The impact of strontium composition on thallium-doped cesium iodide scintillators
Investigating new scintillators with more alternative methods has been an attractive topic for a long time. This work aims to study the impact of strontium composition on thallium-doped cesium iodide scintillators. There are three different composition ratios of cesium iodide and strontium iodide pr...
Ausführliche Beschreibung
Autor*in: |
Chevajarassakul, Wasin [verfasserIn] Saengkaew, Phannee [verfasserIn] Cheewajaroen, Kulthawat [verfasserIn] Thong-Aram, Decho [verfasserIn] Dhanasiwawong, Kittidhaj [verfasserIn] Yordsri, Visittapong [verfasserIn] Lertloypanyachai, Prapon [verfasserIn] Phunpueok, Akapong [verfasserIn] Kaewkhao, Jakrapong [verfasserIn] Kiwsakunkan, Nuchjaree [verfasserIn] Singkiburin, Nakarin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Nuclear instruments & methods in physics research / A - Amsterdam : North-Holland Publ. Co., 1984, 1057 |
---|---|
Übergeordnetes Werk: |
volume:1057 |
DOI / URN: |
10.1016/j.nima.2023.168731 |
---|
Katalog-ID: |
ELV065438051 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV065438051 | ||
003 | DE-627 | ||
005 | 20240112093154.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231104s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.nima.2023.168731 |2 doi | |
035 | |a (DE-627)ELV065438051 | ||
035 | |a (ELSEVIER)S0168-9002(23)00722-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 33.05 |2 bkl | ||
084 | |a 33.07 |2 bkl | ||
084 | |a 33.40 |2 bkl | ||
100 | 1 | |a Chevajarassakul, Wasin |e verfasserin |4 aut | |
245 | 1 | 0 | |a The impact of strontium composition on thallium-doped cesium iodide scintillators |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Investigating new scintillators with more alternative methods has been an attractive topic for a long time. This work aims to study the impact of strontium composition on thallium-doped cesium iodide scintillators. There are three different composition ratios of cesium iodide and strontium iodide precursors of 99:1, 95:5, and 90:10 with the same thallium doping of 0.28 mol%. The EDS measurements analyzed the soluble Sr-compositions in these grown crystals as 0%(undetectable), 0.43%, and 2.31%, respectively. With slightly increased strontium composition, the crystallite size was slightly smaller from 59.17, 45.51, to 33.23 nm, respectively. Moreover, the crystals have a somewhat more compressive strain and a slightly higher single crystallinity when the composition of strontium iodide increases. By analyzing the crystals' optical properties, the luminescent properties were trivially enhanced with a bit higher scintillation light yielding up to 29,859 photon/MeV of the crystal with a Sr-composition of 2.31%. Photoluminescence measurements exhibit the enhanced 520 nm scintillation and the lower 410 nm emission at higher Sr contents. These crystals’ emission decay times were obtained as τ1 = 500 ns (fast component) and τ2 = 700 ns (slow component) and slightly slower times with a higher Sr content. Lastly, radiation detection efficiency has been investigated at various energy levels of gamma rays from Am-241, Co-57, Ba-133, and Cs-137 sources. We found that the crystal with a higher Sr composition of 2.31% has better energy resolutions down to the best one of 7.9% at 662-keV measurement. In summary, higher strontium codoping with thallium in cesium iodide scintillators can enhance the crystal structure and optical properties. This would be one candidate of the promising scintillators for developing alternative high-performance radiation detectors for high-speed imaging applications. | ||
650 | 4 | |a Crystal structure | |
650 | 4 | |a Bridgman technique | |
650 | 4 | |a Inorganic compounds | |
650 | 4 | |a Scintillator materials | |
650 | 4 | |a Scintillators | |
700 | 1 | |a Saengkaew, Phannee |e verfasserin |0 (orcid)0000-0002-0308-4735 |4 aut | |
700 | 1 | |a Cheewajaroen, Kulthawat |e verfasserin |4 aut | |
700 | 1 | |a Thong-Aram, Decho |e verfasserin |4 aut | |
700 | 1 | |a Dhanasiwawong, Kittidhaj |e verfasserin |4 aut | |
700 | 1 | |a Yordsri, Visittapong |e verfasserin |4 aut | |
700 | 1 | |a Lertloypanyachai, Prapon |e verfasserin |4 aut | |
700 | 1 | |a Phunpueok, Akapong |e verfasserin |4 aut | |
700 | 1 | |a Kaewkhao, Jakrapong |e verfasserin |4 aut | |
700 | 1 | |a Kiwsakunkan, Nuchjaree |e verfasserin |4 aut | |
700 | 1 | |a Singkiburin, Nakarin |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nuclear instruments & methods in physics research / A |d Amsterdam : North-Holland Publ. Co., 1984 |g 1057 |h Online-Ressource |w (DE-627)266014666 |w (DE-600)1466532-3 |w (DE-576)074959743 |x 0168-9002 |7 nnns |
773 | 1 | 8 | |g volume:1057 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 33.05 |j Experimentalphysik |q VZ |
936 | b | k | |a 33.07 |j Spektroskopie |q VZ |
936 | b | k | |a 33.40 |j Kernphysik |q VZ |
951 | |a AR | ||
952 | |d 1057 |
author_variant |
w c wc p s ps k c kc d t a dta k d kd v y vy p l pl a p ap j k jk n k nk n s ns |
