Maximizing ozone control by spatial sensitivity-oriented mitigation strategy in the Pearl River Delta Region, China
The Pearl River Delta (PRD) has long been plagued by severe O3 pollution, particularly during the autumn. A regional O3 pollution episode influenced by the Western Pacific Subtropical High in September 2021 was characterized by near-surface O3 escalation due to strong photochemical reactions within...
Ausführliche Beschreibung
Autor*in: |
Wang, Runyu [verfasserIn] Wang, Lili [verfasserIn] Sun, Jiaren [verfasserIn] Zhang, Lei [verfasserIn] Li, Yuanyuan [verfasserIn] Li, Ke [verfasserIn] Liu, Boya [verfasserIn] Zhang, Jiaxin [verfasserIn] Wang, Yuesi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: The science of the total environment - Amsterdam [u.a.] : Elsevier Science, 1972, 905 |
---|---|
Übergeordnetes Werk: |
volume:905 |
DOI / URN: |
10.1016/j.scitotenv.2023.166987 |
---|
Katalog-ID: |
ELV065474694 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV065474694 | ||
003 | DE-627 | ||
005 | 20231224093117.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231108s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.scitotenv.2023.166987 |2 doi | |
035 | |a (DE-627)ELV065474694 | ||
035 | |a (ELSEVIER)S0048-9697(23)05612-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 333.7 |a 610 |q VZ |
084 | |a 43.12 |2 bkl | ||
084 | |a 43.13 |2 bkl | ||
084 | |a 44.13 |2 bkl | ||
100 | 1 | |a Wang, Runyu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Maximizing ozone control by spatial sensitivity-oriented mitigation strategy in the Pearl River Delta Region, China |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The Pearl River Delta (PRD) has long been plagued by severe O3 pollution, particularly during the autumn. A regional O3 pollution episode influenced by the Western Pacific Subtropical High in September 2021 was characterized by near-surface O3 escalation due to strong photochemical reactions within the planetary boundary layer. This event was targeted to develop effective control strategies through investigation of precursor control type and scope based on the high-order decoupled direct method (HDDM) and integrated source apportionment method (ISAM) of CMAQ. Generally, the majority of areas (67.0 %) were under NOx-limited regime, which should strengthen afternoon NOx control inferred by positive convex O3 responses. However, high emission and heavily polluted areas located in central PRD were under VOC-limited regime (11.6 %) or mixed regime (15.0 %). The remaining areas (6.4 %) were under NOx-titration or insensitive conditions. Regarding source apportionment, Guangdong province contributed 32.3 %–58.4 % to MDA8 O3 of PRD, especially higher proportion (>50 %) to central areas. Overall, local-focused NOx/VOC emission reductions had limited effects on O3 mitigation for receptor cities compared to regional-cooperative regulation. When region-wide VOC emission reduction was implemented, MDA8 O3 in VOC-limited grids exhibited the largest declines (2.3 %–4.1 %, 3.9– 7.0 μg·m−3). However, unified NOx control contributed to increasing MDA8 O3 in VOC-limited grids (most stations located for air quality evaluation) whereas decreased MDA8 O3 by 2.1 %– 5.7 %, 3.0– 8.2 μg·m−3 in large-scale NOx-limited grids. The sensitivity-oriented regional control avoided O3 rebound and achieved the greatest decline of 3.4 %– 5.0 %, 5.7– 8.4 μg·m−3 in VOC-limited grids; additionally, time-refined dynamic aggressive NOx control decreased peak O3 by an extra 1.2– 6 μg·m−3, both of which facilitate the regulation for the forecasting O3 episodes. These findings suggest that in heavily polluted environments, the enhancement of O3 regulation benefits requires meticulous, coordinated, and dynamic NOx and VOC controls spanning the entire region based on high-resolution analysis of heterogeneous O3-NOx-VOC sensitivity. Furthermore, emission reduction gains should be more reasonably reflected through increasing in-situ observations covering multi-sensitivity regions. | ||
650 | 4 | |a Pearl River Delta | |
650 | 4 | |a HDDM | |
650 | 4 | |a ISAM | |
650 | 4 | |a O | |
650 | 4 | |a Geography-differentiated collaborative control | |
700 | 1 | |a Wang, Lili |e verfasserin |4 aut | |
700 | 1 | |a Sun, Jiaren |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Lei |e verfasserin |4 aut | |
700 | 1 | |a Li, Yuanyuan |e verfasserin |4 aut | |
700 | 1 | |a Li, Ke |e verfasserin |4 aut | |
700 | 1 | |a Liu, Boya |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Jiaxin |e verfasserin |4 aut | |
700 | 1 | |a Wang, Yuesi |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The science of the total environment |d Amsterdam [u.a.] : Elsevier Science, 1972 |g 905 |h Online-Ressource |w (DE-627)306591456 |w (DE-600)1498726-0 |w (DE-576)081953178 |x 1879-1026 |7 nnns |
773 | 1 | 8 | |g volume:905 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 43.12 |j Umweltchemie |q VZ |
936 | b | k | |a 43.13 |j Umwelttoxikologie |q VZ |
936 | b | k | |a 44.13 |j Medizinische Ökologie |q VZ |
951 | |a AR | ||
952 | |d 905 |
author_variant |
r w rw l w lw j s js l z lz y l yl k l kl b l bl j z jz y w yw |
---|---|
matchkey_str |
