A new spectral representation of the strain energy function for linear anisotropic elasticity with a generalization for damage
A new spectral representation of the strain energy function for linear anisotropic elasticity is proposed in the form of a sum of 6 scalar eigen-stiffnesses times the squares of their associated scalar eigen-strains. Since this new representation is general, it is no less or more general than the st...
Ausführliche Beschreibung
Autor*in: |
Rubin, M.B. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of engineering science - New York, NY [u.a.] : Science Direct, 1963, 193 |
---|---|
Übergeordnetes Werk: |
volume:193 |
DOI / URN: |
10.1016/j.ijengsci.2023.103916 |
---|
Katalog-ID: |
ELV065441524 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV065441524 | ||
003 | DE-627 | ||
005 | 20231105093020.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231105s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijengsci.2023.103916 |2 doi | |
035 | |a (DE-627)ELV065441524 | ||
035 | |a (ELSEVIER)S0020-7225(23)00107-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q VZ |
084 | |a 50.00 |2 bkl | ||
100 | 1 | |a Rubin, M.B. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A new spectral representation of the strain energy function for linear anisotropic elasticity with a generalization for damage |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A new spectral representation of the strain energy function for linear anisotropic elasticity is proposed in the form of a sum of 6 scalar eigen-stiffnesses times the squares of their associated scalar eigen-strains. Since this new representation is general, it is no less or more general than the standard representation. However, the spectral form reveals fundamental coupled eigen-modes of deformation and energy associated with general anisotropic response. Specifically, each eigen-strain is the inner product of the strain tensor with its symmetric eigen-tensor. The 6 eigen-strains are linearly independent and the 6 eigen-tensors are also linearly independent. Moreover, unlike the eigenvectors of a symmetric matrix, distinct pairs of eigen-tensors are not all orthogonal. The 15 constants that define the eigen-tensors together with the 6 eigen-stiffnesses form 21 independent material constants that characterize the fundamental physics of material anisotropy. These 21 constants are invariant to the orientation of the base vectors fixed in the material. This spectral representation also simplifies the restrictions on these material constants which ensure that the strain energy is a positive-definite function of strain. In addition, a simple damage model is proposed based on this spectral representation and a generalization for finite deformations is briefly discussed. | ||
650 | 4 | |a Compliance tensor | |
650 | 4 | |a Anisotropic elasticity | |
650 | 4 | |a Invariants | |
650 | 4 | |a Spectral representation | |
650 | 4 | |a Stiffness tensor | |
650 | 4 | |a Damage | |
773 | 0 | 8 | |i Enthalten in |t International journal of engineering science |d New York, NY [u.a.] : Science Direct, 1963 |g 193 |h Online-Ressource |w (DE-627)301511217 |w (DE-600)1484471-0 |w (DE-576)096806389 |7 nnns |
773 | 1 | 8 | |g volume:193 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.00 |j Technik allgemein: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 193 |
author_variant |
m r mr |
---|---|
matchkey_str |
rubinmb:2023----:nwpcrlersnainfhsrieegfntofriernstoieatct |
hierarchy_sort_str |
2023 |
bklnumber |
50.00 |
publishDate |
2023 |
allfields |
10.1016/j.ijengsci.2023.103916 doi (DE-627)ELV065441524 (ELSEVIER)S0020-7225(23)00107-6 DE-627 ger DE-627 rda eng 600 VZ 50.00 bkl Rubin, M.B. verfasserin aut A new spectral representation of the strain energy function for linear anisotropic elasticity with a generalization for damage 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A new spectral representation of the strain energy function for linear anisotropic elasticity is proposed in the form of a sum of 6 scalar eigen-stiffnesses times the squares of their associated scalar eigen-strains. Since this new representation is general, it is no less or more general than the standard representation. However, the spectral form reveals fundamental coupled eigen-modes of deformation and energy associated with general anisotropic response. Specifically, each eigen-strain is the inner product of the strain tensor with its symmetric eigen-tensor. The 6 eigen-strains are linearly independent and the 6 eigen-tensors are also linearly independent. Moreover, unlike the eigenvectors of a symmetric matrix, distinct pairs of eigen-tensors are not all orthogonal. The 15 constants that define the eigen-tensors together with the 6 eigen-stiffnesses form 21 independent material constants that characterize the fundamental physics of material anisotropy. These 21 constants are invariant to the orientation of the base vectors fixed in the material. This spectral representation also simplifies the restrictions on these material constants which ensure that the strain energy is a positive-definite function of strain. In addition, a simple damage model is proposed based on this spectral representation and a generalization for finite deformations is briefly discussed. Compliance tensor Anisotropic elasticity Invariants Spectral representation Stiffness tensor Damage Enthalten in International journal of engineering science New York, NY [u.a.] : Science Direct, 1963 193 Online-Ressource (DE-627)301511217 (DE-600)1484471-0 (DE-576)096806389 nnns volume:193 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.00 Technik allgemein: Allgemeines VZ AR 193 |