---|---|
matchkey_str |
article:01689002:2023----::hipcosrnimopstootaludpdei |
hierarchy_sort_str |
2023 |
bklnumber |
33.05 33.07 33.40 |
publishDate |
2023 |
allfields |
10.1016/j.nima.2023.168731 doi (DE-627)ELV065438051 (ELSEVIER)S0168-9002(23)00722-2 DE-627 ger DE-627 rda eng 530 VZ 33.05 bkl 33.07 bkl 33.40 bkl Chevajarassakul, Wasin verfasserin aut The impact of strontium composition on thallium-doped cesium iodide scintillators 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Investigating new scintillators with more alternative methods has been an attractive topic for a long time. This work aims to study the impact of strontium composition on thallium-doped cesium iodide scintillators. There are three different composition ratios of cesium iodide and strontium iodide precursors of 99:1, 95:5, and 90:10 with the same thallium doping of 0.28 mol%. The EDS measurements analyzed the soluble Sr-compositions in these grown crystals as 0%(undetectable), 0.43%, and 2.31%, respectively. With slightly increased strontium composition, the crystallite size was slightly smaller from 59.17, 45.51, to 33.23 nm, respectively. Moreover, the crystals have a somewhat more compressive strain and a slightly higher single crystallinity when the composition of strontium iodide increases. By analyzing the crystals' optical properties, the luminescent properties were trivially enhanced with a bit higher scintillation light yielding up to 29,859 photon/MeV of the crystal with a Sr-composition of 2.31%. Photoluminescence measurements exhibit the enhanced 520 nm scintillation and the lower 410 nm emission at higher Sr contents. These crystals’ emission decay times were obtained as τ1 = 500 ns (fast component) and τ2 = 700 ns (slow component) and slightly slower times with a higher Sr content. Lastly, radiation detection efficiency has been investigated at various energy levels of gamma rays from Am-241, Co-57, Ba-133, and Cs-137 sources. We found that the crystal with a higher Sr composition of 2.31% has better energy resolutions down to the best one of 7.9% at 662-keV measurement. In summary, higher strontium codoping with thallium in cesium iodide scintillators can enhance the crystal structure and optical properties. This would be one candidate of the promising scintillators for developing alternative high-performance radiation detectors for high-speed imaging applications. Crystal structure Bridgman technique Inorganic compounds Scintillator materials Scintillators Saengkaew, Phannee verfasserin (orcid)0000-0002-0308-4735 aut Cheewajaroen, Kulthawat verfasserin aut Thong-Aram, Decho verfasserin aut Dhanasiwawong, Kittidhaj verfasserin aut Yordsri, Visittapong verfasserin aut Lertloypanyachai, Prapon verfasserin aut Phunpueok, Akapong verfasserin aut Kaewkhao, Jakrapong verfasserin aut Kiwsakunkan, Nuchjaree verfasserin aut Singkiburin, Nakarin verfasserin aut Enthalten in Nuclear instruments & methods in physics research / A Amsterdam : North-Holland Publ. Co., 1984 1057 Online-Ressource (DE-627)266014666 (DE-600)1466532-3 (DE-576)074959743 0168-9002 nnns volume:1057 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.05 Experimentalphysik VZ 33.07 Spektroskopie VZ 33.40 Kernphysik VZ AR 1057 |
spelling |
10.1016/j.nima.2023.168731 doi (DE-627)ELV065438051 (ELSEVIER)S0168-9002(23)00722-2 DE-627 ger DE-627 rda eng 530 VZ 33.05 bkl 33.07 bkl 33.40 bkl Chevajarassakul, Wasin verfasserin aut The impact of strontium composition on thallium-doped cesium iodide scintillators 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Investigating new scintillators with more alternative methods has been an attractive topic for a long time. This work aims to study the impact of strontium composition on thallium-doped cesium iodide scintillators. There are three different composition ratios of cesium iodide and strontium iodide precursors of 99:1, 95:5, and 90:10 with the same thallium doping of 0.28 mol%. The EDS measurements analyzed the soluble Sr-compositions in these grown crystals as 0%(undetectable), 0.43%, and 2.31%, respectively. With slightly increased strontium composition, the crystallite size was slightly smaller from 59.17, 45.51, to 33.23 nm, respectively. Moreover, the crystals have a somewhat more compressive strain and a slightly higher single crystallinity when the composition of strontium iodide increases. By analyzing the crystals' optical properties, the luminescent properties were trivially enhanced with a bit higher scintillation light yielding up to 29,859 photon/MeV of the crystal with a Sr-composition of 2.31%. Photoluminescence measurements exhibit the enhanced 520 nm scintillation and the lower 410 nm emission at higher Sr contents. These crystals’ emission decay times were obtained as τ1 = 500 ns (fast component) and τ2 = 700 ns (slow component) and slightly slower times with a higher Sr content. Lastly, radiation detection efficiency has been investigated at various energy levels of gamma rays from Am-241, Co-57, Ba-133, and