Microstructure and high-temperature mechanical properties of Cu-W composite prepared by hot isostatic pressing
In current work, Cu-20wt%W (Cu-20W) composite of near theoretical density (99.69 %) and high electrical conductivity (86.78 %IACS) was fabricated by spray drying technique and hot isostatic pressing (HIP), aiming to enhance the mechanical properties of Cu-W composite while maintaining high conductiv...
Ausführliche Beschreibung
Autor*in: |
Li, Xiuqing [verfasserIn] Wang, Qi [verfasserIn] Wei, Shizhong [verfasserIn] Lou, Wenpeng [verfasserIn] Liang, Jingkun [verfasserIn] Chen, Liangdong [verfasserIn] Xu, Liujie [verfasserIn] Zhou, Yucheng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of alloys and compounds - Lausanne : Elsevier, 1991, 970 |
---|---|
Übergeordnetes Werk: |
volume:970 |
DOI / URN: |
10.1016/j.jallcom.2023.172571 |
---|
Katalog-ID: |
ELV065452313 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV065452313 | ||
003 | DE-627 | ||
005 | 20231106093028.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231106s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jallcom.2023.172571 |2 doi | |
035 | |a (DE-627)ELV065452313 | ||
035 | |a (ELSEVIER)S0925-8388(23)03874-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |a 540 |q VZ |
084 | |a 51.54 |2 bkl | ||
084 | |a 33.61 |2 bkl | ||
084 | |a 35.90 |2 bkl | ||
100 | 1 | |a Li, Xiuqing |e verfasserin |0 (orcid)0000-0003-0034-2468 |4 aut | |
245 | 1 | 0 | |a Microstructure and high-temperature mechanical properties of Cu-W composite prepared by hot isostatic pressing |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In current work, Cu-20wt%W (Cu-20W) composite of near theoretical density (99.69 %) and high electrical conductivity (86.78 %IACS) was fabricated by spray drying technique and hot isostatic pressing (HIP), aiming to enhance the mechanical properties of Cu-W composite while maintaining high conductivity. The impacts of W nanoparticles on the microstructure and properties of Cu-20W samples were evaluated. Adding W nanoparticles can remarkably refine the grain of Cu and strengthen the Cu-W composite through a pinning effect. Room temperature tensile strength and compressive yield strength of Cu-20W composite were 380 MPa and 304.49 MPa, which are 117.14 % and 616.95 % higher than that of pure Cu (175 MPa and 42.47 MPa), respectively. Tungsten nanoparticles can promote the high-temperature reliability of Cu-W samples. Tensile strength of pure Cu and Cu-20W sample gradually decreased with increasing test temperature, but the percentage increment of tensile strength increased. The tungsten particles pinned at grain boundaries during hot deformation inhibit recrystallization grain growth and hinder dislocation movement, thereby contributing to the high-temperature properties of Cu-20W composite. The peak stress of Cu-20W sample is 146.60 % higher than pure Cu, even at close to the melting point of Cu (940 °C). The strength of Cu-20W composite is heightened by combining fine-grain strengthening and dispersion strengthening due to the introduced W nanoparticles. | ||
650 | 4 | |a Spray drying method | |
650 | 4 | |a HIP | |
650 | 4 | |a Cu-20W composite | |
650 | 4 | |a Nanoparticle | |
650 | 4 | |a High-temperature mechanical properties | |
700 | 1 | |a Wang, Qi |e verfasserin |4 aut | |
700 | 1 | |a Wei, Shizhong |e verfasserin |4 aut | |
700 | 1 | |a Lou, Wenpeng |e verfasserin |4 aut | |
700 | 1 | |a Liang, Jingkun |e verfasserin |4 aut | |
700 | 1 | |a Chen, Liangdong |e verfasserin |4 aut | |
700 | 1 | |a Xu, Liujie |e verfasserin |4 aut | |
700 | 1 | |a Zhou, Yucheng |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of alloys and compounds |d Lausanne : Elsevier, 1991 |g 970 |h Online-Ressource |w (DE-627)320504646 |w (DE-600)2012675-X |w (DE-576)098615009 |7 nnns |
773 | 1 | 8 | |g volume:970 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 51.54 |j Nichteisenmetalle und ihre Legierungen |q VZ |
936 | b | k | |a 33.61 |j Festkörperphysik |q VZ |
936 | b | k | |a 35.90 |j Festkörperchemie |q VZ |
951 | |a AR | ||
952 | |d 970 |
author_variant |
x l xl q w qw s w sw w l wl j l jl l c lc l x lx y z yz |
---|---|
matchkey_str |
lixiuqingwangqiweishizhonglouwenpenglian:2023----:irsrcuenhgtmeaueehnclrprisfucmoierpr |
hierarchy_sort_str |
2023 |
bklnumber |
51.54 33.61 35.90 |
publishDate |
2023 |
allfields |