spelling |
10.1016/j.ijengsci.2023.103916 doi (DE-627)ELV065441524 (ELSEVIER)S0020-7225(23)00107-6 DE-627 ger DE-627 rda eng 600 VZ 50.00 bkl Rubin, M.B. verfasserin aut A new spectral representation of the strain energy function for linear anisotropic elasticity with a generalization for damage 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A new spectral representation of the strain energy function for linear anisotropic elasticity is proposed in the form of a sum of 6 scalar eigen-stiffnesses times the squares of their associated scalar eigen-strains. Since this new representation is general, it is no less or more general than the standard representation. However, the spectral form reveals fundamental coupled eigen-modes of deformation and energy associated with general anisotropic response. Specifically, each eigen-strain is the inner product of the strain tensor with its symmetric eigen-tensor. The 6 eigen-strains are linearly independent and the 6 eigen-tensors are also linearly independent. Moreover, unlike the eigenvectors of a symmetric matrix, distinct pairs of eigen-tensors are not all orthogonal. The 15 constants that define the eigen-tensors together with the 6 eigen-stiffnesses form 21 independent material constants that characterize the fundamental physics of material anisotropy. These 21 constants are invariant to the orientation of the base vectors fixed in the material. This spectral representation also simplifies the restrictions on these material constants which ensure that the strain energy is a positive-definite function of strain. In addition, a simple damage model is proposed based on this spectral representation and a generalization for finite deformations is briefly discussed. Compliance tensor Anisotropic elasticity Invariants Spectral representation Stiffness tensor Damage Enthalten in International journal of engineering science New York, NY [u.a.] : Science Direct, 1963 193 Online-Ressource (DE-627)301511217 (DE-600)1484471-0 (DE-576)096806389 nnns volume:193 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.00 Technik allgemein: Allgemeines VZ AR 193 |
allfields_unstemmed |
10.1016/j.ijengsci.2023.103916 doi (DE-627)ELV065441524 (ELSEVIER)S0020-7225(23)00107-6 DE-627 ger DE-627 rda eng 600 VZ 50.00 bkl Rubin, M.B. verfasserin aut A new spectral representation of the strain energy function for linear anisotropic elasticity with a generalization for damage 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A new spectral representation of the strain energy function for linear anisotropic elasticity is proposed in the form of a sum of 6 scalar eigen-stiffnesses times the squares of their associated scalar eigen-strains. Since this new representation is general, it is no less or more general than the standard representation. However, the spectral form reveals fundamental coupled eigen-modes of deformation and energy associated with general anisotropic response. Specifically, each eigen-strain is the inner product of the strain tensor with its symmetric eigen-tensor. The 6 eigen-strains are linearly independent and the 6 eigen-tensors are also linearly independent. Moreover, unlike the eigenvectors of a symmetric matrix, distinct pairs of eigen-tensors are not all orthogonal. The 15 constants that define the eigen-tensors together with the 6 eigen-stiffnesses form 21 independent material constants that characterize the fundamental physics of material anisotropy. These 21 constants are invariant to the orientation of the base vectors fixed in the material. This spectral representation also simplifies the restrictions on these material constants which ensure that the strain energy is a positive-definite function of strain. In addition, a simple damage model is proposed based on this spectral representation and a generalization for finite deformations is briefly discussed. Compliance tensor Anisotropic elasticity Invariants Spectral representation Stiffness tensor Damage Enthalten in International journal of engineering science New York, NY [u.a.] : Science Direct, 1963 193 Online-Ressource (DE-627)301511217 (DE-600)1484471-0 (DE-576)096806389 nnns volume:193 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.00 Technik allgemein: Allgemeines VZ AR 193 |
allfieldsGer |
10.1016/j.ijengsci.2023.103916 doi (DE-627)ELV065441524 (ELSEVIER)S0020-7225(23)00107-6 DE-627 ger DE-627 rda eng 600 VZ 50.00 bkl Rubin, M.B. verfasserin aut A new spectral representation of the strain energy function for linear anisotropic elasticity with a generalization for damage 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A new spectral representation of the strain energy function for linear anisotropic elasticity is proposed in the form of a sum of 6 scalar eigen-stiffnesses times the squares of their associated scalar eigen-strains. Since this new representation is general, it is no less or more general than the standard representation. However, the spectral form reveals fundamental coupled eigen-modes of deformation and energy associated with general anisotropic response. Specifically, each eigen-strain is the inner product of the strain tensor with its symmetric eigen-tensor. The 6 eigen-strains are linearly independent and the 6 eigen-tensors are also linearly independent. Moreover, unlike the eigenvectors of a symmetric matrix, distinct pairs of eigen-tensors are not all orthogonal. The 15 constants that define the eigen-tensors together with the 6 eigen-stiffnesses