Cs-137 sources. We found that the crystal with a higher Sr composition of 2.31% has better energy resolutions down to the best one of 7.9% at 662-keV measurement. In summary, higher strontium codoping with thallium in cesium iodide scintillators can enhance the crystal structure and optical properties. This would be one candidate of the promising scintillators for developing alternative high-performance radiation detectors for high-speed imaging applications. Crystal structure Bridgman technique Inorganic compounds Scintillator materials Scintillators Saengkaew, Phannee verfasserin (orcid)0000-0002-0308-4735 aut Cheewajaroen, Kulthawat verfasserin aut Thong-Aram, Decho verfasserin aut Dhanasiwawong, Kittidhaj verfasserin aut Yordsri, Visittapong verfasserin aut Lertloypanyachai, Prapon verfasserin aut Phunpueok, Akapong verfasserin aut Kaewkhao, Jakrapong verfasserin aut Kiwsakunkan, Nuchjaree verfasserin aut Singkiburin, Nakarin verfasserin aut Enthalten in Nuclear instruments & methods in physics research / A Amsterdam : North-Holland Publ. Co., 1984 1057 Online-Ressource (DE-627)266014666 (DE-600)1466532-3 (DE-576)074959743 0168-9002 nnns volume:1057 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.05 Experimentalphysik VZ 33.07 Spektroskopie VZ 33.40 Kernphysik VZ AR 1057 |
allfields_unstemmed |
10.1016/j.nima.2023.168731 doi (DE-627)ELV065438051 (ELSEVIER)S0168-9002(23)00722-2 DE-627 ger DE-627 rda eng 530 VZ 33.05 bkl 33.07 bkl 33.40 bkl Chevajarassakul, Wasin verfasserin aut The impact of strontium composition on thallium-doped cesium iodide scintillators 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Investigating new scintillators with more alternative methods has been an attractive topic for a long time. This work aims to study the impact of strontium composition on thallium-doped cesium iodide scintillators. There are three different composition ratios of cesium iodide and strontium iodide precursors of 99:1, 95:5, and 90:10 with the same thallium doping of 0.28 mol%. The EDS measurements analyzed the soluble Sr-compositions in these grown crystals as 0%(undetectable), 0.43%, and 2.31%, respectively. With slightly increased strontium composition, the crystallite size was slightly smaller from 59.17, 45.51, to 33.23 nm, respectively. Moreover, the crystals have a somewhat more compressive strain and a slightly higher single crystallinity when the composition of strontium iodide increases. By analyzing the crystals' optical properties, the luminescent properties were trivially enhanced with a bit higher scintillation light yielding up to 29,859 photon/MeV of the crystal with a Sr-composition of 2.31%. Photoluminescence measurements exhibit the enhanced 520 nm scintillation and the lower 410 nm emission at higher Sr contents. These crystals’ emission decay times were obtained as τ1 = 500 ns (fast component) and τ2 = 700 ns (slow component) and slightly slower times with a higher Sr content. Lastly, radiation detection efficiency has been investigated at various energy levels of gamma rays from Am-241, Co-57, Ba-133, and Cs-137 sources. We found that the crystal with a higher Sr composition of 2.31% has better energy resolutions down to the best one of 7.9% at 662-keV measurement. In summary, higher strontium codoping with thallium in cesium iodide scintillators can enhance the crystal structure and optical properties. This would be one candidate of the promising scintillators for developing alternative high-performance radiation detectors for high-speed imaging applications. Crystal structure Bridgman technique Inorganic compounds Scintillator materials Scintillators Saengkaew, Phannee verfasserin (orcid)0000-0002-0308-4735 aut Cheewajaroen, Kulthawat verfasserin aut Thong-Aram, Decho verfasserin aut Dhanasiwawong, Kittidhaj verfasserin aut Yordsri, Visittapong verfasserin aut Lertloypanyachai, Prapon verfasserin aut Phunpueok, Akapong verfasserin aut Kaewkhao, Jakrapong verfasserin aut Kiwsakunkan, Nuchjaree verfasserin aut Singkiburin, Nakarin verfasserin aut Enthalten in Nuclear instruments & methods in physics research / A Amsterdam : North-Holland Publ. Co., 1984 1057 Online-Ressource (DE-627)266014666 (DE-600)1466532-3 (DE-576)074959743 0168-9002 nnns volume:1057 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.05 Experimentalphysik VZ 33.07 Spektroskopie VZ 33.40 Kernphysik VZ AR 1057 |
allfieldsGer |
