A hybrid numerical method for non-linear transient heat conduction problems with temperature-dependent thermal conductivity
This paper introduces a hybrid numerical technique aimed at effectively addressing two-dimensional (2D) non-linear transient heat conduction problems, featuring temperature-dependent thermal conductivity. This scheme involves integrating the Krylov deferred correction (KDC) method in the temporal di...
Ausführliche Beschreibung
Autor*in: |
Sun, Wenxiang [verfasserIn] Ma, Haodong [verfasserIn] Qu, Wenzhen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
Generalized finite difference method |
---|
Übergeordnetes Werk: |
Enthalten in: Applied mathematics letters - Amsterdam [u.a.] : Elsevier Sci., 1988, 148 |
---|---|
Übergeordnetes Werk: |
volume:148 |
DOI / URN: |
10.1016/j.aml.2023.108868 |
---|
Katalog-ID: |
ELV065447557 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV065447557 | ||
003 | DE-627 | ||
005 | 20231105093136.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231105s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.aml.2023.108868 |2 doi | |
035 | |a (DE-627)ELV065447557 | ||
035 | |a (ELSEVIER)S0893-9659(23)00300-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 31.80 |2 bkl | ||
100 | 1 | |a Sun, Wenxiang |e verfasserin |4 aut | |
245 | 1 | 0 | |a A hybrid numerical method for non-linear transient heat conduction problems with temperature-dependent thermal conductivity |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper introduces a hybrid numerical technique aimed at effectively addressing two-dimensional (2D) non-linear transient heat conduction problems, featuring temperature-dependent thermal conductivity. This scheme involves integrating the Krylov deferred correction (KDC) method in the temporal discretization and the generalized finite difference method (GFDM) in the spatial discretization. The core of the KDC method introduces a new unknown variable in the form of the first-order time derivative of temperature, leading to a non-linear equation after temporal discretization. Subsequently, the corresponding non-linear equation is solved in the spatial domain using the GFDM, supported by the Jacobian-free Newton–Krylov (JFNK) solver and fourth-order Taylor series expansion. The accuracy and stability of the hybrid approach are verified through two numerical experiments, demonstrating the strong performance of the present algorithm known as the KDC-GFDM for the simulations of the interested problems in long-time intervals. | ||
650 | 4 | |a Non-linear | |
650 | 4 | |a Generalized finite difference method | |
650 | 4 | |a Transient heat conduction problems | |
650 | 4 | |a Krylov deferred correction | |
650 | 4 | |a Long-time simulation | |
700 | 1 | |a Ma, Haodong |e verfasserin |4 aut | |
700 | 1 | |a Qu, Wenzhen |e verfasserin |0 (orcid)0000-0003-3591-4593 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied mathematics letters |d Amsterdam [u.a.] : Elsevier Sci., 1988 |g 148 |h Online-Ressource |w (DE-627)320434222 |w (DE-600)2004138-X |w (DE-576)094085595 |7 nnns |
773 | 1 | 8 | |g volume:148 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.80 |j Angewandte Mathematik |q VZ |
951 | |a AR | ||
952 | |d 148 |
author_variant |
w s ws h m hm w q wq |
---|---|
matchkey_str |
sunwenxiangmahaodongquwenzhen:2023----:hbinmrclehdonnierrninhacnutopolmwttmeaue |
hierarchy_sort_str |
2023 |
bklnumber |
31.80 |
publishDate |
2023 |
allfields |
10.1016/j.aml.2023.108868 doi (DE-627)ELV065447557 (ELSEVIER)S0893-9659(23)00300-2 DE-627 ger DE-627 rda eng 510 VZ 31.80 bkl Sun, Wenxiang verfasserin aut A hybrid numerical method for non-linear transient heat conduction problems with temperature-dependent thermal conductivity 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper introduces a hybrid numerical technique aimed at effectively addressing two-dimensional (2D) non-linear transient heat conduction problems, featuring temperature-dependent thermal conductivity. This scheme involves integrating the Krylov deferred correction (KDC) method in the temporal discretization and the generalized finite difference method (GFDM) in the spatial discretization. The core of the KDC method introduces a new unknown variable in the form of the first-order time derivative of temperature, leading to a non-linear equation after temporal discretization. Subsequently, the corresponding non-linear equation is solved in the spatial domain using the GFDM, supported by the Jacobian-free Newton–Krylov (JFNK) solver and fourth-order Taylor series expansion. The accuracy and stability of the hybrid approach are verified through two numerical experiments, demonstrating the strong performance of the present algorithm known as the KDC-GFDM for the simulations of the interested problems in long-time intervals. Non-linear Generalized finite difference method Transient heat conduction problems Krylov deferred correction Long-time simulation Ma, Haodong verfasserin aut Qu, Wenzhen verfasserin (orcid)0000-0003-3591-4593 aut Enthalten in Applied mathematics letters Amsterdam [u.a.] : Elsevier Sci., 1988 148 Online-Ressource (DE-627)320434222 (DE-600)2004138-X (DE-576)094085595 nnns volume:148 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2056 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.80 Angewandte Mathematik VZ AR 148 |