10.1016/j.jallcom.2023.172571 doi (DE-627)ELV065452313 (ELSEVIER)S0925-8388(23)03874-4 DE-627 ger DE-627 rda eng 670 540 VZ 51.54 bkl 33.61 bkl 35.90 bkl Li, Xiuqing verfasserin (orcid)0000-0003-0034-2468 aut Microstructure and high-temperature mechanical properties of Cu-W composite prepared by hot isostatic pressing 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In current work, Cu-20wt%W (Cu-20W) composite of near theoretical density (99.69 %) and high electrical conductivity (86.78 %IACS) was fabricated by spray drying technique and hot isostatic pressing (HIP), aiming to enhance the mechanical properties of Cu-W composite while maintaining high conductivity. The impacts of W nanoparticles on the microstructure and properties of Cu-20W samples were evaluated. Adding W nanoparticles can remarkably refine the grain of Cu and strengthen the Cu-W composite through a pinning effect. Room temperature tensile strength and compressive yield strength of Cu-20W composite were 380 MPa and 304.49 MPa, which are 117.14 % and 616.95 % higher than that of pure Cu (175 MPa and 42.47 MPa), respectively. Tungsten nanoparticles can promote the high-temperature reliability of Cu-W samples. Tensile strength of pure Cu and Cu-20W sample gradually decreased with increasing test temperature, but the percentage increment of tensile strength increased. The tungsten particles pinned at grain boundaries during hot deformation inhibit recrystallization grain growth and hinder dislocation movement, thereby contributing to the high-temperature properties of Cu-20W composite. The peak stress of Cu-20W sample is 146.60 % higher than pure Cu, even at close to the melting point of Cu (940 °C). The strength of Cu-20W composite is heightened by combining fine-grain strengthening and dispersion strengthening due to the introduced W nanoparticles. Spray drying method HIP Cu-20W composite Nanoparticle High-temperature mechanical properties Wang, Qi verfasserin aut Wei, Shizhong verfasserin aut Lou, Wenpeng verfasserin aut Liang, Jingkun verfasserin aut Chen, Liangdong verfasserin aut Xu, Liujie verfasserin aut Zhou, Yucheng verfasserin aut Enthalten in Journal of alloys and compounds Lausanne : Elsevier, 1991 970 Online-Ressource (DE-627)320504646 (DE-600)2012675-X (DE-576)098615009 nnns volume:970 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.54 Nichteisenmetalle und ihre Legierungen VZ 33.61 Festkörperphysik VZ 35.90 Festkörperchemie VZ AR 970 |
spelling |
10.1016/j.jallcom.2023.172571 doi (DE-627)ELV065452313 (ELSEVIER)S0925-8388(23)03874-4 DE-627 ger DE-627 rda eng 670 540 VZ 51.54 bkl 33.61 bkl 35.90 bkl Li, Xiuqing verfasserin (orcid)0000-0003-0034-2468 aut Microstructure and high-temperature mechanical properties of Cu-W composite prepared by hot isostatic pressing 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In current work, Cu-20wt%W (Cu-20W) composite of near theoretical density (99.69 %) and high electrical conductivity (86.78 %IACS) was fabricated by spray drying technique and hot isostatic pressing (HIP), aiming to enhance the mechanical properties of Cu-W composite while maintaining high conductivity. The impacts of W nanoparticles on the microstructure and properties of Cu-20W samples were evaluated. Adding W nanoparticles can remarkably refine the grain of Cu and strengthen the Cu-W composite through a pinning effect. Room temperature tensile strength and compressive yield strength of Cu-20W composite were 380 MPa and 304.49 MPa, which are 117.14 % and 616.95 % higher than that of pure Cu (175 MPa and 42.47 MPa), respectively. Tungsten nanoparticles can promote the high-temperature reliability of Cu-W samples. Tensile strength of pure Cu and Cu-20W sample gradually decreased with increasing test temperature, but the percentage increment of tensile strength increased. The tungsten particles pinned at grain boundaries during hot deformation inhibit recrystallization grain growth and hinder dislocation movement, thereby contributing to the high-temperature properties of Cu-20W composite. The peak stress of Cu-20W sample is 146.60 % higher than pure Cu, even at close to the melting point of Cu (940 °C). The strength of Cu-20W composite is heightened by combining fine-grain strengthening and dispersion strengthening due to the introduced W nanoparticles. Spray drying method HIP Cu-20W composite Nanoparticle High-temperature mechanical properties Wang, Qi verfasserin aut Wei, Shizhong verfasserin aut Lou, Wenpeng verfasserin aut Liang, Jingkun verfasserin aut Chen, Liangdong verfasserin aut Xu, Liujie verfasserin aut Zhou, Yucheng verfasserin aut Enthalten in Journal of alloys and compounds Lausanne : Elsevier, 1991 970 Online-Ressource (DE-627)320504646 (DE-600)2012675-X (DE-576)098615009 nnns volume:970 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.54 Nichteisenmetalle und ihre Legierungen VZ 33.61 Festkörperphysik VZ 35.90 Festkörperchemie VZ AR 970 |
allfields_unstemmed |