10.1016/j.nima.2023.168731 doi (DE-627)ELV065438051 (ELSEVIER)S0168-9002(23)00722-2 DE-627 ger DE-627 rda eng 530 VZ 33.05 bkl 33.07 bkl 33.40 bkl Chevajarassakul, Wasin verfasserin aut The impact of strontium composition on thallium-doped cesium iodide scintillators 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Investigating new scintillators with more alternative methods has been an attractive topic for a long time. This work aims to study the impact of strontium composition on thallium-doped cesium iodide scintillators. There are three different composition ratios of cesium iodide and strontium iodide precursors of 99:1, 95:5, and 90:10 with the same thallium doping of 0.28 mol%. The EDS measurements analyzed the soluble Sr-compositions in these grown crystals as 0%(undetectable), 0.43%, and 2.31%, respectively. With slightly increased strontium composition, the crystallite size was slightly smaller from 59.17, 45.51, to 33.23 nm, respectively. Moreover, the crystals have a somewhat more compressive strain and a slightly higher single crystallinity when the composition of strontium iodide increases. By analyzing the crystals' optical properties, the luminescent properties were trivially enhanced with a bit higher scintillation light yielding up to 29,859 photon/MeV of the crystal with a Sr-composition of 2.31%. Photoluminescence measurements exhibit the enhanced 520 nm scintillation and the lower 410 nm emission at higher Sr contents. These crystals’ emission decay times were obtained as τ1 = 500 ns (fast component) and τ2 = 700 ns (slow component) and slightly slower times with a higher Sr content. Lastly, radiation detection efficiency has been investigated at various energy levels of gamma rays from Am-241, Co-57, Ba-133, and Cs-137 sources. We found that the crystal with a higher Sr composition of 2.31% has better energy resolutions down to the best one of 7.9% at 662-keV measurement. In summary, higher strontium codoping with thallium in cesium iodide scintillators can enhance the crystal structure and optical properties. This would be one candidate of the promising scintillators for developing alternative high-performance radiation detectors for high-speed imaging applications. Crystal structure Bridgman technique Inorganic compounds Scintillator materials Scintillators Saengkaew, Phannee verfasserin (orcid)0000-0002-0308-4735 aut Cheewajaroen, Kulthawat verfasserin aut Thong-Aram, Decho verfasserin aut Dhanasiwawong, Kittidhaj verfasserin aut Yordsri, Visittapong verfasserin aut Lertloypanyachai, Prapon verfasserin aut Phunpueok, Akapong verfasserin aut Kaewkhao, Jakrapong verfasserin aut Kiwsakunkan, Nuchjaree verfasserin aut Singkiburin, Nakarin verfasserin aut Enthalten in Nuclear instruments & methods in physics research / A Amsterdam : North-Holland Publ. Co., 1984 1057 Online-Ressource (DE-627)266014666 (DE-600)1466532-3 (DE-576)074959743 0168-9002 nnns volume:1057 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.05 Experimentalphysik VZ 33.07 Spektroskopie VZ 33.40 Kernphysik VZ AR 1057 |
allfieldsSound |
10.1016/j.nima.2023.168731 doi (DE-627)ELV065438051 (ELSEVIER)S0168-9002(23)00722-2 DE-627 ger DE-627 rda eng 530 VZ 33.05 bkl 33.07 bkl 33.40 bkl Chevajarassakul, Wasin verfasserin aut The impact of strontium composition on thallium-doped cesium iodide scintillators 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Investigating new scintillators with more alternative methods has been an attractive topic for a long time. This work aims to study the impact of strontium composition on thallium-doped cesium iodide scintillators. There are three different composition ratios of cesium iodide and strontium iodide precursors of 99:1, 95:5, and 90:10 with the same thallium doping of 0.28 mol%. The EDS measurements analyzed the soluble Sr-compositions in these grown crystals as 0%(undetectable), 0.43%, and 2.31%, respectively. With slightly increased strontium composition, the crystallite size was slightly smaller from 59.17, 45.51, to 33.23 nm, respectively. Moreover, the crystals have a somewhat more compressive strain and a slightly higher single crystallinity when the composition of strontium iodide increases. By analyzing the crystals' optical properties, the luminescent properties were trivially enhanced with a bit higher scintillation light yielding up to 29,859 photon/MeV of the crystal with a Sr-composition of 2.31%. Photoluminescence measurements exhibit the enhanced 520 nm scintillation and the lower 410 nm emission at higher Sr contents. These crystals’ emission decay times were obtained as τ1 = 500 ns (fast component) and τ2 = 700 ns (slow component) and slightly slower times with a higher Sr content. Lastly, radiation detection efficiency has been investigated at various energy levels of gamma rays from Am-241, Co-57, Ba-133, and Cs-137 sources. We found that the crystal with a higher Sr composition of 2.31% has better energy resolutions down to the best one of 7.9% at 662-keV measurement. In summary, higher strontium codoping with thallium in cesium iodide scintillators can enhance the crystal structure and optical properties. This would be one candidate of the promising scintillators for developing alternative high-performance radiation detectors for high-speed imaging applications. Crystal structure Bridgman technique Inorganic compounds Scintillator materials Scintillators Saengkaew, Phannee verfasserin (orcid)0000-0002-0308-4735 aut Cheewajaroen, Kulthawat verfasserin aut Thong-Aram, Decho verfasserin aut Dhanasiwawong, Kittidhaj verfasserin aut Yordsri, Visittapong verfasserin aut Lertloypanyachai, Prapon verfasserin aut Phunpueok, Akapong verfasserin aut Kaewkhao, Jakrapong verfasserin aut Kiwsakunkan, Nuchjaree verfasserin aut Singkiburin, Nakarin verfasserin aut Enthalten in Nuclear instruments & methods in physics research / A Amsterdam : North-Holland Publ. Co., 1984 1057 Online-Ressource (DE-627)266014666 (DE-600)1466532-3 (DE-576)074959743 0168-9002 nnns volume:1057 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.05 Experimentalphysik VZ 33.07 Spektroskopie VZ 33.40 Kernphysik VZ AR 1057 |