spelling |
10.1016/j.aml.2023.108868 doi (DE-627)ELV065447557 (ELSEVIER)S0893-9659(23)00300-2 DE-627 ger DE-627 rda eng 510 VZ 31.80 bkl Sun, Wenxiang verfasserin aut A hybrid numerical method for non-linear transient heat conduction problems with temperature-dependent thermal conductivity 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper introduces a hybrid numerical technique aimed at effectively addressing two-dimensional (2D) non-linear transient heat conduction problems, featuring temperature-dependent thermal conductivity. This scheme involves integrating the Krylov deferred correction (KDC) method in the temporal discretization and the generalized finite difference method (GFDM) in the spatial discretization. The core of the KDC method introduces a new unknown variable in the form of the first-order time derivative of temperature, leading to a non-linear equation after temporal discretization. Subsequently, the corresponding non-linear equation is solved in the spatial domain using the GFDM, supported by the Jacobian-free Newton–Krylov (JFNK) solver and fourth-order Taylor series expansion. The accuracy and stability of the hybrid approach are verified through two numerical experiments, demonstrating the strong performance of the present algorithm known as the KDC-GFDM for the simulations of the interested problems in long-time intervals. Non-linear Generalized finite difference method Transient heat conduction problems Krylov deferred correction Long-time simulation Ma, Haodong verfasserin aut Qu, Wenzhen verfasserin (orcid)0000-0003-3591-4593 aut Enthalten in Applied mathematics letters Amsterdam [u.a.] : Elsevier Sci., 1988 148 Online-Ressource (DE-627)320434222 (DE-600)2004138-X (DE-576)094085595 nnns volume:148 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2056 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.80 Angewandte Mathematik VZ AR 148 |
allfields_unstemmed |
10.1016/j.aml.2023.108868 doi (DE-627)ELV065447557 (ELSEVIER)S0893-9659(23)00300-2 DE-627 ger DE-627 rda eng 510 VZ 31.80 bkl Sun, Wenxiang verfasserin aut A hybrid numerical method for non-linear transient heat conduction problems with temperature-dependent thermal conductivity 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper introduces a hybrid numerical technique aimed at effectively addressing two-dimensional (2D) non-linear transient heat conduction problems, featuring temperature-dependent thermal conductivity. This scheme involves integrating the Krylov deferred correction (KDC) method in the temporal discretization and the generalized finite difference method (GFDM) in the spatial discretization. The core of the KDC method introduces a new unknown variable in the form of the first-order time derivative of temperature, leading to a non-linear equation after temporal discretization. Subsequently, the corresponding non-linear equation is solved in the spatial domain using the GFDM, supported by the Jacobian-free Newton–Krylov (JFNK) solver and fourth-order Taylor series expansion. The accuracy and stability of the hybrid approach are verified through two numerical experiments, demonstrating the strong performance of the present algorithm known as the KDC-GFDM for the simulations of the interested problems in long-time intervals. Non-linear Generalized finite difference method Transient heat conduction problems Krylov deferred correction Long-time simulation Ma, Haodong verfasserin aut Qu, Wenzhen verfasserin (orcid)0000-0003-3591-4593 aut Enthalten in Applied mathematics letters Amsterdam [u.a.] : Elsevier Sci., 1988 148 Online-Ressource (DE-627)320434222 (DE-600)2004138-X (DE-576)094085595 nnns volume:148 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2056 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.80 Angewandte Mathematik VZ AR 148 |
allfieldsGer |
10.1016/j.aml.2023.108868 doi (DE-627)ELV065447557 (ELSEVIER)S0893-9659(23)00300-2 DE-627 ger DE-627 rda eng 510 VZ 31.80 bkl Sun, Wenxiang verfasserin aut A hybrid numerical method for non-linear transient heat conduction problems with temperature-dependent thermal conductivity 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper introduces a hybrid numerical technique aimed at effectively addressing two-dimensional (2D) non-linear transient heat conduction problems, featuring temperature-dependent thermal conductivity. This scheme involves integrating the Krylov deferred correction (KDC) method in the temporal discretization and the generalized finite difference method (GFDM) in the spatial discretization. The core of the KDC method introduces a new unknown variable in the form of the first-order time derivative of temperature, leading to a non-linear equation after temporal discretization. Subsequently, the corresponding non-linear equation is solved in the spatial domain using the GFDM, supported by the Jacobian-free Newton–Krylov (JFNK) solver and fourth-order Taylor series