Thermalization in quenched open quantum cosmology
In this article, we study the quantum field theoretic generalization of the Caldeira-Leggett model in general curved space-time considering interactions between two scalar fields in a classical gravitational background. The thermalization phenomena is then studied from the obtained de Sitter solutio...
Ausführliche Beschreibung
Autor*in: |
Banerjee, Subhashish [verfasserIn] Choudhury, Sayantan [verfasserIn] Chowdhury, Satyaki [verfasserIn] Knaute, Johannes [verfasserIn] Panda, Sudhakar [verfasserIn] Shirish, K. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Nuclear physics |
---|---|
Übergeordnetes Werk: |
volume:996 |
DOI / URN: |
10.1016/j.nuclphysb.2023.116368 |
---|
Katalog-ID: |
ELV065506987 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV065506987 | ||
003 | DE-627 | ||
005 | 20231109093228.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231109s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.nuclphysb.2023.116368 |2 doi | |
035 | |a (DE-627)ELV065506987 | ||
035 | |a (ELSEVIER)S0550-3213(23)00297-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 33.50 |2 bkl | ||
084 | |a 33.46 |2 bkl | ||
100 | 1 | |a Banerjee, Subhashish |e verfasserin |4 aut | |
245 | 1 | 0 | |a Thermalization in quenched open quantum cosmology |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this article, we study the quantum field theoretic generalization of the Caldeira-Leggett model in general curved space-time considering interactions between two scalar fields in a classical gravitational background. The thermalization phenomena is then studied from the obtained de Sitter solution using quantum quench from one scalar field model obtained from path integrated effective action. We consider an instantaneous quench in the time-dependent mass protocol of the field of our interest. We find that the dynamics of the field post-quench can be described in terms of the state of the generalized Calabrese-Cardy (gCC) form and computed the different types of two-point correlation functions in this context. We explicitly found the conserved charges of W ∞ algebra that represents the gCC state after a quench in de Sitter space and found it to be significantly different from the flat space-time results. We extend our study for the different two-point correlation functions not only considering the pre-quench state as the ground state, but also a squeezed state. We found that irrespective of the pre-quench state, the post quench state can be written in terms of the gCC state showing that the subsystem of our interest thermalizes in de Sitter space. Furthermore, we provide a general expression for the two-point correlators and explicitly show the thermalization process by considering a thermal Generalized Gibbs ensemble (GGE). Finally, from the equal time momentum dependent counterpart of the obtained results for the two-point correlators, we have studied the hidden features of the power spectra and studied its consequences for different choices of the quantum initial conditions. | ||
700 | 1 | |a Choudhury, Sayantan |e verfasserin |0 (orcid)0000-0002-0459-3873 |4 aut | |
700 | 1 | |a Chowdhury, Satyaki |e verfasserin |4 aut | |
700 | 1 | |a Knaute, Johannes |e verfasserin |4 aut | |
700 | 1 | |a Panda, Sudhakar |e verfasserin |4 aut | |
700 | 1 | |a Shirish, K. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nuclear physics <Amsterdam> / B |d Amsterdam : North-Holland Publ. Co., 1967 |g 996 |h Online-Ressource |w (DE-627)266014984 |w (DE-600)1466567-0 |w (DE-576)074959816 |x 1873-1562 |7 nnns |
773 | 1 | 8 | |g volume:996 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 33.50 |j Physik der Elementarteilchen und Felder: Allgemeines |q VZ |
936 | b | k | |a 33.46 |j Hochenergie-Kernphysik |q VZ |
951 | |a AR | ||
952 | |d 996 |
author_variant |
s b sb s c sc s c sc j k jk s p sp k s ks |
---|---|
matchkey_str |
article:18731562:2023----::hraiainnunhdpnun |
hierarchy_sort_str |
2023 |
bklnumber |
33.50 33.46 |
publishDate |
2023 |
allfields |
10.1016/j.nuclphysb.2023.116368 doi (DE-627)ELV065506987 (ELSEVIER)S0550-3213(23)00297-3 DE-627 ger DE-627 rda eng 530 VZ 33.50 bkl 33.46 bkl Banerjee, Subhashish verfasserin aut Thermalization in quenched open quantum cosmology 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this article, we study the quantum field theoretic generalization of the Caldeira-Leggett model in general curved space-time considering interactions between two scalar fields in a classical gravitational background. The thermalization phenomena is then studied from the obtained de Sitter solution using quantum quench from one scalar field model obtained from path integrated effective action. We consider an instantaneous quench in the time-dependent mass protocol of the field of our interest. We find that the dynamics of the field post-quench can be described in terms of the state of the generalized Calabrese-Cardy (gCC) form and computed the different types of two-point correlation functions in this context. We explicitly found the conserved charges of W ∞ algebra that represents the gCC state after a quench in de Sitter space and found it to be significantly different from the flat space-time results. We extend our study for the different two-point correlation functions not only considering the pre-quench state as the ground state, but