language |
English |
source |
Enthalten in Nuclear instruments & methods in physics research / A 1057 volume:1057 |
sourceStr |
Enthalten in Nuclear instruments & methods in physics research / A 1057 volume:1057 |
format_phy_str_mv |
Article |
bklname |
Experimentalphysik Spektroskopie Kernphysik |
institution |
findex.gbv.de |
topic_facet |
Crystal structure Bridgman technique Inorganic compounds Scintillator materials Scintillators |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Nuclear instruments & methods in physics research / A |
authorswithroles_txt_mv |
Chevajarassakul, Wasin @@aut@@ Saengkaew, Phannee @@aut@@ Cheewajaroen, Kulthawat @@aut@@ Thong-Aram, Decho @@aut@@ Dhanasiwawong, Kittidhaj @@aut@@ Yordsri, Visittapong @@aut@@ Lertloypanyachai, Prapon @@aut@@ Phunpueok, Akapong @@aut@@ Kaewkhao, Jakrapong @@aut@@ Kiwsakunkan, Nuchjaree @@aut@@ Singkiburin, Nakarin @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
266014666 |
dewey-sort |
3530 |
id |
ELV065438051 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065438051</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240112093154.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231104s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nima.2023.168731</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065438051</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-9002(23)00722-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.05</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.07</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chevajarassakul, Wasin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The impact of strontium composition on thallium-doped cesium iodide scintillators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Investigating new scintillators with more alternative methods has been an attractive topic for a long time. This work aims to study the impact of strontium composition on thallium-doped cesium iodide scintillators. There are three different composition ratios of cesium iodide and strontium iodide precursors of 99:1, 95:5, and 90:10 with the same thallium doping of 0.28 mol%. The EDS measurements analyzed the soluble Sr-compositions in these grown crystals as 0%(undetectable), 0.43%, and 2.31%, respectively. With slightly increased strontium composition, the crystallite size was slightly smaller from 59.17, 45.51, to 33.23 nm, respectively. Moreover, the crystals have a somewhat more compressive strain and a slightly higher single crystallinity when the composition of strontium iodide increases. By analyzing the crystals' optical properties, the luminescent properties were trivially enhanced with a bit higher scintillation light yielding up to 29,859 photon/MeV of the crystal with a Sr-composition of 2.31%. Photoluminescence measurements exhibit the enhanced 520 nm scintillation and the lower 410 nm emission at higher Sr contents. These crystals’ emission decay times were obtained as τ1 = 500 ns (fast component) and τ2 = 700 ns (slow component) and slightly slower times with a higher Sr content. Lastly, radiation detection efficiency has been investigated at various energy levels of gamma rays from Am-241, Co-57, Ba-133, and Cs-137 sources. We found that the crystal with a higher Sr composition of 2.31% has better energy resolutions down to the best one of 7.9% at 662-keV measurement. In summary, higher strontium codoping with thallium in cesium iodide scintillators can enhance the crystal structure and optical properties. This would be one candidate of the promising scintillators for developing alternative high-performance radiation detectors for high-speed imaging applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystal structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bridgman technique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inorganic compounds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scintillator materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scintillators</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saengkaew, Phannee</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0308-4735</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheewajaroen, Kulthawat</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thong-Aram, Decho</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dhanasiwawong, Kittidhaj</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yordsri, Visittapong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lertloypanyachai, Prapon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Phunpueok, Akapong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaewkhao, Jakrapong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kiwsakunkan, Nuchjaree</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singkiburin, Nakarin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nuclear