Identification and localization of grape diseased leaf images captured by UAV based on CNN
In order to realize the acquisition of plant leaf images by agricultural drones and perform regional segmentation and disease recognition on leaf cluster images over a wide area, this paper takes grape leaves as an example and designs a set of processing procedures combining the improved U-net and V...
Ausführliche Beschreibung
Autor*in: |
Li, Weihan [verfasserIn] Yu, Xiao [verfasserIn] Chen, Cong [verfasserIn] Gong, Qi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Computers and electronics in agriculture - Amsterdam [u.a.] : Elsevier Science, 1985, 214 |
---|---|
Übergeordnetes Werk: |
volume:214 |
DOI / URN: |
10.1016/j.compag.2023.108277 |
---|
Katalog-ID: |
ELV065461088 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV065461088 | ||
003 | DE-627 | ||
005 | 20240112093145.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231107s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.compag.2023.108277 |2 doi | |
035 | |a (DE-627)ELV065461088 | ||
035 | |a (ELSEVIER)S0168-1699(23)00665-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 630 |a 640 |a 004 |q VZ |
084 | |a 48.03 |2 bkl | ||
100 | 1 | |a Li, Weihan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Identification and localization of grape diseased leaf images captured by UAV based on CNN |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In order to realize the acquisition of plant leaf images by agricultural drones and perform regional segmentation and disease recognition on leaf cluster images over a wide area, this paper takes grape leaves as an example and designs a set of processing procedures combining the improved U-net and VGG-19 networks. This paper aims to address the difficulty of obtaining target leaves for recognition in complex environments due to the presence of multiple invalid leaves. First, the feature extraction process is performed on the training and validation datasets to reduce the input parameters of the network and increase the training speed. Second, the test data is divided into three datasets: low-light, jitter interference, and two-factor combination. After recovery processing, the Multi-fusion U-net network is fed to locate diseased leaves. Finally, the improved VGG-19 network was used again to locate and identify the disease. Experimental results show that the proposed procedure achieves satisfactory performance in UAV image processing. The average accuracy of segmentation reaches 71.91%, and the identification rate of disease location is increased by 12.33% after segmentation, which provides a strong practical basis for the implementation of unmanned smart ecological farms. | ||
650 | 4 | |a Improved VGG-19 | |
650 | 4 | |a Multi-fusion U-net | |
650 | 4 | |a Convolutional Neural Network | |
650 | 4 | |a Disease identification | |
650 | 4 | |a Disease localization | |
700 | 1 | |a Yu, Xiao |e verfasserin |0 (orcid)0000-0003-3167-9514 |4 aut | |
700 | 1 | |a Chen, Cong |e verfasserin |4 aut | |
700 | 1 | |a Gong, Qi |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computers and electronics in agriculture |d Amsterdam [u.a.] : Elsevier Science, 1985 |g 214 |h Online-Ressource |w (DE-627)320567826 |w (DE-600)2016151-7 |w (DE-576)090955684 |x 1872-7107 |7 nnns |
773 | 1 | 8 | |g volume:214 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-FOR | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 48.03 |j Methoden und Techniken der Land- und Forstwirtschaft |q VZ |
951 | |a AR | ||
952 | |d 214 |
author_variant |
w l wl x y xy c c cc q g qg |
---|---|
matchkey_str |
article:18727107:2023----::dniiainnlclztoogaeiesdefmgsa |
hierarchy_sort_str |
2023 |
bklnumber |
48.03 |
publishDate |
2023 |
allfields |
10.1016/j.compag.2023.108277 doi (DE-627)ELV065461088 (ELSEVIER)S0168-1699(23)00665-8 DE-627 ger DE-627 rda eng 620 630 640 004 VZ 48.03 bkl Li, Weihan verfasserin aut Identification and localization of grape diseased leaf images captured by UAV based on CNN 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to realize the acquisition of plant leaf images by agricultural drones and perform regional segmentation and disease recognition on leaf cluster images over a wide area, this paper takes grape leaves as an example and designs a set of processing procedures combining the improved U-net and VGG-19 networks. This paper aims to address the difficulty of obtaining target leaves for recognition in complex environments due to the presence of multiple invalid leaves. First, the feature extraction process is performed on the training and validation datasets to reduce the input parameters of the network and increase the training speed. Second, the test data is divided into three datasets: low-light, jitter interference, and two-factor combination. After recovery processing, the Multi-fusion U-net network is fed to locate diseased leaves. Finally, the improved VGG-19 network was used again to locate and identify the disease. Experimental results show that the proposed procedure achieves satisfactory performance in UAV image processing. The average accuracy of segmentation reaches 71.91%, and the identification rate of disease location is increased by 12.33% after segmentation, which provides a strong practical basis for the implementation of unmanned smart ecological farms. Improved VGG-19 Multi-fusion U-net Convolutional Neural Network Disease identification Disease localization Yu, Xiao verfasserin (orcid)0000-0003-3167-9514 aut Chen, Cong verfasserin aut Gong, Qi verfasserin aut Enthalten in Computers and electronics in agriculture Amsterdam [u.a.] : Elsevier Science, 1985 214 Online-Ressource (DE-627)320567826 (DE-600)2016151-7 (DE-576)090955684 1872-7107 nnns volume:214 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.03 Methoden und Techniken der Land- und Forstwirtschaft VZ AR 214 |