article:18791026:2023----::aiiigzncnrlyptasniiiyretdiiaintaeynh |
hierarchy_sort_str |
2023 |
bklnumber |
43.12 43.13 44.13 |
publishDate |
2023 |
allfields |
10.1016/j.scitotenv.2023.166987 doi (DE-627)ELV065474694 (ELSEVIER)S0048-9697(23)05612-7 DE-627 ger DE-627 rda eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Wang, Runyu verfasserin aut Maximizing ozone control by spatial sensitivity-oriented mitigation strategy in the Pearl River Delta Region, China 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Pearl River Delta (PRD) has long been plagued by severe O3 pollution, particularly during the autumn. A regional O3 pollution episode influenced by the Western Pacific Subtropical High in September 2021 was characterized by near-surface O3 escalation due to strong photochemical reactions within the planetary boundary layer. This event was targeted to develop effective control strategies through investigation of precursor control type and scope based on the high-order decoupled direct method (HDDM) and integrated source apportionment method (ISAM) of CMAQ. Generally, the majority of areas (67.0 %) were under NOx-limited regime, which should strengthen afternoon NOx control inferred by positive convex O3 responses. However, high emission and heavily polluted areas located in central PRD were under VOC-limited regime (11.6 %) or mixed regime (15.0 %). The remaining areas (6.4 %) were under NOx-titration or insensitive conditions. Regarding source apportionment, Guangdong province contributed 32.3 %–58.4 % to MDA8 O3 of PRD, especially higher proportion (>50 %) to central areas. Overall, local-focused NOx/VOC emission reductions had limited effects on O3 mitigation for receptor cities compared to regional-cooperative regulation. When region-wide VOC emission reduction was implemented, MDA8 O3 in VOC-limited grids exhibited the largest declines (2.3 %–4.1 %, 3.9– 7.0 μg·m−3). However, unified NOx control contributed to increasing MDA8 O3 in VOC-limited grids (most stations located for air quality evaluation) whereas decreased MDA8 O3 by 2.1 %– 5.7 %, 3.0– 8.2 μg·m−3 in large-scale NOx-limited grids. The sensitivity-oriented regional control avoided O3 rebound and achieved the greatest decline of 3.4 %– 5.0 %, 5.7– 8.4 μg·m−3 in VOC-limited grids; additionally, time-refined dynamic aggressive NOx control decreased peak O3 by an extra 1.2– 6 μg·m−3, both of which facilitate the regulation for the forecasting O3 episodes. These findings suggest that in heavily polluted environments, the enhancement of O3 regulation benefits requires meticulous, coordinated, and dynamic NOx and VOC controls spanning the entire region based on high-resolution analysis of heterogeneous O3-NOx-VOC sensitivity. Furthermore, emission reduction gains should be more reasonably reflected through increasing in-situ observations covering multi-sensitivity regions. Pearl River Delta HDDM ISAM O Geography-differentiated collaborative control Wang, Lili verfasserin aut Sun, Jiaren verfasserin aut Zhang, Lei verfasserin aut Li, Yuanyuan verfasserin aut Li, Ke verfasserin aut Liu, Boya verfasserin aut Zhang, Jiaxin verfasserin aut Wang, Yuesi verfasserin aut Enthalten in The science of the total environment Amsterdam [u.a.] : Elsevier Science, 1972 905 Online-Ressource (DE-627)306591456 (DE-600)1498726-0 (DE-576)081953178 1879-1026 nnns volume:905 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 905 |
spelling |
10.1016/j.scitotenv.2023.166987 doi (DE-627)ELV065474694 (ELSEVIER)S0048-9697(23)05612-7 DE-627 ger DE-627 rda eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Wang, Runyu verfasserin aut Maximizing ozone control by spatial sensitivity-oriented mitigation strategy in the Pearl River Delta Region, China 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Pearl River Delta (PRD) has long been plagued by severe O3 pollution, particularly during the autumn. A regional O3 pollution episode influenced by the Western Pacific Subtropical High in September 2021 was characterized by near-surface O3 escalation due to strong photochemical reactions within the planetary boundary layer. This event was targeted to develop effective control strategies through investigation of precursor control type and scope based on the high-order decoupled direct method (HDDM) and integrated source apportionment method (ISAM) of CMAQ. Generally, the majority of areas (67.0 %) were under NOx-limited regime, which should strengthen afternoon NOx control inferred by positive convex O3 responses. However, high emission and heavily polluted areas located in central PRD were under VOC-limited regime (11.6 %) or mixed regime (15.0 %). The remaining areas (6.4 %) were under NOx-titration or insensitive conditions. Regarding source apportionment, Guangdong province contributed 32.3 %–58.4 % to MDA8 O3 of PRD, especially higher proportion (>50 %) to central areas. Overall, local-focused NOx/VOC emission reductions had limited effects on O3 mitigation for receptor cities compared to regional-cooperative regulation. When region-wide VOC emission reduction was implemented, MDA8 O3 in VOC-limited grids exhibited the largest declines (2.3 %–4.1 %, 3.9– 7.0 μg·m−3). However, unified NOx control contributed