10.1016/j.jallcom.2023.172571 doi (DE-627)ELV065452313 (ELSEVIER)S0925-8388(23)03874-4 DE-627 ger DE-627 rda eng 670 540 VZ 51.54 bkl 33.61 bkl 35.90 bkl Li, Xiuqing verfasserin (orcid)0000-0003-0034-2468 aut Microstructure and high-temperature mechanical properties of Cu-W composite prepared by hot isostatic pressing 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In current work, Cu-20wt%W (Cu-20W) composite of near theoretical density (99.69 %) and high electrical conductivity (86.78 %IACS) was fabricated by spray drying technique and hot isostatic pressing (HIP), aiming to enhance the mechanical properties of Cu-W composite while maintaining high conductivity. The impacts of W nanoparticles on the microstructure and properties of Cu-20W samples were evaluated. Adding W nanoparticles can remarkably refine the grain of Cu and strengthen the Cu-W composite through a pinning effect. Room temperature tensile strength and compressive yield strength of Cu-20W composite were 380 MPa and 304.49 MPa, which are 117.14 % and 616.95 % higher than that of pure Cu (175 MPa and 42.47 MPa), respectively. Tungsten nanoparticles can promote the high-temperature reliability of Cu-W samples. Tensile strength of pure Cu and Cu-20W sample gradually decreased with increasing test temperature, but the percentage increment of tensile strength increased. The tungsten particles pinned at grain boundaries during hot deformation inhibit recrystallization grain growth and hinder dislocation movement, thereby contributing to the high-temperature properties of Cu-20W composite. The peak stress of Cu-20W sample is 146.60 % higher than pure Cu, even at close to the melting point of Cu (940 °C). The strength of Cu-20W composite is heightened by combining fine-grain strengthening and dispersion strengthening due to the introduced W nanoparticles. Spray drying method HIP Cu-20W composite Nanoparticle High-temperature mechanical properties Wang, Qi verfasserin aut Wei, Shizhong verfasserin aut Lou, Wenpeng verfasserin aut Liang, Jingkun verfasserin aut Chen, Liangdong verfasserin aut Xu, Liujie verfasserin aut Zhou, Yucheng verfasserin aut Enthalten in Journal of alloys and compounds Lausanne : Elsevier, 1991 970 Online-Ressource (DE-627)320504646 (DE-600)2012675-X (DE-576)098615009 nnns volume:970 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.54 Nichteisenmetalle und ihre Legierungen VZ 33.61 Festkörperphysik VZ 35.90 Festkörperchemie VZ AR 970 |
allfieldsGer |
10.1016/j.jallcom.2023.172571 doi (DE-627)ELV065452313 (ELSEVIER)S0925-8388(23)03874-4 DE-627 ger DE-627 rda eng 670 540 VZ 51.54 bkl 33.61 bkl 35.90 bkl Li, Xiuqing verfasserin (orcid)0000-0003-0034-2468 aut Microstructure and high-temperature mechanical properties of Cu-W composite prepared by hot isostatic pressing 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In current work, Cu-20wt%W (Cu-20W) composite of near theoretical density (99.69 %) and high electrical conductivity (86.78 %IACS) was fabricated by spray drying technique and hot isostatic pressing (HIP), aiming to enhance the mechanical properties of Cu-W composite while maintaining high conductivity. The impacts of W nanoparticles on the microstructure and properties of Cu-20W samples were evaluated. Adding W nanoparticles can remarkably refine the grain of Cu and strengthen the Cu-W composite through a pinning effect. Room temperature tensile strength and compressive yield strength of Cu-20W composite were 380 MPa and 304.49 MPa, which are 117.14 % and 616.95 % higher than that of pure Cu (175 MPa and 42.47 MPa), respectively. Tungsten nanoparticles can promote the high-temperature reliability of Cu-W samples. Tensile strength of pure Cu and Cu-20W sample gradually decreased with increasing test temperature, but the percentage increment of tensile strength increased. The tungsten particles pinned at grain boundaries during hot deformation inhibit recrystallization grain growth and hinder dislocation movement, thereby contributing to the high-temperature properties of Cu-20W composite. The peak stress of Cu-20W sample is 146.60 % higher than pure Cu, even at close to the melting point of Cu (940 °C). The strength of Cu-20W composite is heightened by combining fine-grain strengthening and dispersion strengthening due to the introduced W nanoparticles. Spray drying method HIP Cu-20W composite Nanoparticle High-temperature mechanical properties Wang, Qi verfasserin aut Wei, Shizhong verfasserin aut Lou, Wenpeng verfasserin aut Liang, Jingkun verfasserin aut Chen, Liangdong verfasserin aut Xu, Liujie verfasserin aut Zhou, Yucheng verfasserin aut Enthalten in Journal of alloys and compounds Lausanne : Elsevier, 1991 970 Online-Ressource (DE-627)320504646 (DE-600)2012675-X (DE-576)098615009 nnns volume:970 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.54 Nichteisenmetalle und ihre Legierungen VZ 33.61 Festkörperphysik VZ 35.90 Festkörperchemie VZ AR 970 |