form 21 independent material constants that characterize the fundamental physics of material anisotropy. These 21 constants are invariant to the orientation of the base vectors fixed in the material. This spectral representation also simplifies the restrictions on these material constants which ensure that the strain energy is a positive-definite function of strain. In addition, a simple damage model is proposed based on this spectral representation and a generalization for finite deformations is briefly discussed. Compliance tensor Anisotropic elasticity Invariants Spectral representation Stiffness tensor Damage Enthalten in International journal of engineering science New York, NY [u.a.] : Science Direct, 1963 193 Online-Ressource (DE-627)301511217 (DE-600)1484471-0 (DE-576)096806389 nnns volume:193 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.00 Technik allgemein: Allgemeines VZ AR 193 |
allfieldsSound |
10.1016/j.ijengsci.2023.103916 doi (DE-627)ELV065441524 (ELSEVIER)S0020-7225(23)00107-6 DE-627 ger DE-627 rda eng 600 VZ 50.00 bkl Rubin, M.B. verfasserin aut A new spectral representation of the strain energy function for linear anisotropic elasticity with a generalization for damage 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A new spectral representation of the strain energy function for linear anisotropic elasticity is proposed in the form of a sum of 6 scalar eigen-stiffnesses times the squares of their associated scalar eigen-strains. Since this new representation is general, it is no less or more general than the standard representation. However, the spectral form reveals fundamental coupled eigen-modes of deformation and energy associated with general anisotropic response. Specifically, each eigen-strain is the inner product of the strain tensor with its symmetric eigen-tensor. The 6 eigen-strains are linearly independent and the 6 eigen-tensors are also linearly independent. Moreover, unlike the eigenvectors of a symmetric matrix, distinct pairs of eigen-tensors are not all orthogonal. The 15 constants that define the eigen-tensors together with the 6 eigen-stiffnesses form 21 independent material constants that characterize the fundamental physics of material anisotropy. These 21 constants are invariant to the orientation of the base vectors fixed in the material. This spectral representation also simplifies the restrictions on these material constants which ensure that the strain energy is a positive-definite function of strain. In addition, a simple damage model is proposed based on this spectral representation and a generalization for finite deformations is briefly discussed. Compliance tensor Anisotropic elasticity Invariants Spectral representation Stiffness tensor Damage Enthalten in International journal of engineering science New York, NY [u.a.] : Science Direct, 1963 193 Online-Ressource (DE-627)301511217 (DE-600)1484471-0 (DE-576)096806389 nnns volume:193 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.00 Technik allgemein: Allgemeines VZ AR 193 |
language |
English |
source |
Enthalten in International journal of engineering science 193 volume:193 |
sourceStr |
Enthalten in International journal of engineering science 193 volume:193 |
format_phy_str_mv |
Article |
bklname |
Technik allgemein: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Compliance tensor Anisotropic elasticity Invariants Spectral representation Stiffness tensor Damage |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
International journal of engineering science |
authorswithroles_txt_mv |
Rubin, M.B. @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
301511217 |
dewey-sort |
3600 |
id |
ELV065441524 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065441524</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231105093020.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231105s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijengsci.2023.103916</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065441524</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0020-7225(23)00107-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rubin, M.B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A new spectral representation of the strain energy function for linear anisotropic elasticity with a generalization for damage</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A new spectral representation of the strain energy function for linear anisotropic elasticity is proposed in the form of a sum of 6 scalar eigen-stiffnesses times the squares of their associated scalar eigen-strains. Since this new representation is general, it is no less or more general than the standard representation. However, the spectral form reveals fundamental coupled eigen-modes of deformation and energy associated with general anisotropic response. Specifically, each eigen-strain is the inner product of the strain tensor with its symmetric eigen-tensor. The 6 eigen-strains are linearly independent and the 6 eigen-tensors are also linearly independent. Moreover, unlike the eigenvectors of a symmetric matrix, distinct pairs of eigen-tensors are not all orthogonal. The 15 constants that define the eigen-tensors together with the 6 eigen-stiffnesses form 21 independent material constants that characterize the fundamental physics of material anisotropy. These 21 constants are invariant to the orientation of the base vectors fixed in the material. This spectral representation also simplifies the restrictions on these material constants which ensure that the strain energy is a