to increasing MDA8 O3 in VOC-limited grids (most stations located for air quality evaluation) whereas decreased MDA8 O3 by 2.1 %– 5.7 %, 3.0– 8.2 μg·m−3 in large-scale NOx-limited grids. The sensitivity-oriented regional control avoided O3 rebound and achieved the greatest decline of 3.4 %– 5.0 %, 5.7– 8.4 μg·m−3 in VOC-limited grids; additionally, time-refined dynamic aggressive NOx control decreased peak O3 by an extra 1.2– 6 μg·m−3, both of which facilitate the regulation for the forecasting O3 episodes. These findings suggest that in heavily polluted environments, the enhancement of O3 regulation benefits requires meticulous, coordinated, and dynamic NOx and VOC controls spanning the entire region based on high-resolution analysis of heterogeneous O3-NOx-VOC sensitivity. Furthermore, emission reduction gains should be more reasonably reflected through increasing in-situ observations covering multi-sensitivity regions. Pearl River Delta HDDM ISAM O Geography-differentiated collaborative control Wang, Lili verfasserin aut Sun, Jiaren verfasserin aut Zhang, Lei verfasserin aut Li, Yuanyuan verfasserin aut Li, Ke verfasserin aut Liu, Boya verfasserin aut Zhang, Jiaxin verfasserin aut Wang, Yuesi verfasserin aut Enthalten in The science of the total environment Amsterdam [u.a.] : Elsevier Science, 1972 905 Online-Ressource (DE-627)306591456 (DE-600)1498726-0 (DE-576)081953178 1879-1026 nnns volume:905 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 905 |
allfields_unstemmed |
10.1016/j.scitotenv.2023.166987 doi (DE-627)ELV065474694 (ELSEVIER)S0048-9697(23)05612-7 DE-627 ger DE-627 rda eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Wang, Runyu verfasserin aut Maximizing ozone control by spatial sensitivity-oriented mitigation strategy in the Pearl River Delta Region, China 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Pearl River Delta (PRD) has long been plagued by severe O3 pollution, particularly during the autumn. A regional O3 pollution episode influenced by the Western Pacific Subtropical High in September 2021 was characterized by near-surface O3 escalation due to strong photochemical reactions within the planetary boundary layer. This event was targeted to develop effective control strategies through investigation of precursor control type and scope based on the high-order decoupled direct method (HDDM) and integrated source apportionment method (ISAM) of CMAQ. Generally, the majority of areas (67.0 %) were under NOx-limited regime, which should strengthen afternoon NOx control inferred by positive convex O3 responses. However, high emission and heavily polluted areas located in central PRD were under VOC-limited regime (11.6 %) or mixed regime (15.0 %). The remaining areas (6.4 %) were under NOx-titration or insensitive conditions. Regarding source apportionment, Guangdong province contributed 32.3 %–58.4 % to MDA8 O3 of PRD, especially higher proportion (>50 %) to central areas. Overall, local-focused NOx/VOC emission reductions had limited effects on O3 mitigation for receptor cities compared to regional-cooperative regulation. When region-wide VOC emission reduction was implemented, MDA8 O3 in VOC-limited grids exhibited the largest declines (2.3 %–4.1 %, 3.9– 7.0 μg·m−3). However, unified NOx control contributed to increasing MDA8 O3 in VOC-limited grids (most stations located for air quality evaluation) whereas decreased MDA8 O3 by 2.1 %– 5.7 %, 3.0– 8.2 μg·m−3 in large-scale NOx-limited grids. The sensitivity-oriented regional control avoided O3 rebound and achieved the greatest decline of 3.4 %– 5.0 %, 5.7– 8.4 μg·m−3 in VOC-limited grids; additionally, time-refined dynamic aggressive NOx control decreased peak O3 by an extra 1.2– 6 μg·m−3, both of which facilitate the regulation for the forecasting O3 episodes. These findings suggest that in heavily polluted environments, the enhancement of O3 regulation benefits requires meticulous, coordinated, and dynamic NOx and VOC controls spanning the entire region based on high-resolution analysis of heterogeneous O3-NOx-VOC sensitivity. Furthermore, emission reduction gains should be more reasonably reflected through increasing in-situ observations covering multi-sensitivity regions. Pearl River Delta HDDM ISAM O Geography-differentiated collaborative control Wang, Lili verfasserin aut Sun, Jiaren verfasserin aut Zhang, Lei verfasserin aut Li, Yuanyuan verfasserin aut Li, Ke verfasserin aut Liu, Boya verfasserin aut Zhang, Jiaxin verfasserin aut Wang, Yuesi verfasserin aut Enthalten in The science of the total environment Amsterdam [u.a.] : Elsevier Science, 1972 905 Online-Ressource (DE-627)306591456 (DE-600)1498726-0 (DE-576)081953178 1879-1026 nnns volume:905 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 905 |
allfieldsGer |