expansion. The accuracy and stability of the hybrid approach are verified through two numerical experiments, demonstrating the strong performance of the present algorithm known as the KDC-GFDM for the simulations of the interested problems in long-time intervals. Non-linear Generalized finite difference method Transient heat conduction problems Krylov deferred correction Long-time simulation Ma, Haodong verfasserin aut Qu, Wenzhen verfasserin (orcid)0000-0003-3591-4593 aut Enthalten in Applied mathematics letters Amsterdam [u.a.] : Elsevier Sci., 1988 148 Online-Ressource (DE-627)320434222 (DE-600)2004138-X (DE-576)094085595 nnns volume:148 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2056 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.80 Angewandte Mathematik VZ AR 148 |
allfieldsSound |
10.1016/j.aml.2023.108868 doi (DE-627)ELV065447557 (ELSEVIER)S0893-9659(23)00300-2 DE-627 ger DE-627 rda eng 510 VZ 31.80 bkl Sun, Wenxiang verfasserin aut A hybrid numerical method for non-linear transient heat conduction problems with temperature-dependent thermal conductivity 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper introduces a hybrid numerical technique aimed at effectively addressing two-dimensional (2D) non-linear transient heat conduction problems, featuring temperature-dependent thermal conductivity. This scheme involves integrating the Krylov deferred correction (KDC) method in the temporal discretization and the generalized finite difference method (GFDM) in the spatial discretization. The core of the KDC method introduces a new unknown variable in the form of the first-order time derivative of temperature, leading to a non-linear equation after temporal discretization. Subsequently, the corresponding non-linear equation is solved in the spatial domain using the GFDM, supported by the Jacobian-free Newton–Krylov (JFNK) solver and fourth-order Taylor series expansion. The accuracy and stability of the hybrid approach are verified through two numerical experiments, demonstrating the strong performance of the present algorithm known as the KDC-GFDM for the simulations of the interested problems in long-time intervals. Non-linear Generalized finite difference method Transient heat conduction problems Krylov deferred correction Long-time simulation Ma, Haodong verfasserin aut Qu, Wenzhen verfasserin (orcid)0000-0003-3591-4593 aut Enthalten in Applied mathematics letters Amsterdam [u.a.] : Elsevier Sci., 1988 148 Online-Ressource (DE-627)320434222 (DE-600)2004138-X (DE-576)094085595 nnns volume:148 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2056 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.80 Angewandte Mathematik VZ AR 148 |
language |
English |
source |
Enthalten in Applied mathematics letters 148 volume:148 |
sourceStr |
Enthalten in Applied mathematics letters 148 volume:148 |
format_phy_str_mv |
Article |
bklname |
Angewandte Mathematik |
institution |
findex.gbv.de |
topic_facet |
Non-linear Generalized finite difference method Transient heat conduction problems Krylov deferred correction Long-time simulation |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Applied mathematics letters |
authorswithroles_txt_mv |
Sun, Wenxiang @@aut@@ Ma, Haodong @@aut@@ Qu, Wenzhen @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320434222 |
dewey-sort |
3510 |
id |
ELV065447557 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065447557</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231105093136.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231105s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.aml.2023.108868</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065447557</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0893-9659(23)00300-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Wenxiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A hybrid numerical method for non-linear transient heat conduction problems with temperature-dependent thermal conductivity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper introduces a hybrid numerical technique aimed at effectively addressing two-dimensional (2D) non-linear transient heat conduction problems, featuring temperature-dependent thermal conductivity. This scheme involves integrating the Krylov deferred correction (KDC) method in the temporal discretization and the generalized finite difference method (GFDM) in the spatial discretization. The core of the KDC method introduces a new unknown variable in the form of the first-order time derivative of temperature, leading to a non-linear equation after temporal discretization. Subsequently, the corresponding non-linear equation is solved in the spatial domain using the GFDM, supported by the Jacobian-free Newton–Krylov (JFNK) solver and fourth-order Taylor series expansion. The accuracy and stability of the hybrid approach are verified through two numerical experiments, demonstrating the strong performance of the present algorithm known as the KDC-GFDM for the simulations of the interested problems in long-time intervals.