spelling |
10.1016/j.compag.2023.108277 doi (DE-627)ELV065461088 (ELSEVIER)S0168-1699(23)00665-8 DE-627 ger DE-627 rda eng 620 630 640 004 VZ 48.03 bkl Li, Weihan verfasserin aut Identification and localization of grape diseased leaf images captured by UAV based on CNN 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to realize the acquisition of plant leaf images by agricultural drones and perform regional segmentation and disease recognition on leaf cluster images over a wide area, this paper takes grape leaves as an example and designs a set of processing procedures combining the improved U-net and VGG-19 networks. This paper aims to address the difficulty of obtaining target leaves for recognition in complex environments due to the presence of multiple invalid leaves. First, the feature extraction process is performed on the training and validation datasets to reduce the input parameters of the network and increase the training speed. Second, the test data is divided into three datasets: low-light, jitter interference, and two-factor combination. After recovery processing, the Multi-fusion U-net network is fed to locate diseased leaves. Finally, the improved VGG-19 network was used again to locate and identify the disease. Experimental results show that the proposed procedure achieves satisfactory performance in UAV image processing. The average accuracy of segmentation reaches 71.91%, and the identification rate of disease location is increased by 12.33% after segmentation, which provides a strong practical basis for the implementation of unmanned smart ecological farms. Improved VGG-19 Multi-fusion U-net Convolutional Neural Network Disease identification Disease localization Yu, Xiao verfasserin (orcid)0000-0003-3167-9514 aut Chen, Cong verfasserin aut Gong, Qi verfasserin aut Enthalten in Computers and electronics in agriculture Amsterdam [u.a.] : Elsevier Science, 1985 214 Online-Ressource (DE-627)320567826 (DE-600)2016151-7 (DE-576)090955684 1872-7107 nnns volume:214 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.03 Methoden und Techniken der Land- und Forstwirtschaft VZ AR 214 |
allfields_unstemmed |
10.1016/j.compag.2023.108277 doi (DE-627)ELV065461088 (ELSEVIER)S0168-1699(23)00665-8 DE-627 ger DE-627 rda eng 620 630 640 004 VZ 48.03 bkl Li, Weihan verfasserin aut Identification and localization of grape diseased leaf images captured by UAV based on CNN 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to realize the acquisition of plant leaf images by agricultural drones and perform regional segmentation and disease recognition on leaf cluster images over a wide area, this paper takes grape leaves as an example and designs a set of processing procedures combining the improved U-net and VGG-19 networks. This paper aims to address the difficulty of obtaining target leaves for recognition in complex environments due to the presence of multiple invalid leaves. First, the feature extraction process is performed on the training and validation datasets to reduce the input parameters of the network and increase the training speed. Second, the test data is divided into three datasets: low-light, jitter interference, and two-factor combination. After recovery processing, the Multi-fusion U-net network is fed to locate diseased leaves. Finally, the improved VGG-19 network was used again to locate and identify the disease. Experimental results show that the proposed procedure achieves satisfactory performance in UAV image processing. The average accuracy of segmentation reaches 71.91%, and the identification rate of disease location is increased by 12.33% after segmentation, which provides a strong practical basis for the implementation of unmanned smart ecological farms. Improved VGG-19 Multi-fusion U-net Convolutional Neural Network Disease identification Disease localization Yu, Xiao verfasserin (orcid)0000-0003-3167-9514 aut Chen, Cong verfasserin aut Gong, Qi verfasserin aut Enthalten in Computers and electronics in agriculture Amsterdam [u.a.] : Elsevier Science, 1985 214 Online-Ressource (DE-627)320567826 (DE-600)2016151-7 (DE-576)090955684 1872-7107 nnns volume:214 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.03 Methoden und Techniken der Land- und Forstwirtschaft VZ AR 214 |
allfieldsGer |
10.1016/j.compag.2023.108277 doi (DE-627)ELV065461088 (ELSEVIER)S0168-1699(23)00665-8 DE-627 ger DE-627 rda eng 620 630 640 004 VZ 48.03 bkl Li, Weihan verfasserin aut Identification and localization of grape diseased leaf images captured by UAV based on CNN 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to realize the acquisition of plant leaf images by agricultural drones and perform regional segmentation and disease recognition on leaf cluster images over a wide area, this paper takes grape leaves as an example and designs a set of processing procedures combining the improved U-net and VGG-19 networks. This paper aims to address the difficulty of obtaining target leaves for recognition in complex environments due to the presence of multiple invalid leaves. First, the feature extraction process is performed on the training and validation datasets to reduce the input parameters of the network and increase the training speed. Second, the test data is divided into three datasets: low-light, jitter interference, and two-factor combination. After recovery processing, the Multi-fusion U-net network is fed to locate diseased leaves. Finally, the improved VGG-19 network was used again to locate and identify the disease. Experimental results show that the proposed procedure achieves satisfactory performance in UAV image processing. The average accuracy of segmentation reaches 71.91%, and the identification rate of disease location is increased by 12.33% after segmentation, which provides a strong practical basis for the implementation of unmanned smart ecological farms. Improved VGG-19 Multi-fusion U-net Convolutional Neural Network Disease identification Disease localization Yu, Xiao verfasserin (orcid)0000-0003-3167-9514 aut Chen, Cong verfasserin aut Gong, Qi verfasserin aut Enthalten in Computers and electronics in agriculture Amsterdam [u.a.] : Elsevier Science, 1985 214 Online-Ressource (DE-627)320567826 (DE-600)2016151-7 (DE-576)090955684 1872-7107 nnns volume:214 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.03 Methoden und Techniken der Land- und Forstwirtschaft VZ AR 214 |