allfieldsSound |
10.1016/j.jallcom.2023.172571 doi (DE-627)ELV065452313 (ELSEVIER)S0925-8388(23)03874-4 DE-627 ger DE-627 rda eng 670 540 VZ 51.54 bkl 33.61 bkl 35.90 bkl Li, Xiuqing verfasserin (orcid)0000-0003-0034-2468 aut Microstructure and high-temperature mechanical properties of Cu-W composite prepared by hot isostatic pressing 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In current work, Cu-20wt%W (Cu-20W) composite of near theoretical density (99.69 %) and high electrical conductivity (86.78 %IACS) was fabricated by spray drying technique and hot isostatic pressing (HIP), aiming to enhance the mechanical properties of Cu-W composite while maintaining high conductivity. The impacts of W nanoparticles on the microstructure and properties of Cu-20W samples were evaluated. Adding W nanoparticles can remarkably refine the grain of Cu and strengthen the Cu-W composite through a pinning effect. Room temperature tensile strength and compressive yield strength of Cu-20W composite were 380 MPa and 304.49 MPa, which are 117.14 % and 616.95 % higher than that of pure Cu (175 MPa and 42.47 MPa), respectively. Tungsten nanoparticles can promote the high-temperature reliability of Cu-W samples. Tensile strength of pure Cu and Cu-20W sample gradually decreased with increasing test temperature, but the percentage increment of tensile strength increased. The tungsten particles pinned at grain boundaries during hot deformation inhibit recrystallization grain growth and hinder dislocation movement, thereby contributing to the high-temperature properties of Cu-20W composite. The peak stress of Cu-20W sample is 146.60 % higher than pure Cu, even at close to the melting point of Cu (940 °C). The strength of Cu-20W composite is heightened by combining fine-grain strengthening and dispersion strengthening due to the introduced W nanoparticles. Spray drying method HIP Cu-20W composite Nanoparticle High-temperature mechanical properties Wang, Qi verfasserin aut Wei, Shizhong verfasserin aut Lou, Wenpeng verfasserin aut Liang, Jingkun verfasserin aut Chen, Liangdong verfasserin aut Xu, Liujie verfasserin aut Zhou, Yucheng verfasserin aut Enthalten in Journal of alloys and compounds Lausanne : Elsevier, 1991 970 Online-Ressource (DE-627)320504646 (DE-600)2012675-X (DE-576)098615009 nnns volume:970 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.54 Nichteisenmetalle und ihre Legierungen VZ 33.61 Festkörperphysik VZ 35.90 Festkörperchemie VZ AR 970 |
language |
English |
source |
Enthalten in Journal of alloys and compounds 970 volume:970 |
sourceStr |
Enthalten in Journal of alloys and compounds 970 volume:970 |
format_phy_str_mv |
Article |
bklname |
Nichteisenmetalle und ihre Legierungen Festkörperphysik Festkörperchemie |
institution |
findex.gbv.de |
topic_facet |
Spray drying method HIP Cu-20W composite Nanoparticle High-temperature mechanical properties |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of alloys and compounds |
authorswithroles_txt_mv |
Li, Xiuqing @@aut@@ Wang, Qi @@aut@@ Wei, Shizhong @@aut@@ Lou, Wenpeng @@aut@@ Liang, Jingkun @@aut@@ Chen, Liangdong @@aut@@ Xu, Liujie @@aut@@ Zhou, Yucheng @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320504646 |
dewey-sort |
3670 |
id |
ELV065452313 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065452313</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231106093028.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231106s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jallcom.2023.172571</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065452313</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-8388(23)03874-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.54</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.61</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Xiuqing</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0034-2468</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microstructure and high-temperature mechanical properties of Cu-W composite prepared by hot isostatic pressing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In current work, Cu-20wt%W (Cu-20W) composite of near theoretical density (99.69 %) and high electrical conductivity (86.78 %IACS) was fabricated by spray drying technique and hot isostatic pressing (HIP), aiming to enhance the mechanical properties of Cu-W composite while maintaining high conductivity. The impacts of W nanoparticles on the microstructure and properties of Cu-20W samples were evaluated. Adding W nanoparticles can remarkably refine the grain of Cu and strengthen the Cu-W composite through a