10.1016/j.scitotenv.2023.166987 doi (DE-627)ELV065474694 (ELSEVIER)S0048-9697(23)05612-7 DE-627 ger DE-627 rda eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Wang, Runyu verfasserin aut Maximizing ozone control by spatial sensitivity-oriented mitigation strategy in the Pearl River Delta Region, China 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Pearl River Delta (PRD) has long been plagued by severe O3 pollution, particularly during the autumn. A regional O3 pollution episode influenced by the Western Pacific Subtropical High in September 2021 was characterized by near-surface O3 escalation due to strong photochemical reactions within the planetary boundary layer. This event was targeted to develop effective control strategies through investigation of precursor control type and scope based on the high-order decoupled direct method (HDDM) and integrated source apportionment method (ISAM) of CMAQ. Generally, the majority of areas (67.0 %) were under NOx-limited regime, which should strengthen afternoon NOx control inferred by positive convex O3 responses. However, high emission and heavily polluted areas located in central PRD were under VOC-limited regime (11.6 %) or mixed regime (15.0 %). The remaining areas (6.4 %) were under NOx-titration or insensitive conditions. Regarding source apportionment, Guangdong province contributed 32.3 %–58.4 % to MDA8 O3 of PRD, especially higher proportion (>50 %) to central areas. Overall, local-focused NOx/VOC emission reductions had limited effects on O3 mitigation for receptor cities compared to regional-cooperative regulation. When region-wide VOC emission reduction was implemented, MDA8 O3 in VOC-limited grids exhibited the largest declines (2.3 %–4.1 %, 3.9– 7.0 μg·m−3). However, unified NOx control contributed to increasing MDA8 O3 in VOC-limited grids (most stations located for air quality evaluation) whereas decreased MDA8 O3 by 2.1 %– 5.7 %, 3.0– 8.2 μg·m−3 in large-scale NOx-limited grids. The sensitivity-oriented regional control avoided O3 rebound and achieved the greatest decline of 3.4 %– 5.0 %, 5.7– 8.4 μg·m−3 in VOC-limited grids; additionally, time-refined dynamic aggressive NOx control decreased peak O3 by an extra 1.2– 6 μg·m−3, both of which facilitate the regulation for the forecasting O3 episodes. These findings suggest that in heavily polluted environments, the enhancement of O3 regulation benefits requires meticulous, coordinated, and dynamic NOx and VOC controls spanning the entire region based on high-resolution analysis of heterogeneous O3-NOx-VOC sensitivity. Furthermore, emission reduction gains should be more reasonably reflected through increasing in-situ observations covering multi-sensitivity regions. Pearl River Delta HDDM ISAM O Geography-differentiated collaborative control Wang, Lili verfasserin aut Sun, Jiaren verfasserin aut Zhang, Lei verfasserin aut Li, Yuanyuan verfasserin aut Li, Ke verfasserin aut Liu, Boya verfasserin aut Zhang, Jiaxin verfasserin aut Wang, Yuesi verfasserin aut Enthalten in The science of the total environment Amsterdam [u.a.] : Elsevier Science, 1972 905 Online-Ressource (DE-627)306591456 (DE-600)1498726-0 (DE-576)081953178 1879-1026 nnns volume:905 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 905 |
allfieldsSound |
10.1016/j.scitotenv.2023.166987 doi (DE-627)ELV065474694 (ELSEVIER)S0048-9697(23)05612-7 DE-627 ger DE-627 rda eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Wang, Runyu verfasserin aut Maximizing ozone control by spatial sensitivity-oriented mitigation strategy in the Pearl River Delta Region, China 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Pearl River Delta (PRD) has long been plagued by severe O3 pollution, particularly during the autumn. A regional O3 pollution episode influenced by the Western Pacific Subtropical High in September 2021 was characterized by near-surface O3 escalation due to strong photochemical reactions within the planetary boundary layer. This event was targeted to develop effective control strategies through investigation of precursor control type and scope based on the high-order decoupled direct method (HDDM) and integrated source apportionment method (ISAM) of CMAQ. Generally, the majority of areas (67.0 %) were under NOx-limited regime, which should strengthen afternoon NOx control inferred by positive convex O3 responses. However, high emission and heavily polluted areas located in central PRD were under VOC-limited regime (11.6 %) or mixed regime (15.0 %). The remaining areas (6.4 %) were under NOx-titration or insensitive conditions. Regarding source apportionment, Guangdong province contributed 32.3 %–58.4 % to MDA8 O3 of PRD, especially higher proportion (>50 %) to central areas. Overall, local-focused NOx/VOC emission reductions had limited effects on O3 mitigation for receptor cities compared to regional-cooperative regulation. When region-wide VOC emission reduction was implemented, MDA8 O3 in VOC-limited grids exhibited the largest declines (2.3 %–4.1 %, 3.9– 7.0 μg·m−3). However, unified NOx control contributed to increasing MDA8 O3 in VOC-limited grids (most stations located for air quality evaluation) whereas decreased MDA8 O3 by 2.1 %– 5.7 %, 3.0– 8.2 μg·m−3 in large-scale NOx-limited grids. The sensitivity-oriented regional control avoided O3 rebound and achieved the greatest decline of 3.4 %– 5.0 %, 5.7– 8.4 μg·m−3 in VOC-limited grids; additionally, time-refined dynamic aggressive NOx control decreased peak O3 by an extra 1.2– 6 μg·m−3, both of which facilitate the regulation for the forecasting O3 episodes. These findings suggest that in heavily polluted