allfieldsSound |
10.1016/j.compag.2023.108277 doi (DE-627)ELV065461088 (ELSEVIER)S0168-1699(23)00665-8 DE-627 ger DE-627 rda eng 620 630 640 004 VZ 48.03 bkl Li, Weihan verfasserin aut Identification and localization of grape diseased leaf images captured by UAV based on CNN 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to realize the acquisition of plant leaf images by agricultural drones and perform regional segmentation and disease recognition on leaf cluster images over a wide area, this paper takes grape leaves as an example and designs a set of processing procedures combining the improved U-net and VGG-19 networks. This paper aims to address the difficulty of obtaining target leaves for recognition in complex environments due to the presence of multiple invalid leaves. First, the feature extraction process is performed on the training and validation datasets to reduce the input parameters of the network and increase the training speed. Second, the test data is divided into three datasets: low-light, jitter interference, and two-factor combination. After recovery processing, the Multi-fusion U-net network is fed to locate diseased leaves. Finally, the improved VGG-19 network was used again to locate and identify the disease. Experimental results show that the proposed procedure achieves satisfactory performance in UAV image processing. The average accuracy of segmentation reaches 71.91%, and the identification rate of disease location is increased by 12.33% after segmentation, which provides a strong practical basis for the implementation of unmanned smart ecological farms. Improved VGG-19 Multi-fusion U-net Convolutional Neural Network Disease identification Disease localization Yu, Xiao verfasserin (orcid)0000-0003-3167-9514 aut Chen, Cong verfasserin aut Gong, Qi verfasserin aut Enthalten in Computers and electronics in agriculture Amsterdam [u.a.] : Elsevier Science, 1985 214 Online-Ressource (DE-627)320567826 (DE-600)2016151-7 (DE-576)090955684 1872-7107 nnns volume:214 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.03 Methoden und Techniken der Land- und Forstwirtschaft VZ AR 214 |
language |
English |
source |
Enthalten in Computers and electronics in agriculture 214 volume:214 |
sourceStr |
Enthalten in Computers and electronics in agriculture 214 volume:214 |
format_phy_str_mv |
Article |
bklname |
Methoden und Techniken der Land- und Forstwirtschaft |
institution |
findex.gbv.de |
topic_facet |
Improved VGG-19 Multi-fusion U-net Convolutional Neural Network Disease identification Disease localization |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Computers and electronics in agriculture |
authorswithroles_txt_mv |
Li, Weihan @@aut@@ Yu, Xiao @@aut@@ Chen, Cong @@aut@@ Gong, Qi @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320567826 |
dewey-sort |
3620 |
id |
ELV065461088 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065461088</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240112093145.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231107s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compag.2023.108277</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065461088</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-1699(23)00665-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Weihan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Identification and localization of grape diseased leaf images captured by UAV based on CNN</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In order to realize the acquisition of plant leaf images by agricultural drones and perform regional segmentation and disease recognition on leaf cluster images over a wide area, this paper takes grape leaves as an example and designs a set of processing procedures combining the improved U-net and VGG-19 networks. This paper aims to address the difficulty of obtaining target leaves for recognition in complex environments due to the presence of multiple invalid leaves. First, the feature extraction process is performed on the training and validation datasets to reduce the input parameters of the network and increase the training speed. Second, the test data is divided into three datasets: low-light, jitter interference, and two-factor combination. After recovery processing, the Multi-fusion U-net network is fed to locate diseased leaves. Finally, the improved VGG-19 network was used again to locate and identify the disease. Experimental results show that the proposed procedure achieves satisfactory performance in UAV image processing. The average accuracy of segmentation reaches 71.91%, and the identification rate of disease location is increased by 12.33% after segmentation, which provides a strong practical basis for the implementation of unmanned smart ecological farms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Improved VGG-19</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-fusion