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-linear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generalized finite difference method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transient heat conduction problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Krylov deferred correction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Long-time simulation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Haodong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qu, Wenzhen</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3591-4593</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied mathematics letters</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Sci., 1988</subfield><subfield code="g">148</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320434222</subfield><subfield code="w">(DE-600)2004138-X</subfield><subfield code="w">(DE-576)094085595</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.80</subfield><subfield code="j">Angewandte Mathematik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">148</subfield></datafield></record></collection>
|
author |
Sun, Wenxiang |
spellingShingle |
Sun, Wenxiang ddc 510 bkl 31.80 misc Non-linear misc Generalized finite difference method misc Transient heat conduction problems misc Krylov deferred correction misc Long-time simulation A hybrid numerical method for non-linear transient heat conduction problems with temperature-dependent thermal conductivity |
authorStr |
Sun, Wenxiang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320434222 |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 VZ 31.80 bkl A hybrid numerical method for non-linear transient heat conduction problems with temperature-dependent thermal conductivity Non-linear Generalized finite difference method Transient heat conduction problems Krylov deferred correction Long-time simulation |
topic |
ddc 510 bkl 31.80 misc Non-linear misc Generalized finite difference method misc Transient heat conduction problems misc Krylov deferred correction misc Long-time simulation |
topic_unstemmed |
ddc 510 bkl 31.80 misc Non-linear misc Generalized finite difference method misc Transient heat conduction problems misc Krylov deferred correction misc Long-time simulation |
topic_browse |
ddc 510 bkl 31.80 misc Non-linear misc Generalized finite difference method misc Transient heat conduction problems misc Krylov deferred correction misc Long-time simulation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied mathematics letters |
hierarchy_parent_id |
320434222 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Applied mathematics letters |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320434222 (DE-600)2004138-X (DE-576)094085595 |
title |
A hybrid numerical method for non-linear transient heat conduction problems with temperature-dependent thermal conductivity |
ctrlnum |
(DE-627)ELV065447557 (ELSEVIER)S0893-9659(23)00300-2 |
title_full |
A hybrid numerical method for non-linear transient heat conduction problems with temperature-dependent thermal conductivity |
author_sort |
Sun, Wenxiang |
journal |
Applied mathematics letters |
journalStr |
Applied mathematics letters |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Sun, Wenxiang Ma, Haodong Qu, Wenzhen |
container_volume |
148 |
class |
510 VZ 31.80 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Sun, Wenxiang |
doi_str_mv |
10.1016/j.aml.2023.108868 |
normlink |
(ORCID)0000-0003-3591-4593 |
normlink_prefix_str_mv |
(orcid)0000-0003-3591-4593 |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
a hybrid numerical method for non-linear transient heat conduction problems with temperature-dependent thermal conductivity |
title_auth |
A hybrid numerical method for non-linear transient heat conduction problems with temperature-dependent thermal conductivity |
abstract |
This paper introduces a hybrid numerical technique aimed at effectively addressing two-dimensional (2D) non-linear transient heat conduction problems, featuring temperature-dependent thermal conductivity. This scheme involves integrating the Krylov deferred correction (KDC) method in the temporal discretization and the generalized finite difference method (GFDM) in the spatial discretization. The core of the KDC method introduces a new unknown variable in the form of the first-order time derivative of temperature, leading to a non-linear equation after temporal discretization. Subsequently, the corresponding non-linear equation is solved in the spatial domain using the GFDM, supported by the Jacobian-free Newton–Krylov (JFNK) solver and fourth-order Taylor series expansion. The accuracy and stability of the hybrid approach are verified through two numerical experiments, demonstrating the strong performance of the present algorithm known as the KDC-GFDM for the simulations of the interested problems in long-time intervals. |
abstractGer |