environments, the enhancement of O3 regulation benefits requires meticulous, coordinated, and dynamic NOx and VOC controls spanning the entire region based on high-resolution analysis of heterogeneous O3-NOx-VOC sensitivity. Furthermore, emission reduction gains should be more reasonably reflected through increasing in-situ observations covering multi-sensitivity regions. Pearl River Delta HDDM ISAM O Geography-differentiated collaborative control Wang, Lili verfasserin aut Sun, Jiaren verfasserin aut Zhang, Lei verfasserin aut Li, Yuanyuan verfasserin aut Li, Ke verfasserin aut Liu, Boya verfasserin aut Zhang, Jiaxin verfasserin aut Wang, Yuesi verfasserin aut Enthalten in The science of the total environment Amsterdam [u.a.] : Elsevier Science, 1972 905 Online-Ressource (DE-627)306591456 (DE-600)1498726-0 (DE-576)081953178 1879-1026 nnns volume:905 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 905 |
language |
English |
source |
Enthalten in The science of the total environment 905 volume:905 |
sourceStr |
Enthalten in The science of the total environment 905 volume:905 |
format_phy_str_mv |
Article |
bklname |
Umweltchemie Umwelttoxikologie Medizinische Ökologie |
institution |
findex.gbv.de |
topic_facet |
Pearl River Delta HDDM ISAM O Geography-differentiated collaborative control |
dewey-raw |
333.7 |
isfreeaccess_bool |
false |
container_title |
The science of the total environment |
authorswithroles_txt_mv |
Wang, Runyu @@aut@@ Wang, Lili @@aut@@ Sun, Jiaren @@aut@@ Zhang, Lei @@aut@@ Li, Yuanyuan @@aut@@ Li, Ke @@aut@@ Liu, Boya @@aut@@ Zhang, Jiaxin @@aut@@ Wang, Yuesi @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
306591456 |
dewey-sort |
3333.7 |
id |
ELV065474694 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065474694</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231224093117.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231108s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.scitotenv.2023.166987</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065474694</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0048-9697(23)05612-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Runyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Maximizing ozone control by spatial sensitivity-oriented mitigation strategy in the Pearl River Delta Region, China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Pearl River Delta (PRD) has long been plagued by severe O3 pollution, particularly during the autumn. A regional O3 pollution episode influenced by the Western Pacific Subtropical High in September 2021 was characterized by near-surface O3 escalation due to strong photochemical reactions within the planetary boundary layer. This event was targeted to develop effective control strategies through investigation of precursor control type and scope based on the high-order decoupled direct method (HDDM) and integrated source apportionment method (ISAM) of CMAQ. Generally, the majority of areas (67.0 %) were under NOx-limited regime, which should strengthen afternoon NOx control inferred by positive convex O3 responses. However, high emission and heavily polluted areas located in central PRD were under VOC-limited regime (11.6 %) or mixed regime (15.0 %). The remaining areas (6.4 %) were under NOx-titration or insensitive conditions. Regarding source apportionment, Guangdong province contributed 32.3 %–58.4 % to MDA8 O3 of PRD, especially higher proportion (>50 %) to central areas. Overall, local-focused NOx/VOC emission reductions had limited effects on O3 mitigation for receptor cities compared to regional-cooperative regulation. When region-wide VOC emission reduction was implemented, MDA8 O3 in VOC-limited grids exhibited the largest declines (2.3 %–4.1 %, 3.9– 7.0 μg·m−3). However, unified NOx control contributed to increasing MDA8 O3 in VOC-limited grids (most stations located for air quality evaluation) whereas decreased MDA8 O3 by 2.1 %– 5.7 %, 3.0– 8.2 μg·m−3 in large-scale NOx-limited grids. The sensitivity-oriented regional control avoided O3 rebound and achieved the greatest decline of 3.4 %– 5.0 %, 5.7– 8.4 μg·m−3 in VOC-limited grids; additionally, time-refined dynamic aggressive NOx control decreased peak O3 by an extra 1.2– 6 μg·m−3, both of which facilitate the regulation for the forecasting O3 episodes. These findings suggest that in heavily polluted environments, the enhancement of O3 regulation benefits requires meticulous, coordinated, and dynamic NOx and VOC controls spanning the entire region based on high-resolution analysis of heterogeneous O3-NOx-VOC sensitivity. Furthermore, emission reduction gains should be more reasonably reflected through increasing in-situ observations covering multi-sensitivity regions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pearl River Delta</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HDDM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ISAM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">O</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geography-differentiated collaborative