positive-definite function of strain. In addition, a simple damage model is proposed based on this spectral representation and a generalization for finite deformations is briefly discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compliance tensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anisotropic elasticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral representation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stiffness tensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Damage</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of engineering science</subfield><subfield code="d">New York, NY [u.a.] : Science Direct, 1963</subfield><subfield code="g">193</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)301511217</subfield><subfield code="w">(DE-600)1484471-0</subfield><subfield code="w">(DE-576)096806389</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.00</subfield><subfield code="j">Technik allgemein: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">193</subfield></datafield></record></collection>
|
author |
Rubin, M.B. |
spellingShingle |
Rubin, M.B. ddc 600 bkl 50.00 misc Compliance tensor misc Anisotropic elasticity misc Invariants misc Spectral representation misc Stiffness tensor misc Damage A new spectral representation of the strain energy function for linear anisotropic elasticity with a generalization for damage |
authorStr |
Rubin, M.B. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)301511217 |
format |
electronic Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
600 VZ 50.00 bkl A new spectral representation of the strain energy function for linear anisotropic elasticity with a generalization for damage Compliance tensor Anisotropic elasticity Invariants Spectral representation Stiffness tensor Damage |
topic |
ddc 600 bkl 50.00 misc Compliance tensor misc Anisotropic elasticity misc Invariants misc Spectral representation misc Stiffness tensor misc Damage |
topic_unstemmed |
ddc 600 bkl 50.00 misc Compliance tensor misc Anisotropic elasticity misc Invariants misc Spectral representation misc Stiffness tensor misc Damage |
topic_browse |
ddc 600 bkl 50.00 misc Compliance tensor misc Anisotropic elasticity misc Invariants misc Spectral representation misc Stiffness tensor misc Damage |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of engineering science |
hierarchy_parent_id |
301511217 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
International journal of engineering science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)301511217 (DE-600)1484471-0 (DE-576)096806389 |
title |
A new spectral representation of the strain energy function for linear anisotropic elasticity with a generalization for damage |
ctrlnum |
(DE-627)ELV065441524 (ELSEVIER)S0020-7225(23)00107-6 |
title_full |
A new spectral representation of the strain energy function for linear anisotropic elasticity with a generalization for damage |
author_sort |
Rubin, M.B. |
journal |
International journal of engineering science |
journalStr |
International journal of engineering science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Rubin, M.B. |
container_volume |
193 |
class |
600 VZ 50.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Rubin, M.B. |
doi_str_mv |
10.1016/j.ijengsci.2023.103916 |
dewey-full |
600 |
title_sort |
a new spectral representation of the strain energy function for linear anisotropic elasticity with a generalization for damage |
title_auth |
A new spectral representation of the strain energy function for linear anisotropic elasticity with a generalization for damage |
abstract |
A new spectral representation of the strain energy function for linear anisotropic elasticity is proposed in the form of a sum of 6 scalar eigen-stiffnesses times the squares of their associated scalar eigen-strains. Since this new representation is general, it is no less or more general than the standard representation. However, the spectral form reveals fundamental coupled eigen-modes of deformation and energy associated with general anisotropic response. Specifically, each eigen-strain is the inner product of the strain tensor with its symmetric eigen-tensor. The 6 eigen-strains are linearly independent and the 6 eigen-tensors are also linearly independent. Moreover, unlike the eigenvectors of a symmetric matrix, distinct pairs of eigen-tensors are not all orthogonal. The 15 constants that define the eigen-tensors together with the 6 eigen-stiffnesses form 21 independent material constants that characterize the fundamental physics of material anisotropy. These 21 constants are invariant to the orientation of the base vectors fixed in the material. This spectral representation also simplifies the restrictions on these material constants which ensure that the strain energy is a positive-definite function of strain. In addition, a simple damage model is proposed based on this spectral representation and a generalization for finite deformations is briefly discussed. |
abstractGer |