instruments & methods in physics research / A</subfield><subfield code="d">Amsterdam : North-Holland Publ. Co., 1984</subfield><subfield code="g">1057</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266014666</subfield><subfield code="w">(DE-600)1466532-3</subfield><subfield code="w">(DE-576)074959743</subfield><subfield code="x">0168-9002</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.05</subfield><subfield code="j">Experimentalphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.07</subfield><subfield code="j">Spektroskopie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.40</subfield><subfield code="j">Kernphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1057</subfield></datafield></record></collection>
|
author |
Chevajarassakul, Wasin |
spellingShingle |
Chevajarassakul, Wasin ddc 530 bkl 33.05 bkl 33.07 bkl 33.40 misc Crystal structure misc Bridgman technique misc Inorganic compounds misc Scintillator materials misc Scintillators The impact of strontium composition on thallium-doped cesium iodide scintillators |
authorStr |
Chevajarassakul, Wasin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)266014666 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0168-9002 |
topic_title |
530 VZ 33.05 bkl 33.07 bkl 33.40 bkl The impact of strontium composition on thallium-doped cesium iodide scintillators Crystal structure Bridgman technique Inorganic compounds Scintillator materials Scintillators |
topic |
ddc 530 bkl 33.05 bkl 33.07 bkl 33.40 misc Crystal structure misc Bridgman technique misc Inorganic compounds misc Scintillator materials misc Scintillators |
topic_unstemmed |
ddc 530 bkl 33.05 bkl 33.07 bkl 33.40 misc Crystal structure misc Bridgman technique misc Inorganic compounds misc Scintillator materials misc Scintillators |
topic_browse |
ddc 530 bkl 33.05 bkl 33.07 bkl 33.40 misc Crystal structure misc Bridgman technique misc Inorganic compounds misc Scintillator materials misc Scintillators |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nuclear instruments & methods in physics research / A |
hierarchy_parent_id |
266014666 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Nuclear instruments & methods in physics research / A |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)266014666 (DE-600)1466532-3 (DE-576)074959743 |
title |
The impact of strontium composition on thallium-doped cesium iodide scintillators |
ctrlnum |
(DE-627)ELV065438051 (ELSEVIER)S0168-9002(23)00722-2 |
title_full |
The impact of strontium composition on thallium-doped cesium iodide scintillators |
author_sort |
Chevajarassakul, Wasin |
journal |
Nuclear instruments & methods in physics research / A |
journalStr |
Nuclear instruments & methods in physics research / A |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Chevajarassakul, Wasin Saengkaew, Phannee Cheewajaroen, Kulthawat Thong-Aram, Decho Dhanasiwawong, Kittidhaj Yordsri, Visittapong Lertloypanyachai, Prapon Phunpueok, Akapong Kaewkhao, Jakrapong Kiwsakunkan, Nuchjaree Singkiburin, Nakarin |
container_volume |
1057 |
class |
530 VZ 33.05 bkl 33.07 bkl 33.40 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Chevajarassakul, Wasin |
doi_str_mv |
10.1016/j.nima.2023.168731 |
normlink |
(ORCID)0000-0002-0308-4735 |
normlink_prefix_str_mv |
(orcid)0000-0002-0308-4735 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
the impact of strontium composition on thallium-doped cesium iodide scintillators |
title_auth |
The impact of strontium composition on thallium-doped cesium iodide scintillators |
abstract |
Investigating new scintillators with more alternative methods has been an attractive topic for a long time. This work aims to study the impact of strontium composition on thallium-doped cesium iodide scintillators. There are three different composition ratios of cesium iodide and strontium iodide precursors of 99:1, 95:5, and 90:10 with the same thallium doping of 0.28 mol%. The EDS measurements analyzed the soluble Sr-compositions in these grown crystals as 0%(undetectable), 0.43%, and 2.31%, respectively. With slightly increased strontium composition, the crystallite size was slightly smaller from 59.17, 45.51, to 33.23 nm, respectively. Moreover, the crystals have a somewhat more compressive strain and a slightly higher single crystallinity when the composition of strontium iodide increases. By analyzing the crystals' optical properties, the luminescent properties were trivially enhanced with a bit higher scintillation light yielding up to 29,859 photon/MeV of the crystal with a Sr-composition of 2.31%. Photoluminescence measurements exhibit the enhanced 520 nm scintillation and the lower 410 nm emission