control</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Lili</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Jiaren</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yuanyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Ke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Boya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jiaxin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yuesi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The science of the total environment</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1972</subfield><subfield code="g">905</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306591456</subfield><subfield code="w">(DE-600)1498726-0</subfield><subfield code="w">(DE-576)081953178</subfield><subfield code="x">1879-1026</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:905</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">905</subfield></datafield></record></collection>
|
author |
Wang, Runyu |
spellingShingle |
Wang, Runyu ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 misc Pearl River Delta misc HDDM misc ISAM misc O misc Geography-differentiated collaborative control Maximizing ozone control by spatial sensitivity-oriented mitigation strategy in the Pearl River Delta Region, China |
authorStr |
Wang, Runyu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306591456 |
format |
electronic Article |
dewey-ones |
333 - Economics of land & energy 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-1026 |
topic_title |
333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Maximizing ozone control by spatial sensitivity-oriented mitigation strategy in the Pearl River Delta Region, China Pearl River Delta HDDM ISAM O Geography-differentiated collaborative control |
topic |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 misc Pearl River Delta misc HDDM misc ISAM misc O misc Geography-differentiated collaborative control |
topic_unstemmed |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 misc Pearl River Delta misc HDDM misc ISAM misc O misc Geography-differentiated collaborative control |
topic_browse |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 misc Pearl River Delta misc HDDM misc ISAM misc O misc Geography-differentiated collaborative control |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The science of the total environment |
hierarchy_parent_id |
306591456 |
dewey-tens |
330 - Economics 610 - Medicine & health |
hierarchy_top_title |
The science of the total environment |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306591456 (DE-600)1498726-0 (DE-576)081953178 |
title |
Maximizing ozone control by spatial sensitivity-oriented mitigation strategy in the Pearl River Delta Region, China |
ctrlnum |
(DE-627)ELV065474694 (ELSEVIER)S0048-9697(23)05612-7 |
title_full |
Maximizing ozone control by spatial sensitivity-oriented mitigation strategy in the Pearl River Delta Region, China |
author_sort |
Wang, Runyu |
journal |
The science of the total environment |
journalStr |
The science of the total environment |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Wang, Runyu Wang, Lili Sun, Jiaren Zhang, Lei Li, Yuanyuan Li, Ke Liu, Boya Zhang, Jiaxin Wang, Yuesi |
container_volume |
905 |
class |
333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Runyu |
doi_str_mv |
10.1016/j.scitotenv.2023.166987 |
dewey-full |
333.7 610 |
author2-role |
verfasserin |
title_sort |
maximizing ozone control by spatial sensitivity-oriented mitigation strategy in the pearl river delta region, china |
title_auth |
Maximizing ozone control by spatial sensitivity-oriented mitigation strategy in the Pearl River Delta Region, China |
abstract |
The Pearl River Delta (PRD) has long been plagued by severe O3 pollution, particularly during the autumn. A regional O3 pollution episode influenced by the Western Pacific Subtropical High in September 2021 was characterized by near-surface O3 escalation due to strong photochemical reactions within the planetary boundary layer. This event was targeted to develop effective control strategies through investigation of precursor control type and scope based on the high-order decoupled direct method (HDDM) and integrated source apportionment method (ISAM) of CMAQ. Generally, the majority of areas (67.0 %) were under NOx-limited regime, which should strengthen afternoon NOx control inferred by positive convex O3 responses. However, high emission and heavily polluted areas located in central PRD were under VOC-limited regime (11.6 %) or mixed regime (15.0 %). The remaining areas (6.4 %) were under NOx-titration or insensitive conditions. Regarding source apportionment, Guangdong province contributed 32.3 %–58.4 % to MDA8 O3 of PRD, especially higher proportion (>50 %) to central areas. Overall, local-focused NOx/VOC emission reductions had limited effects on O3 mitigation for receptor cities compared to regional-cooperative regulation. When region-wide VOC emission reduction was implemented, MDA8 O3 in VOC-limited grids exhibited the largest declines (2.3 %–4.1 %, 3.9– 7.0 μg·m−3). However, unified NOx control contributed to increasing MDA8 O3 in VOC-limited grids (most stations located for air quality evaluation) whereas decreased MDA8 O3 by 2.1 %– 5.7 %, 3.0– 8.2 μg·m−3 in large-scale NOx-limited grids. The sensitivity-oriented regional control avoided O3 rebound and achieved the greatest decline of 3.4 %– 5.0 %, 5.7– 8.4 μg·m−3 in VOC-limited grids; additionally, time-refined dynamic aggressive NOx control decreased peak O3 by an extra 1.2– 6 μg·m−3, both of which facilitate the regulation for the forecasting O3 episodes. These findings suggest that in heavily polluted environments, the enhancement of O3 regulation benefits requires meticulous, coordinated, and dynamic NOx and VOC controls spanning the entire region based on high-resolution analysis of heterogeneous O3-NOx-VOC sensitivity. Furthermore, emission reduction gains should be more reasonably reflected through increasing in-situ observations covering multi-sensitivity regions. |