also a squeezed state. We found that irrespective of the pre-quench state, the post quench state can be written in terms of the gCC state showing that the subsystem of our interest thermalizes in de Sitter space. Furthermore, we provide a general expression for the two-point correlators and explicitly show the thermalization process by considering a thermal Generalized Gibbs ensemble (GGE). Finally, from the equal time momentum dependent counterpart of the obtained results for the two-point correlators, we have studied the hidden features of the power spectra and studied its consequences for different choices of the quantum initial conditions. Choudhury, Sayantan verfasserin (orcid)0000-0002-0459-3873 aut Chowdhury, Satyaki verfasserin aut Knaute, Johannes verfasserin aut Panda, Sudhakar verfasserin aut Shirish, K. verfasserin aut Enthalten in Nuclear physics <Amsterdam> / B Amsterdam : North-Holland Publ. Co., 1967 996 Online-Ressource (DE-627)266014984 (DE-600)1466567-0 (DE-576)074959816 1873-1562 nnns volume:996 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2111 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 33.50 Physik der Elementarteilchen und Felder: Allgemeines VZ 33.46 Hochenergie-Kernphysik VZ AR 996 |
spelling |
10.1016/j.nuclphysb.2023.116368 doi (DE-627)ELV065506987 (ELSEVIER)S0550-3213(23)00297-3 DE-627 ger DE-627 rda eng 530 VZ 33.50 bkl 33.46 bkl Banerjee, Subhashish verfasserin aut Thermalization in quenched open quantum cosmology 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this article, we study the quantum field theoretic generalization of the Caldeira-Leggett model in general curved space-time considering interactions between two scalar fields in a classical gravitational background. The thermalization phenomena is then studied from the obtained de Sitter solution using quantum quench from one scalar field model obtained from path integrated effective action. We consider an instantaneous quench in the time-dependent mass protocol of the field of our interest. We find that the dynamics of the field post-quench can be described in terms of the state of the generalized Calabrese-Cardy (gCC) form and computed the different types of two-point correlation functions in this context. We explicitly found the conserved charges of W ∞ algebra that represents the gCC state after a quench in de Sitter space and found it to be significantly different from the flat space-time results. We extend our study for the different two-point correlation functions not only considering the pre-quench state as the ground state, but also a squeezed state. We found that irrespective of the pre-quench state, the post quench state can be written in terms of the gCC state showing that the subsystem of our interest thermalizes in de Sitter space. Furthermore, we provide a general expression for the two-point correlators and explicitly show the thermalization process by considering a thermal Generalized Gibbs ensemble (GGE). Finally, from the equal time momentum dependent counterpart of the obtained results for the two-point correlators, we have studied the hidden features of the power spectra and studied its consequences for different choices of the quantum initial conditions. Choudhury, Sayantan verfasserin (orcid)0000-0002-0459-3873 aut Chowdhury, Satyaki verfasserin aut Knaute, Johannes verfasserin aut Panda, Sudhakar verfasserin aut Shirish, K. verfasserin aut Enthalten in Nuclear physics <Amsterdam> / B Amsterdam : North-Holland Publ. Co., 1967 996 Online-Ressource (DE-627)266014984 (DE-600)1466567-0 (DE-576)074959816 1873-1562 nnns volume:996 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2111 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 33.50 Physik der Elementarteilchen und Felder: Allgemeines VZ 33.46 Hochenergie-Kernphysik VZ AR 996 |
allfields_unstemmed |
10.1016/j.nuclphysb.2023.116368 doi (DE-627)ELV065506987 (ELSEVIER)S0550-3213(23)00297-3 DE-627 ger DE-627 rda eng 530 VZ 33.50 bkl 33.46 bkl Banerjee, Subhashish verfasserin aut Thermalization in quenched open quantum cosmology 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this article, we study the quantum field theoretic generalization of the Caldeira-Leggett model in general curved space-time considering interactions between two scalar fields in a classical gravitational background. The thermalization phenomena is then studied from the obtained de Sitter solution using quantum quench from one scalar field model obtained from path integrated effective action. We consider an instantaneous quench in the time-dependent mass protocol of the field of our interest. We find that the dynamics of the field post-quench can be described in terms of the state of the generalized Calabrese-Cardy (gCC) form and computed the different types of two-point correlation functions in this context. We explicitly found the conserved charges of W ∞ algebra that represents the gCC state after a quench in de Sitter space and found it to be significantly different from the flat space-time results. We extend our study for the different two-point correlation functions not only considering the pre-quench state as the ground state, but also a squeezed state. We found that irrespective of the pre-quench state, the post quench state can be written in terms of the gCC state showing that the subsystem of our interest thermalizes in