U-net</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convolutional Neural Network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Disease identification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Disease localization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Xiao</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3167-9514</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Cong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gong, Qi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers and electronics in agriculture</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1985</subfield><subfield code="g">214</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320567826</subfield><subfield code="w">(DE-600)2016151-7</subfield><subfield code="w">(DE-576)090955684</subfield><subfield code="x">1872-7107</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:214</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.03</subfield><subfield code="j">Methoden und Techniken der Land- und Forstwirtschaft</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">214</subfield></datafield></record></collection>
|
author |
Li, Weihan |
spellingShingle |
Li, Weihan ddc 620 bkl 48.03 misc Improved VGG-19 misc Multi-fusion U-net misc Convolutional Neural Network misc Disease identification misc Disease localization Identification and localization of grape diseased leaf images captured by UAV based on CNN |
authorStr |
Li, Weihan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320567826 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations 630 - Agriculture & related technologies 640 - Home & family management 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1872-7107 |
topic_title |
620 630 640 004 VZ 48.03 bkl Identification and localization of grape diseased leaf images captured by UAV based on CNN Improved VGG-19 Multi-fusion U-net Convolutional Neural Network Disease identification Disease localization |
topic |
ddc 620 bkl 48.03 misc Improved VGG-19 misc Multi-fusion U-net misc Convolutional Neural Network misc Disease identification misc Disease localization |
topic_unstemmed |
ddc 620 bkl 48.03 misc Improved VGG-19 misc Multi-fusion U-net misc Convolutional Neural Network misc Disease identification misc Disease localization |
topic_browse |
ddc 620 bkl 48.03 misc Improved VGG-19 misc Multi-fusion U-net misc Convolutional Neural Network misc Disease identification misc Disease localization |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Computers and electronics in agriculture |
hierarchy_parent_id |
320567826 |
dewey-tens |
620 - Engineering 630 - Agriculture 640 - Home & family management 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Computers and electronics in agriculture |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320567826 (DE-600)2016151-7 (DE-576)090955684 |
title |
Identification and localization of grape diseased leaf images captured by UAV based on CNN |
ctrlnum |
(DE-627)ELV065461088 (ELSEVIER)S0168-1699(23)00665-8 |
title_full |
Identification and localization of grape diseased leaf images captured by UAV based on CNN |
author_sort |
Li, Weihan |
journal |
Computers and electronics in agriculture |
journalStr |
Computers and electronics in agriculture |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Li, Weihan Yu, Xiao Chen, Cong Gong, Qi |
container_volume |
214 |
class |
620 630 640 004 VZ 48.03 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Weihan |
doi_str_mv |
10.1016/j.compag.2023.108277 |
normlink |
(ORCID)0000-0003-3167-9514 |
normlink_prefix_str_mv |
(orcid)0000-0003-3167-9514 |
dewey-full |
620 630 640 004 |
author2-role |
verfasserin |
title_sort |
identification and localization of grape diseased leaf images captured by uav based on cnn |
title_auth |
Identification and localization of grape diseased leaf images captured by UAV based on CNN |
abstract |
In order to realize the acquisition of plant leaf images by agricultural drones and perform regional segmentation and disease recognition on leaf cluster images over a wide area, this paper takes grape leaves as an example and designs a set of processing procedures combining the improved U-net and VGG-19 networks. This paper aims to address the difficulty of obtaining target leaves for recognition in complex environments due to the presence of multiple invalid leaves. First, the feature extraction process is performed on the training and validation datasets to reduce the input parameters of the network and increase the training speed. Second, the test data is divided into three datasets: low-light, jitter interference, and two-factor combination. After recovery processing, the Multi-fusion U-net network is fed to locate diseased leaves. Finally, the improved VGG-19 network was used again to locate and identify the disease. Experimental results show that the proposed procedure achieves satisfactory performance in UAV image processing. The average accuracy of segmentation reaches 71.91%, and the identification rate of disease location is increased by 12.33% after segmentation, which provides a strong practical basis for the implementation of unmanned smart ecological farms. |
abstractGer |