pinning effect. Room temperature tensile strength and compressive yield strength of Cu-20W composite were 380 MPa and 304.49 MPa, which are 117.14 % and 616.95 % higher than that of pure Cu (175 MPa and 42.47 MPa), respectively. Tungsten nanoparticles can promote the high-temperature reliability of Cu-W samples. Tensile strength of pure Cu and Cu-20W sample gradually decreased with increasing test temperature, but the percentage increment of tensile strength increased. The tungsten particles pinned at grain boundaries during hot deformation inhibit recrystallization grain growth and hinder dislocation movement, thereby contributing to the high-temperature properties of Cu-20W composite. The peak stress of Cu-20W sample is 146.60 % higher than pure Cu, even at close to the melting point of Cu (940 °C). The strength of Cu-20W composite is heightened by combining fine-grain strengthening and dispersion strengthening due to the introduced W nanoparticles.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spray drying method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HIP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cu-20W composite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoparticle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High-temperature mechanical properties</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Qi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Shizhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lou, Wenpeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Jingkun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Liangdong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Liujie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Yucheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of alloys and compounds</subfield><subfield code="d">Lausanne : Elsevier, 1991</subfield><subfield code="g">970</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320504646</subfield><subfield code="w">(DE-600)2012675-X</subfield><subfield code="w">(DE-576)098615009</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:970</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.54</subfield><subfield code="j">Nichteisenmetalle und ihre Legierungen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.61</subfield><subfield code="j">Festkörperphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.90</subfield><subfield code="j">Festkörperchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">970</subfield></datafield></record></collection>
|
author |
Li, Xiuqing |
spellingShingle |
Li, Xiuqing ddc 670 bkl 51.54 bkl 33.61 bkl 35.90 misc Spray drying method misc HIP misc Cu-20W composite misc Nanoparticle misc High-temperature mechanical properties Microstructure and high-temperature mechanical properties of Cu-W composite prepared by hot isostatic pressing |
authorStr |
Li, Xiuqing |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320504646 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
670 540 VZ 51.54 bkl 33.61 bkl 35.90 bkl Microstructure and high-temperature mechanical properties of Cu-W composite prepared by hot isostatic pressing Spray drying method HIP Cu-20W composite Nanoparticle High-temperature mechanical properties |
topic |
ddc 670 bkl 51.54 bkl 33.61 bkl 35.90 misc Spray drying method misc HIP misc Cu-20W composite misc Nanoparticle misc High-temperature mechanical properties |
topic_unstemmed |
ddc 670 bkl 51.54 bkl 33.61 bkl 35.90 misc Spray drying method misc HIP misc Cu-20W composite misc Nanoparticle misc High-temperature mechanical properties |
topic_browse |
ddc 670 bkl 51.54 bkl 33.61 bkl 35.90 misc Spray drying method misc HIP misc Cu-20W composite misc Nanoparticle misc High-temperature mechanical properties |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of alloys and compounds |
hierarchy_parent_id |
320504646 |
dewey-tens |
670 - Manufacturing 540 - Chemistry |
hierarchy_top_title |
Journal of alloys and compounds |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320504646 (DE-600)2012675-X (DE-576)098615009 |
title |
Microstructure and high-temperature mechanical properties of Cu-W composite prepared by hot isostatic pressing |
ctrlnum |
(DE-627)ELV065452313 (ELSEVIER)S0925-8388(23)03874-4 |
title_full |
Microstructure and high-temperature mechanical properties of Cu-W composite prepared by hot isostatic pressing |
author_sort |
Li, Xiuqing |
journal |
Journal of alloys and compounds |
journalStr |
Journal of alloys and compounds |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Li, Xiuqing Wang, Qi Wei, Shizhong Lou, Wenpeng Liang, Jingkun Chen, Liangdong Xu, Liujie Zhou, Yucheng |
container_volume |
970 |
class |
