumor cells.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biosensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MicroRNA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photoelectrochemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple probes</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Lingling</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Tingting</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Zijun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Zhihui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Biosensors and bioelectronics</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1989</subfield><subfield code="g">243</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)30632122X</subfield><subfield code="w">(DE-600)1496379-6</subfield><subfield code="w">(DE-576)094082596</subfield><subfield code="x">1873-4235</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:243</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.30</subfield><subfield code="j">Biotechnologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.22</subfield><subfield code="j">Sensorik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.09</subfield><subfield code="j">Medizintechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">243</subfield></datafield></record></collection>
|
score |
7.3987885 |