abstractGer |
The Pearl River Delta (PRD) has long been plagued by severe O3 pollution, particularly during the autumn. A regional O3 pollution episode influenced by the Western Pacific Subtropical High in September 2021 was characterized by near-surface O3 escalation due to strong photochemical reactions within the planetary boundary layer. This event was targeted to develop effective control strategies through investigation of precursor control type and scope based on the high-order decoupled direct method (HDDM) and integrated source apportionment method (ISAM) of CMAQ. Generally, the majority of areas (67.0 %) were under NOx-limited regime, which should strengthen afternoon NOx control inferred by positive convex O3 responses. However, high emission and heavily polluted areas located in central PRD were under VOC-limited regime (11.6 %) or mixed regime (15.0 %). The remaining areas (6.4 %) were under NOx-titration or insensitive conditions. Regarding source apportionment, Guangdong province contributed 32.3 %–58.4 % to MDA8 O3 of PRD, especially higher proportion (>50 %) to central areas. Overall, local-focused NOx/VOC emission reductions had limited effects on O3 mitigation for receptor cities compared to regional-cooperative regulation. When region-wide VOC emission reduction was implemented, MDA8 O3 in VOC-limited grids exhibited the largest declines (2.3 %–4.1 %, 3.9– 7.0 μg·m−3). However, unified NOx control contributed to increasing MDA8 O3 in VOC-limited grids (most stations located for air quality evaluation) whereas decreased MDA8 O3 by 2.1 %– 5.7 %, 3.0– 8.2 μg·m−3 in large-scale NOx-limited grids. The sensitivity-oriented regional control avoided O3 rebound and achieved the greatest decline of 3.4 %– 5.0 %, 5.7– 8.4 μg·m−3 in VOC-limited grids; additionally, time-refined dynamic aggressive NOx control decreased peak O3 by an extra 1.2– 6 μg·m−3, both of which facilitate the regulation for the forecasting O3 episodes. These findings suggest that in heavily polluted environments, the enhancement of O3 regulation benefits requires meticulous, coordinated, and dynamic NOx and VOC controls spanning the entire region based on high-resolution analysis of heterogeneous O3-NOx-VOC sensitivity. Furthermore, emission reduction gains should be more reasonably reflected through increasing in-situ observations covering multi-sensitivity regions. |
abstract_unstemmed |
The Pearl River Delta (PRD) has long been plagued by severe O3 pollution, particularly during the autumn. A regional O3 pollution episode influenced by the Western Pacific Subtropical High in September 2021 was characterized by near-surface O3 escalation due to strong photochemical reactions within the planetary boundary layer. This event was targeted to develop effective control strategies through investigation of precursor control type and scope based on the high-order decoupled direct method (HDDM) and integrated source apportionment method (ISAM) of CMAQ. Generally, the majority of areas (67.0 %) were under NOx-limited regime, which should strengthen afternoon NOx control inferred by positive convex O3 responses. However, high emission and heavily polluted areas located in central PRD were under VOC-limited regime (11.6 %) or mixed regime (15.0 %). The remaining areas (6.4 %) were under NOx-titration or insensitive conditions. Regarding source apportionment, Guangdong province contributed 32.3 %–58.4 % to MDA8 O3 of PRD, especially higher proportion (>50 %) to central areas. Overall, local-focused NOx/VOC emission reductions had limited effects on O3 mitigation for receptor cities compared to regional-cooperative regulation. When region-wide VOC emission reduction was implemented, MDA8 O3 in VOC-limited grids exhibited the largest declines (2.3 %–4.1 %, 3.9– 7.0 μg·m−3). However, unified NOx control contributed to increasing MDA8 O3 in VOC-limited grids (most stations located for air quality evaluation) whereas decreased MDA8 O3 by 2.1 %– 5.7 %, 3.0– 8.2 μg·m−3 in large-scale NOx-limited grids. The sensitivity-oriented regional control avoided O3 rebound and achieved the greatest decline of 3.4 %– 5.0 %, 5.7– 8.4 μg·m−3 in VOC-limited grids; additionally, time-refined dynamic aggressive NOx control decreased peak O3 by an extra 1.2– 6 μg·m−3, both of which facilitate the regulation for the forecasting O3 episodes. These findings suggest that in heavily polluted environments, the enhancement of O3 regulation benefits requires meticulous, coordinated, and dynamic NOx and VOC controls spanning the entire region based on high-resolution analysis of heterogeneous O3-NOx-VOC sensitivity. Furthermore, emission reduction gains should be more reasonably reflected through increasing in-situ observations covering multi-sensitivity regions. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Maximizing ozone control by spatial sensitivity-oriented mitigation strategy in the Pearl River Delta Region, China |