de Sitter space. Furthermore, we provide a general expression for the two-point correlators and explicitly show the thermalization process by considering a thermal Generalized Gibbs ensemble (GGE). Finally, from the equal time momentum dependent counterpart of the obtained results for the two-point correlators, we have studied the hidden features of the power spectra and studied its consequences for different choices of the quantum initial conditions. Choudhury, Sayantan verfasserin (orcid)0000-0002-0459-3873 aut Chowdhury, Satyaki verfasserin aut Knaute, Johannes verfasserin aut Panda, Sudhakar verfasserin aut Shirish, K. verfasserin aut Enthalten in Nuclear physics <Amsterdam> / B Amsterdam : North-Holland Publ. Co., 1967 996 Online-Ressource (DE-627)266014984 (DE-600)1466567-0 (DE-576)074959816 1873-1562 nnns volume:996 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2111 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 33.50 Physik der Elementarteilchen und Felder: Allgemeines VZ 33.46 Hochenergie-Kernphysik VZ AR 996 |
allfieldsGer |
10.1016/j.nuclphysb.2023.116368 doi (DE-627)ELV065506987 (ELSEVIER)S0550-3213(23)00297-3 DE-627 ger DE-627 rda eng 530 VZ 33.50 bkl 33.46 bkl Banerjee, Subhashish verfasserin aut Thermalization in quenched open quantum cosmology 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this article, we study the quantum field theoretic generalization of the Caldeira-Leggett model in general curved space-time considering interactions between two scalar fields in a classical gravitational background. The thermalization phenomena is then studied from the obtained de Sitter solution using quantum quench from one scalar field model obtained from path integrated effective action. We consider an instantaneous quench in the time-dependent mass protocol of the field of our interest. We find that the dynamics of the field post-quench can be described in terms of the state of the generalized Calabrese-Cardy (gCC) form and computed the different types of two-point correlation functions in this context. We explicitly found the conserved charges of W ∞ algebra that represents the gCC state after a quench in de Sitter space and found it to be significantly different from the flat space-time results. We extend our study for the different two-point correlation functions not only considering the pre-quench state as the ground state, but also a squeezed state. We found that irrespective of the pre-quench state, the post quench state can be written in terms of the gCC state showing that the subsystem of our interest thermalizes in de Sitter space. Furthermore, we provide a general expression for the two-point correlators and explicitly show the thermalization process by considering a thermal Generalized Gibbs ensemble (GGE). Finally, from the equal time momentum dependent counterpart of the obtained results for the two-point correlators, we have studied the hidden features of the power spectra and studied its consequences for different choices of the quantum initial conditions. Choudhury, Sayantan verfasserin (orcid)0000-0002-0459-3873 aut Chowdhury, Satyaki verfasserin aut Knaute, Johannes verfasserin aut Panda, Sudhakar verfasserin aut Shirish, K. verfasserin aut Enthalten in Nuclear physics <Amsterdam> / B Amsterdam : North-Holland Publ. Co., 1967 996 Online-Ressource (DE-627)266014984 (DE-600)1466567-0 (DE-576)074959816 1873-1562 nnns volume:996 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2111 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 33.50 Physik der Elementarteilchen und Felder: Allgemeines VZ 33.46 Hochenergie-Kernphysik VZ AR 996 |
allfieldsSound |
10.1016/j.nuclphysb.2023.116368 doi (DE-627)ELV065506987 (ELSEVIER)S0550-3213(23)00297-3 DE-627 ger DE-627 rda eng 530 VZ 33.50 bkl 33.46 bkl Banerjee, Subhashish verfasserin aut Thermalization in quenched open quantum cosmology 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this article, we study the quantum field theoretic generalization of the Caldeira-Leggett model in general curved space-time considering interactions between two scalar fields in a classical gravitational background. The thermalization phenomena is then studied from the obtained de Sitter solution using quantum quench from one scalar field model obtained from path integrated effective action. We consider an instantaneous quench in the time-dependent mass protocol of the field of our interest. We find that the dynamics of the field post-quench can be described in terms of the state of the generalized Calabrese-Cardy (gCC) form and computed the different types of two-point correlation functions in this context. We explicitly found the conserved charges of W ∞ algebra that represents the gCC state after a quench in de Sitter space and found it to be significantly different from the flat space-time results. We extend our study for the different two-point correlation functions not only considering the pre-quench state as the ground state, but also a squeezed state. We found that irrespective of the pre-quench state, the post quench state can be written in terms of the gCC state showing that the subsystem of our interest thermalizes in de Sitter space. Furthermore, we provide a general expression for the two-point correlators and explicitly show the thermalization process by considering a thermal Generalized Gibbs ensemble (GGE). Finally, from the equal time momentum dependent counterpart of the obtained results for the two-point correlators, we have studied the hidden features of the power spectra and studied its consequences for different choices of the quantum initial conditions. Choudhury, Sayantan verfasserin (orcid)0000-0002-0459-3873 aut Chowdhury, Satyaki verfasserin aut Knaute, Johannes verfasserin aut Panda, Sudhakar verfasserin aut Shirish, K. verfasserin aut Enthalten in Nuclear physics <Amsterdam> / B Amsterdam : North-Holland Publ. Co., 1967 996 Online-Ressource (DE-627)266014984 (DE-600)1466567-0 (DE-576)074959816 1873-1562 nnns volume:996 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2111 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 33.50 Physik der Elementarteilchen und Felder: Allgemeines VZ 33.46 Hochenergie-Kernphysik VZ AR 996 |
language |
English |
source |
Enthalten in Nuclear physics <Amsterdam> / B 996 volume:996 |
sourceStr |
Enthalten in Nuclear physics <Amsterdam> / B 996 volume:996 |
format_phy_str_mv |
Article |
bklname |
Physik der Elementarteilchen und Felder: Allgemeines Hochenergie-Kernphysik |
institution |
findex.gbv.de |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Nuclear physics <Amsterdam> / B |
authorswithroles_txt_mv |
Banerjee, Subhashish @@aut@@ Choudhury, Sayantan @@aut@@ Chowdhury, Satyaki @@aut@@ Knaute, Johannes @@aut@@ Panda, Sudhakar @@aut@@ Shirish, K. @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
266014984 |
dewey-sort |
3530 |
id |
ELV065506987 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065506987</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231109093228.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231109s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nuclphysb.2023.116368</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065506987</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0550-3213(23)00297-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.46</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Banerjee, Subhashish</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermalization in quenched open quantum cosmology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this article, we study the quantum field theoretic generalization of the Caldeira-Leggett model in general curved space-time considering interactions between two scalar fields in a classical gravitational background. The thermalization phenomena is then studied from the obtained de Sitter solution using quantum quench from one scalar field model obtained from path integrated effective action. We consider an instantaneous quench in the time-dependent mass protocol of the field of our interest. We find that the dynamics of the field post-quench can be described in terms of the state of the generalized Calabrese-Cardy (gCC) form and computed the different types of two-point correlation functions in this context. We explicitly found the conserved charges of W ∞ algebra that represents the gCC state after a quench in de Sitter space and found it to be significantly different from the flat space-time results. We extend our study for the different two-point correlation functions not only considering the pre-quench state as the ground state, but also a squeezed state. We found that irrespective of the pre-quench state, the post quench state can be written in terms of the gCC state showing that the subsystem of our interest thermalizes in de Sitter space. Furthermore, we provide a general expression for the two-point correlators and explicitly show the thermalization process by considering a thermal Generalized Gibbs ensemble (GGE). Finally, from the equal time momentum dependent counterpart of the obtained results for the two-point correlators, we have studied the hidden features of the power spectra and studied its consequences for different choices of the quantum initial conditions.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Choudhury, Sayantan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0459-3873</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chowdhury, Satyaki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Knaute, Johannes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Panda, Sudhakar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shirish, K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nuclear physics <Amsterdam> / B</subfield><subfield code="d">Amsterdam : North-Holland Publ. Co., 1967</subfield><subfield code="g">996</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266014984</subfield><subfield code="w">(DE-600)1466567-0</subfield><subfield code="w">(DE-576)074959816</subfield><subfield code="x">1873-1562</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:996</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.50</subfield><subfield code="j">Physik der Elementarteilchen und Felder: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.46</subfield><subfield code="j">Hochenergie-Kernphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">996</subfield></datafield></record></collection>
|
author |
Banerjee, Subhashish |
spellingShingle |
Banerjee, Subhashish ddc 530 bkl 33.50 bkl 33.46 Thermalization in quenched open quantum cosmology |
authorStr |
Banerjee, Subhashish |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)266014984 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-1562 |