This paper introduces a hybrid numerical technique aimed at effectively addressing two-dimensional (2D) non-linear transient heat conduction problems, featuring temperature-dependent thermal conductivity. This scheme involves integrating the Krylov deferred correction (KDC) method in the temporal discretization and the generalized finite difference method (GFDM) in the spatial discretization. The core of the KDC method introduces a new unknown variable in the form of the first-order time derivative of temperature, leading to a non-linear equation after temporal discretization. Subsequently, the corresponding non-linear equation is solved in the spatial domain using the GFDM, supported by the Jacobian-free Newton–Krylov (JFNK) solver and fourth-order Taylor series expansion. The accuracy and stability of the hybrid approach are verified through two numerical experiments, demonstrating the strong performance of the present algorithm known as the KDC-GFDM for the simulations of the interested problems in long-time intervals. |
abstract_unstemmed |
This paper introduces a hybrid numerical technique aimed at effectively addressing two-dimensional (2D) non-linear transient heat conduction problems, featuring temperature-dependent thermal conductivity. This scheme involves integrating the Krylov deferred correction (KDC) method in the temporal discretization and the generalized finite difference method (GFDM) in the spatial discretization. The core of the KDC method introduces a new unknown variable in the form of the first-order time derivative of temperature, leading to a non-linear equation after temporal discretization. Subsequently, the corresponding non-linear equation is solved in the spatial domain using the GFDM, supported by the Jacobian-free Newton–Krylov (JFNK) solver and fourth-order Taylor series expansion. The accuracy and stability of the hybrid approach are verified through two numerical experiments, demonstrating the strong performance of the present algorithm known as the KDC-GFDM for the simulations of the interested problems in long-time intervals. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2056 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
A hybrid numerical method for non-linear transient heat conduction problems with temperature-dependent thermal conductivity |
remote_bool |
true |
author2 |
Ma, Haodong Qu, Wenzhen |
author2Str |
Ma, Haodong Qu, Wenzhen |
ppnlink |
320434222 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.aml.2023.108868 |
up_date |
2024-07-06T23:03:46.174Z |
_version_ |
1803872660278476800 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065447557</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231105093136.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231105s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.aml.2023.108868</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065447557</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0893-9659(23)00300-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Wenxiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A hybrid numerical method for non-linear transient heat conduction problems with temperature-dependent thermal conductivity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper introduces a hybrid numerical technique aimed at effectively addressing two-dimensional (2D) non-linear transient heat conduction problems, featuring temperature-dependent thermal conductivity. This scheme involves integrating the Krylov deferred correction (KDC) method in the temporal discretization and the generalized finite difference method (GFDM) in the spatial discretization. The core of the KDC method introduces a new unknown variable in the form of the first-order time derivative of temperature, leading to a non-linear equation after temporal discretization. Subsequently, the corresponding non-linear equation is solved in the spatial domain using the GFDM, supported by the Jacobian-free Newton–Krylov (JFNK) solver and fourth-order Taylor series expansion. The accuracy and stability of the hybrid approach are verified through two numerical experiments, demonstrating the strong performance of the present algorithm known as the KDC-GFDM for the simulations of the interested problems in long-time intervals.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-linear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generalized finite difference method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transient heat conduction problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Krylov deferred correction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Long-time simulation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Haodong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qu, Wenzhen</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3591-4593</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied mathematics letters</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Sci., 1988</subfield><subfield code="g">148</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320434222</subfield><subfield code="w">(DE-600)2004138-X</subfield><subfield code="w">(DE-576)094085595</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.80</subfield><subfield code="j">Angewandte Mathematik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">148</subfield></datafield></record></collection>
|
score |
7.401005 |