at higher Sr contents. These crystals’ emission decay times were obtained as τ1 = 500 ns (fast component) and τ2 = 700 ns (slow component) and slightly slower times with a higher Sr content. Lastly, radiation detection efficiency has been investigated at various energy levels of gamma rays from Am-241, Co-57, Ba-133, and Cs-137 sources. We found that the crystal with a higher Sr composition of 2.31% has better energy resolutions down to the best one of 7.9% at 662-keV measurement. In summary, higher strontium codoping with thallium in cesium iodide scintillators can enhance the crystal structure and optical properties. This would be one candidate of the promising scintillators for developing alternative high-performance radiation detectors for high-speed imaging applications. |
abstractGer |
Investigating new scintillators with more alternative methods has been an attractive topic for a long time. This work aims to study the impact of strontium composition on thallium-doped cesium iodide scintillators. There are three different composition ratios of cesium iodide and strontium iodide precursors of 99:1, 95:5, and 90:10 with the same thallium doping of 0.28 mol%. The EDS measurements analyzed the soluble Sr-compositions in these grown crystals as 0%(undetectable), 0.43%, and 2.31%, respectively. With slightly increased strontium composition, the crystallite size was slightly smaller from 59.17, 45.51, to 33.23 nm, respectively. Moreover, the crystals have a somewhat more compressive strain and a slightly higher single crystallinity when the composition of strontium iodide increases. By analyzing the crystals' optical properties, the luminescent properties were trivially enhanced with a bit higher scintillation light yielding up to 29,859 photon/MeV of the crystal with a Sr-composition of 2.31%. Photoluminescence measurements exhibit the enhanced 520 nm scintillation and the lower 410 nm emission at higher Sr contents. These crystals’ emission decay times were obtained as τ1 = 500 ns (fast component) and τ2 = 700 ns (slow component) and slightly slower times with a higher Sr content. Lastly, radiation detection efficiency has been investigated at various energy levels of gamma rays from Am-241, Co-57, Ba-133, and Cs-137 sources. We found that the crystal with a higher Sr composition of 2.31% has better energy resolutions down to the best one of 7.9% at 662-keV measurement. In summary, higher strontium codoping with thallium in cesium iodide scintillators can enhance the crystal structure and optical properties. This would be one candidate of the promising scintillators for developing alternative high-performance radiation detectors for high-speed imaging applications. |
abstract_unstemmed |
Investigating new scintillators with more alternative methods has been an attractive topic for a long time. This work aims to study the impact of strontium composition on thallium-doped cesium iodide scintillators. There are three different composition ratios of cesium iodide and strontium iodide precursors of 99:1, 95:5, and 90:10 with the same thallium doping of 0.28 mol%. The EDS measurements analyzed the soluble Sr-compositions in these grown crystals as 0%(undetectable), 0.43%, and 2.31%, respectively. With slightly increased strontium composition, the crystallite size was slightly smaller from 59.17, 45.51, to 33.23 nm, respectively. Moreover, the crystals have a somewhat more compressive strain and a slightly higher single crystallinity when the composition of strontium iodide increases. By analyzing the crystals' optical properties, the luminescent properties were trivially enhanced with a bit higher scintillation light yielding up to 29,859 photon/MeV of the crystal with a Sr-composition of 2.31%. Photoluminescence measurements exhibit the enhanced 520 nm scintillation and the lower 410 nm emission at higher Sr contents. These crystals’ emission decay times were obtained as τ1 = 500 ns (fast component) and τ2 = 700 ns (slow component) and slightly slower times with a higher Sr content. Lastly, radiation detection efficiency has been investigated at various energy levels of gamma rays from Am-241, Co-57, Ba-133, and Cs-137 sources. We found that the crystal with a higher Sr composition of 2.31% has better energy resolutions down to the best one of 7.9% at 662-keV measurement. In summary, higher strontium codoping with thallium in cesium iodide scintillators can enhance the crystal structure and optical properties. This would be one candidate of the promising scintillators for developing alternative high-performance radiation detectors for high-speed imaging applications. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
The impact of strontium composition on thallium-doped cesium iodide scintillators |
remote_bool |
true |
author2 |
Saengkaew, Phannee Cheewajaroen, Kulthawat Thong-Aram, Decho Dhanasiwawong, Kittidhaj Yordsri, Visittapong Lertloypanyachai, Prapon Phunpueok, Akapong Kaewkhao, Jakrapong Kiwsakunkan, Nuchjaree Singkiburin, Nakarin |