remote_bool |
true |
author2 |
Wang, Lili Sun, Jiaren Zhang, Lei Li, Yuanyuan Li, Ke Liu, Boya Zhang, Jiaxin Wang, Yuesi |
author2Str |
Wang, Lili Sun, Jiaren Zhang, Lei Li, Yuanyuan Li, Ke Liu, Boya Zhang, Jiaxin Wang, Yuesi |
ppnlink |
306591456 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.scitotenv.2023.166987 |
up_date |
2024-07-06T23:09:19.248Z |
_version_ |
1803873009532928000 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065474694</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231224093117.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231108s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.scitotenv.2023.166987</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065474694</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0048-9697(23)05612-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Runyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Maximizing ozone control by spatial sensitivity-oriented mitigation strategy in the Pearl River Delta Region, China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Pearl River Delta (PRD) has long been plagued by severe O3 pollution, particularly during the autumn. A regional O3 pollution episode influenced by the Western Pacific Subtropical High in September 2021 was characterized by near-surface O3 escalation due to strong photochemical reactions within the planetary boundary layer. This event was targeted to develop effective control strategies through investigation of precursor control type and scope based on the high-order decoupled direct method (HDDM) and integrated source apportionment method (ISAM) of CMAQ. Generally, the majority of areas (67.0 %) were under NOx-limited regime, which should strengthen afternoon NOx control inferred by positive convex O3 responses. However, high emission and heavily polluted areas located in central PRD were under VOC-limited regime (11.6 %) or mixed regime (15.0 %). The remaining areas (6.4 %) were under NOx-titration or insensitive conditions. Regarding source apportionment, Guangdong province contributed 32.3 %–58.4 % to MDA8 O3 of PRD, especially higher proportion (>50 %) to central areas. Overall, local-focused NOx/VOC emission reductions had limited effects on O3 mitigation for receptor cities compared to regional-cooperative regulation. When region-wide VOC emission reduction was implemented, MDA8 O3 in VOC-limited grids exhibited the largest declines (2.3 %–4.1 %, 3.9– 7.0 μg·m−3). However, unified NOx control contributed to increasing MDA8 O3 in VOC-limited grids (most stations located for air quality evaluation) whereas decreased MDA8 O3 by 2.1 %– 5.7 %, 3.0– 8.2 μg·m−3 in large-scale NOx-limited grids. The sensitivity-oriented regional control avoided O3 rebound and achieved the greatest decline of 3.4 %– 5.0 %, 5.7– 8.4 μg·m−3 in VOC-limited grids; additionally, time-refined dynamic aggressive NOx control decreased peak O3 by an extra 1.2– 6 μg·m−3, both of which facilitate the regulation for the forecasting O3 episodes. These findings suggest that in heavily polluted environments, the enhancement of O3 regulation benefits requires meticulous, coordinated, and dynamic NOx and VOC controls spanning the entire region based on high-resolution analysis of heterogeneous O3-NOx-VOC sensitivity. Furthermore, emission reduction gains should be more reasonably reflected through increasing in-situ observations covering multi-sensitivity regions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pearl River Delta</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HDDM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ISAM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">O</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geography-differentiated collaborative control</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Lili</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Jiaren</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yuanyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Ke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Boya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jiaxin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yuesi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The science of the total environment</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1972</subfield><subfield code="g">905</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306591456</subfield><subfield code="w">(DE-600)1498726-0</subfield><subfield code="w">(DE-576)081953178</subfield><subfield code="x">1879-1026</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:905</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">905</subfield></datafield></record></collection>
|
score |
7.400527 |