670 540 VZ 51.54 bkl 33.61 bkl 35.90 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Xiuqing |
doi_str_mv |
10.1016/j.jallcom.2023.172571 |
normlink |
(ORCID)0000-0003-0034-2468 |
normlink_prefix_str_mv |
(orcid)0000-0003-0034-2468 |
dewey-full |
670 540 |
author2-role |
verfasserin |
title_sort |
microstructure and high-temperature mechanical properties of cu-w composite prepared by hot isostatic pressing |
title_auth |
Microstructure and high-temperature mechanical properties of Cu-W composite prepared by hot isostatic pressing |
abstract |
In current work, Cu-20wt%W (Cu-20W) composite of near theoretical density (99.69 %) and high electrical conductivity (86.78 %IACS) was fabricated by spray drying technique and hot isostatic pressing (HIP), aiming to enhance the mechanical properties of Cu-W composite while maintaining high conductivity. The impacts of W nanoparticles on the microstructure and properties of Cu-20W samples were evaluated. Adding W nanoparticles can remarkably refine the grain of Cu and strengthen the Cu-W composite through a pinning effect. Room temperature tensile strength and compressive yield strength of Cu-20W composite were 380 MPa and 304.49 MPa, which are 117.14 % and 616.95 % higher than that of pure Cu (175 MPa and 42.47 MPa), respectively. Tungsten nanoparticles can promote the high-temperature reliability of Cu-W samples. Tensile strength of pure Cu and Cu-20W sample gradually decreased with increasing test temperature, but the percentage increment of tensile strength increased. The tungsten particles pinned at grain boundaries during hot deformation inhibit recrystallization grain growth and hinder dislocation movement, thereby contributing to the high-temperature properties of Cu-20W composite. The peak stress of Cu-20W sample is 146.60 % higher than pure Cu, even at close to the melting point of Cu (940 °C). The strength of Cu-20W composite is heightened by combining fine-grain strengthening and dispersion strengthening due to the introduced W nanoparticles. |
abstractGer |
In current work, Cu-20wt%W (Cu-20W) composite of near theoretical density (99.69 %) and high electrical conductivity (86.78 %IACS) was fabricated by spray drying technique and hot isostatic pressing (HIP), aiming to enhance the mechanical properties of Cu-W composite while maintaining high conductivity. The impacts of W nanoparticles on the microstructure and properties of Cu-20W samples were evaluated. Adding W nanoparticles can remarkably refine the grain of Cu and strengthen the Cu-W composite through a pinning effect. Room temperature tensile strength and compressive yield strength of Cu-20W composite were 380 MPa and 304.49 MPa, which are 117.14 % and 616.95 % higher than that of pure Cu (175 MPa and 42.47 MPa), respectively. Tungsten nanoparticles can promote the high-temperature reliability of Cu-W samples. Tensile strength of pure Cu and Cu-20W sample gradually decreased with increasing test temperature, but the percentage increment of tensile strength increased. The tungsten particles pinned at grain boundaries during hot deformation inhibit recrystallization grain growth and hinder dislocation movement, thereby contributing to the high-temperature properties of Cu-20W composite. The peak stress of Cu-20W sample is 146.60 % higher than pure Cu, even at close to the melting point of Cu (940 °C). The strength of Cu-20W composite is heightened by combining fine-grain strengthening and dispersion strengthening due to the introduced W nanoparticles. |
abstract_unstemmed |
In current work, Cu-20wt%W (Cu-20W) composite of near theoretical density (99.69 %) and high electrical conductivity (86.78 %IACS) was fabricated by spray drying technique and hot isostatic pressing (HIP), aiming to enhance the mechanical properties of Cu-W composite while maintaining high conductivity. The impacts of W nanoparticles on the microstructure and properties of Cu-20W samples were evaluated. Adding W nanoparticles can remarkably refine the grain of Cu and strengthen the Cu-W composite through a pinning effect. Room temperature tensile strength and compressive yield strength of Cu-20W composite were 380 MPa and 304.49 MPa, which are 117.14 % and 616.95 % higher than that of pure Cu (175 MPa and 42.47 MPa), respectively. Tungsten nanoparticles can promote the high-temperature reliability of Cu-W samples. Tensile strength of pure Cu and Cu-20W sample gradually decreased with increasing test temperature, but the percentage increment of tensile strength increased. The tungsten particles pinned at grain boundaries during hot deformation inhibit recrystallization grain growth and hinder dislocation movement, thereby contributing to the high-temperature properties of Cu-20W composite. The peak stress of Cu-20W sample is 146.60 % higher than pure Cu, even at close to the melting point of Cu (940 °C). The strength of Cu-20W composite is heightened by combining fine-grain strengthening and dispersion strengthening due to the introduced W nanoparticles. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Microstructure and high-temperature mechanical properties of Cu-W composite prepared by hot isostatic pressing |