A new spectral representation of the strain energy function for linear anisotropic elasticity is proposed in the form of a sum of 6 scalar eigen-stiffnesses times the squares of their associated scalar eigen-strains. Since this new representation is general, it is no less or more general than the standard representation. However, the spectral form reveals fundamental coupled eigen-modes of deformation and energy associated with general anisotropic response. Specifically, each eigen-strain is the inner product of the strain tensor with its symmetric eigen-tensor. The 6 eigen-strains are linearly independent and the 6 eigen-tensors are also linearly independent. Moreover, unlike the eigenvectors of a symmetric matrix, distinct pairs of eigen-tensors are not all orthogonal. The 15 constants that define the eigen-tensors together with the 6 eigen-stiffnesses form 21 independent material constants that characterize the fundamental physics of material anisotropy. These 21 constants are invariant to the orientation of the base vectors fixed in the material. This spectral representation also simplifies the restrictions on these material constants which ensure that the strain energy is a positive-definite function of strain. In addition, a simple damage model is proposed based on this spectral representation and a generalization for finite deformations is briefly discussed. |
abstract_unstemmed |
A new spectral representation of the strain energy function for linear anisotropic elasticity is proposed in the form of a sum of 6 scalar eigen-stiffnesses times the squares of their associated scalar eigen-strains. Since this new representation is general, it is no less or more general than the standard representation. However, the spectral form reveals fundamental coupled eigen-modes of deformation and energy associated with general anisotropic response. Specifically, each eigen-strain is the inner product of the strain tensor with its symmetric eigen-tensor. The 6 eigen-strains are linearly independent and the 6 eigen-tensors are also linearly independent. Moreover, unlike the eigenvectors of a symmetric matrix, distinct pairs of eigen-tensors are not all orthogonal. The 15 constants that define the eigen-tensors together with the 6 eigen-stiffnesses form 21 independent material constants that characterize the fundamental physics of material anisotropy. These 21 constants are invariant to the orientation of the base vectors fixed in the material. This spectral representation also simplifies the restrictions on these material constants which ensure that the strain energy is a positive-definite function of strain. In addition, a simple damage model is proposed based on this spectral representation and a generalization for finite deformations is briefly discussed. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
A new spectral representation of the strain energy function for linear anisotropic elasticity with a generalization for damage |
remote_bool |
true |
ppnlink |
301511217 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijengsci.2023.103916 |
up_date |
2024-07-06T23:02:31.211Z |
_version_ |
1803872581674074112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065441524</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231105093020.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231105s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijengsci.2023.103916</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065441524</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0020-7225(23)00107-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rubin, M.B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A new spectral representation of the strain energy function for linear anisotropic elasticity with a generalization for damage</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A new spectral representation of the strain energy function for linear anisotropic elasticity is proposed in the form of a sum of 6 scalar eigen-stiffnesses times the squares of their associated scalar eigen-strains. Since this new representation is general, it is no less or more general than the standard representation. However, the spectral form reveals fundamental coupled eigen-modes of deformation and energy associated with general anisotropic response. Specifically, each eigen-strain is the inner product of the strain tensor with its symmetric eigen-tensor. The 6 eigen-strains are linearly independent and the 6 eigen-tensors are also linearly independent. Moreover, unlike the eigenvectors of a symmetric matrix, distinct pairs of eigen-tensors are not all orthogonal. The 15 constants that define the eigen-tensors together with the 6 eigen-stiffnesses form 21 independent material constants that characterize the fundamental physics of material anisotropy. These 21 constants are invariant to the orientation of the base vectors fixed in the material. This spectral representation also simplifies the restrictions on these material constants which ensure that the strain energy is a positive-definite function of strain. In addition, a simple damage model is proposed based on this spectral representation and a generalization for finite deformations is briefly discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compliance tensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anisotropic elasticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral representation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stiffness tensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Damage</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of engineering science</subfield><subfield code="d">New York, NY [u.a.] : Science Direct, 1963</subfield><subfield code="g">193</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)301511217</subfield><subfield code="w">(DE-600)1484471-0</subfield><subfield code="w">(DE-576)096806389</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.00</subfield><subfield code="j">Technik allgemein: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">193</subfield></datafield></record></collection>
|
score |
7.4018345 |