topic_title |
530 VZ 33.50 bkl 33.46 bkl Thermalization in quenched open quantum cosmology |
topic |
ddc 530 bkl 33.50 bkl 33.46 |
topic_unstemmed |
ddc 530 bkl 33.50 bkl 33.46 |
topic_browse |
ddc 530 bkl 33.50 bkl 33.46 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nuclear physics <Amsterdam> / B |
hierarchy_parent_id |
266014984 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Nuclear physics <Amsterdam> / B |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)266014984 (DE-600)1466567-0 (DE-576)074959816 |
title |
Thermalization in quenched open quantum cosmology |
ctrlnum |
(DE-627)ELV065506987 (ELSEVIER)S0550-3213(23)00297-3 |
title_full |
Thermalization in quenched open quantum cosmology |
author_sort |
Banerjee, Subhashish |
journal |
Nuclear physics <Amsterdam> / B |
journalStr |
Nuclear physics <Amsterdam> / B |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Banerjee, Subhashish Choudhury, Sayantan Chowdhury, Satyaki Knaute, Johannes Panda, Sudhakar Shirish, K. |
container_volume |
996 |
class |
530 VZ 33.50 bkl 33.46 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Banerjee, Subhashish |
doi_str_mv |
10.1016/j.nuclphysb.2023.116368 |
normlink |
(ORCID)0000-0002-0459-3873 |
normlink_prefix_str_mv |
(orcid)0000-0002-0459-3873 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
thermalization in quenched open quantum cosmology |
title_auth |
Thermalization in quenched open quantum cosmology |
abstract |
In this article, we study the quantum field theoretic generalization of the Caldeira-Leggett model in general curved space-time considering interactions between two scalar fields in a classical gravitational background. The thermalization phenomena is then studied from the obtained de Sitter solution using quantum quench from one scalar field model obtained from path integrated effective action. We consider an instantaneous quench in the time-dependent mass protocol of the field of our interest. We find that the dynamics of the field post-quench can be described in terms of the state of the generalized Calabrese-Cardy (gCC) form and computed the different types of two-point correlation functions in this context. We explicitly found the conserved charges of W ∞ algebra that represents the gCC state after a quench in de Sitter space and found it to be significantly different from the flat space-time results. We extend our study for the different two-point correlation functions not only considering the pre-quench state as the ground state, but also a squeezed state. We found that irrespective of the pre-quench state, the post quench state can be written in terms of the gCC state showing that the subsystem of our interest thermalizes in de Sitter space. Furthermore, we provide a general expression for the two-point correlators and explicitly show the thermalization process by considering a thermal Generalized Gibbs ensemble (GGE). Finally, from the equal time momentum dependent counterpart of the obtained results for the two-point correlators, we have studied the hidden features of the power spectra and studied its consequences for different choices of the quantum initial conditions. |
abstractGer |
In this article, we study the quantum field theoretic generalization of the Caldeira-Leggett model in general curved space-time considering interactions between two scalar fields in a classical gravitational background. The thermalization phenomena is then studied from the obtained de Sitter solution using quantum quench from one scalar field model obtained from path integrated effective action. We consider an instantaneous quench in the time-dependent mass protocol of the field of our interest. We find that the dynamics of the field post-quench can be described in terms of the state of the generalized Calabrese-Cardy (gCC) form and computed the different types of two-point correlation functions in this context. We explicitly found the conserved charges of W ∞ algebra that represents the gCC state after a quench in de Sitter space and found it to be significantly different from the flat space-time results. We extend our study for the different two-point correlation functions not only considering the pre-quench state as the ground state, but also a squeezed state. We found that irrespective of the pre-quench state, the post quench state can be written in terms of the gCC state showing that the subsystem of our interest thermalizes in de Sitter space. Furthermore, we provide a general expression for the two-point correlators and explicitly show the thermalization process by considering a thermal Generalized Gibbs ensemble (GGE). Finally, from the equal time momentum dependent counterpart of the obtained results for the two-point correlators, we have studied the hidden features of the power spectra and studied its consequences for different choices of the quantum initial conditions. |
abstract_unstemmed |