remote_bool |
true |
author2 |
Wang, Qi Wei, Shizhong Lou, Wenpeng Liang, Jingkun Chen, Liangdong Xu, Liujie Zhou, Yucheng |
author2Str |
Wang, Qi Wei, Shizhong Lou, Wenpeng Liang, Jingkun Chen, Liangdong Xu, Liujie Zhou, Yucheng |
ppnlink |
320504646 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jallcom.2023.172571 |
up_date |
2024-07-06T23:04:48.806Z |
_version_ |
1803872725952888832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065452313</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231106093028.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231106s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jallcom.2023.172571</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065452313</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-8388(23)03874-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.54</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.61</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Xiuqing</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0034-2468</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microstructure and high-temperature mechanical properties of Cu-W composite prepared by hot isostatic pressing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In current work, Cu-20wt%W (Cu-20W) composite of near theoretical density (99.69 %) and high electrical conductivity (86.78 %IACS) was fabricated by spray drying technique and hot isostatic pressing (HIP), aiming to enhance the mechanical properties of Cu-W composite while maintaining high conductivity. The impacts of W nanoparticles on the microstructure and properties of Cu-20W samples were evaluated. Adding W nanoparticles can remarkably refine the grain of Cu and strengthen the Cu-W composite through a pinning effect. Room temperature tensile strength and compressive yield strength of Cu-20W composite were 380 MPa and 304.49 MPa, which are 117.14 % and 616.95 % higher than that of pure Cu (175 MPa and 42.47 MPa), respectively. Tungsten nanoparticles can promote the high-temperature reliability of Cu-W samples. Tensile strength of pure Cu and Cu-20W sample gradually decreased with increasing test temperature, but the percentage increment of tensile strength increased. The tungsten particles pinned at grain boundaries during hot deformation inhibit recrystallization grain growth and hinder dislocation movement, thereby contributing to the high-temperature properties of Cu-20W composite. The peak stress of Cu-20W sample is 146.60 % higher than pure Cu, even at close to the melting point of Cu (940 °C). The strength of Cu-20W composite is heightened by combining fine-grain strengthening and dispersion strengthening due to the introduced W nanoparticles.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spray drying method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HIP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cu-20W composite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoparticle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High-temperature mechanical properties</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Qi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Shizhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lou, Wenpeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Jingkun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Liangdong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Liujie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Yucheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of alloys and compounds</subfield><subfield code="d">Lausanne : Elsevier, 1991</subfield><subfield code="g">970</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320504646</subfield><subfield code="w">(DE-600)2012675-X</subfield><subfield code="w">(DE-576)098615009</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:970</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.54</subfield><subfield code="j">Nichteisenmetalle und ihre Legierungen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.61</subfield><subfield code="j">Festkörperphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.90</subfield><subfield code="j">Festkörperchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">970</subfield></datafield></record></collection>
|
score |
7.401272 |