author2Str |
Saengkaew, Phannee Cheewajaroen, Kulthawat Thong-Aram, Decho Dhanasiwawong, Kittidhaj Yordsri, Visittapong Lertloypanyachai, Prapon Phunpueok, Akapong Kaewkhao, Jakrapong Kiwsakunkan, Nuchjaree Singkiburin, Nakarin |
ppnlink |
266014666 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.nima.2023.168731 |
up_date |
2024-07-06T23:01:45.874Z |
_version_ |
1803872534136881152 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065438051</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240112093154.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231104s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nima.2023.168731</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065438051</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-9002(23)00722-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.05</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.07</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chevajarassakul, Wasin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The impact of strontium composition on thallium-doped cesium iodide scintillators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Investigating new scintillators with more alternative methods has been an attractive topic for a long time. This work aims to study the impact of strontium composition on thallium-doped cesium iodide scintillators. There are three different composition ratios of cesium iodide and strontium iodide precursors of 99:1, 95:5, and 90:10 with the same thallium doping of 0.28 mol%. The EDS measurements analyzed the soluble Sr-compositions in these grown crystals as 0%(undetectable), 0.43%, and 2.31%, respectively. With slightly increased strontium composition, the crystallite size was slightly smaller from 59.17, 45.51, to 33.23 nm, respectively. Moreover, the crystals have a somewhat more compressive strain and a slightly higher single crystallinity when the composition of strontium iodide increases. By analyzing the crystals' optical properties, the luminescent properties were trivially enhanced with a bit higher scintillation light yielding up to 29,859 photon/MeV of the crystal with a Sr-composition of 2.31%. Photoluminescence measurements exhibit the enhanced 520 nm scintillation and the lower 410 nm emission at higher Sr contents. These crystals’ emission decay times were obtained as τ1 = 500 ns (fast component) and τ2 = 700 ns (slow component) and slightly slower times with a higher Sr content. Lastly, radiation detection efficiency has been investigated at various energy levels of gamma rays from Am-241, Co-57, Ba-133, and Cs-137 sources. We found that the crystal with a higher Sr composition of 2.31% has better energy resolutions down to the best one of 7.9% at 662-keV measurement. In summary, higher strontium codoping with thallium in cesium iodide scintillators can enhance the crystal structure and optical properties. This would be one candidate of the promising scintillators for developing alternative high-performance radiation detectors for high-speed imaging applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystal structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bridgman technique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inorganic compounds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scintillator materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scintillators</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saengkaew, Phannee</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0308-4735</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheewajaroen, Kulthawat</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thong-Aram, Decho</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dhanasiwawong, Kittidhaj</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yordsri, Visittapong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lertloypanyachai, Prapon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Phunpueok, Akapong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaewkhao, Jakrapong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kiwsakunkan, Nuchjaree</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singkiburin, Nakarin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nuclear instruments & methods in physics research / A</subfield><subfield code="d">Amsterdam : North-Holland Publ. Co., 1984</subfield><subfield code="g">1057</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266014666</subfield><subfield code="w">(DE-600)1466532-3</subfield><subfield code="w">(DE-576)074959743</subfield><subfield code="x">0168-9002</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.05</subfield><subfield code="j">Experimentalphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.07</subfield><subfield code="j">Spektroskopie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.40</subfield><subfield code="j">Kernphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1057</subfield></datafield></record></collection>
|
score |
7.4010687 |