In this article, we study the quantum field theoretic generalization of the Caldeira-Leggett model in general curved space-time considering interactions between two scalar fields in a classical gravitational background. The thermalization phenomena is then studied from the obtained de Sitter solution using quantum quench from one scalar field model obtained from path integrated effective action. We consider an instantaneous quench in the time-dependent mass protocol of the field of our interest. We find that the dynamics of the field post-quench can be described in terms of the state of the generalized Calabrese-Cardy (gCC) form and computed the different types of two-point correlation functions in this context. We explicitly found the conserved charges of W ∞ algebra that represents the gCC state after a quench in de Sitter space and found it to be significantly different from the flat space-time results. We extend our study for the different two-point correlation functions not only considering the pre-quench state as the ground state, but also a squeezed state. We found that irrespective of the pre-quench state, the post quench state can be written in terms of the gCC state showing that the subsystem of our interest thermalizes in de Sitter space. Furthermore, we provide a general expression for the two-point correlators and explicitly show the thermalization process by considering a thermal Generalized Gibbs ensemble (GGE). Finally, from the equal time momentum dependent counterpart of the obtained results for the two-point correlators, we have studied the hidden features of the power spectra and studied its consequences for different choices of the quantum initial conditions. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2111 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Thermalization in quenched open quantum cosmology |
remote_bool |
true |
author2 |
Choudhury, Sayantan Chowdhury, Satyaki Knaute, Johannes Panda, Sudhakar Shirish, K. |
author2Str |
Choudhury, Sayantan Chowdhury, Satyaki Knaute, Johannes Panda, Sudhakar Shirish, K. |
ppnlink |
266014984 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.nuclphysb.2023.116368 |
up_date |
2024-07-06T23:16:13.415Z |
_version_ |
1803873443818504192 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065506987</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231109093228.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231109s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nuclphysb.2023.116368</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065506987</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0550-3213(23)00297-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.46</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Banerjee, Subhashish</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermalization in quenched open quantum cosmology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this article, we study the quantum field theoretic generalization of the Caldeira-Leggett model in general curved space-time considering interactions between two scalar fields in a classical gravitational background. The thermalization phenomena is then studied from the obtained de Sitter solution using quantum quench from one scalar field model obtained from path integrated effective action. We consider an instantaneous quench in the time-dependent mass protocol of the field of our interest. We find that the dynamics of the field post-quench can be described in terms of the state of the generalized Calabrese-Cardy (gCC) form and computed the different types of two-point correlation functions in this context. We explicitly found the conserved charges of W ∞ algebra that represents the gCC state after a quench in de Sitter space and found it to be significantly different from the flat space-time results. We extend our study for the different two-point correlation functions not only considering the pre-quench state as the ground state, but also a squeezed state. We found that irrespective of the pre-quench state, the post quench state can be written in terms of the gCC state showing that the subsystem of our interest thermalizes in de Sitter space. Furthermore, we provide a general expression for the two-point correlators and explicitly show the thermalization process by considering a thermal Generalized Gibbs ensemble (GGE). Finally, from the equal time momentum dependent counterpart of the obtained results for the two-point correlators, we have studied the hidden features of the power spectra and studied its consequences for different choices of the quantum initial conditions.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Choudhury, Sayantan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0459-3873</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chowdhury, Satyaki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Knaute, Johannes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Panda, Sudhakar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shirish, K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nuclear physics <Amsterdam> / B</subfield><subfield code="d">Amsterdam : North-Holland Publ. Co., 1967</subfield><subfield code="g">996</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266014984</subfield><subfield code="w">(DE-600)1466567-0</subfield><subfield code="w">(DE-576)074959816</subfield><subfield code="x">1873-1562</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:996</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.50</subfield><subfield code="j">Physik der Elementarteilchen und Felder: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.46</subfield><subfield code="j">Hochenergie-Kernphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">996</subfield></datafield></record></collection>
|
score |
7.401638 |