In order to realize the acquisition of plant leaf images by agricultural drones and perform regional segmentation and disease recognition on leaf cluster images over a wide area, this paper takes grape leaves as an example and designs a set of processing procedures combining the improved U-net and VGG-19 networks. This paper aims to address the difficulty of obtaining target leaves for recognition in complex environments due to the presence of multiple invalid leaves. First, the feature extraction process is performed on the training and validation datasets to reduce the input parameters of the network and increase the training speed. Second, the test data is divided into three datasets: low-light, jitter interference, and two-factor combination. After recovery processing, the Multi-fusion U-net network is fed to locate diseased leaves. Finally, the improved VGG-19 network was used again to locate and identify the disease. Experimental results show that the proposed procedure achieves satisfactory performance in UAV image processing. The average accuracy of segmentation reaches 71.91%, and the identification rate of disease location is increased by 12.33% after segmentation, which provides a strong practical basis for the implementation of unmanned smart ecological farms. |
abstract_unstemmed |
In order to realize the acquisition of plant leaf images by agricultural drones and perform regional segmentation and disease recognition on leaf cluster images over a wide area, this paper takes grape leaves as an example and designs a set of processing procedures combining the improved U-net and VGG-19 networks. This paper aims to address the difficulty of obtaining target leaves for recognition in complex environments due to the presence of multiple invalid leaves. First, the feature extraction process is performed on the training and validation datasets to reduce the input parameters of the network and increase the training speed. Second, the test data is divided into three datasets: low-light, jitter interference, and two-factor combination. After recovery processing, the Multi-fusion U-net network is fed to locate diseased leaves. Finally, the improved VGG-19 network was used again to locate and identify the disease. Experimental results show that the proposed procedure achieves satisfactory performance in UAV image processing. The average accuracy of segmentation reaches 71.91%, and the identification rate of disease location is increased by 12.33% after segmentation, which provides a strong practical basis for the implementation of unmanned smart ecological farms. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Identification and localization of grape diseased leaf images captured by UAV based on CNN |
remote_bool |
true |
author2 |
Yu, Xiao Chen, Cong Gong, Qi |
author2Str |
Yu, Xiao Chen, Cong Gong, Qi |
ppnlink |
320567826 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.compag.2023.108277 |
up_date |
2024-07-06T23:06:41.579Z |
_version_ |
1803872844204998656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065461088</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240112093145.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231107s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compag.2023.108277</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065461088</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-1699(23)00665-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Weihan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Identification and localization of grape diseased leaf images captured by UAV based on CNN</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In order to realize the acquisition of plant leaf images by agricultural drones and perform regional segmentation and disease recognition on leaf cluster images over a wide area, this paper takes grape leaves as an example and designs a set of processing procedures combining the improved U-net and VGG-19 networks. This paper aims to address the difficulty of obtaining target leaves for recognition in complex environments due to the presence of multiple invalid leaves. First, the feature extraction process is performed on the training and validation datasets to reduce the input parameters of the network and increase the training speed. Second, the test data is divided into three datasets: low-light, jitter interference, and two-factor combination. After recovery processing, the Multi-fusion U-net network is fed to locate diseased leaves. Finally, the improved VGG-19 network was used again to locate and identify the disease. Experimental results show that the proposed procedure achieves satisfactory performance in UAV image processing. The average accuracy of segmentation reaches 71.91%, and the identification rate of disease location is increased by 12.33% after segmentation, which provides a strong practical basis for the implementation of unmanned smart ecological farms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Improved VGG-19</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-fusion U-net</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convolutional Neural Network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Disease identification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Disease localization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Xiao</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3167-9514</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Cong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gong, Qi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers and electronics in agriculture</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1985</subfield><subfield code="g">214</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320567826</subfield><subfield code="w">(DE-600)2016151-7</subfield><subfield code="w">(DE-576)090955684</subfield><subfield code="x">1872-7107</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:214</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.03</subfield><subfield code="j">Methoden und Techniken der Land- und Forstwirtschaft</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">214</subfield></datafield></record></collection>
|
score |
7.402936 |