Cross-city matters: A multimodal remote sensing benchmark dataset for cross-city semantic segmentation using high-resolution domain adaptation networks

Artificial intelligence (AI) approaches nowadays have gained remarkable success in single-modality-dominated remote sensing (RS) applications, especially with an emphasis on individual urban environments (e.g., single cities or regions). Yet these AI models tend to meet the performance bottleneck in...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Hong, Danfeng [verfasserIn]

Zhang, Bing [verfasserIn]

Li, Hao [verfasserIn]

Li, Yuxuan [verfasserIn]

Yao, Jing [verfasserIn]

Li, Chenyu [verfasserIn]

Werner, Martin [verfasserIn]

Chanussot, Jocelyn [verfasserIn]

Zipf, Alexander [verfasserIn]

Zhu, Xiao Xiang [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Cross-city

Deep learning

Dice loss

Domain adaptation

High-resolution network

Land cover

Multimodal benchmark datasets

Remote sensing

Segmentation

Übergeordnetes Werk:

Enthalten in: Remote sensing of environment - Amsterdam [u.a.] : Elsevier Science, 1969, 299

Übergeordnetes Werk:

volume:299

DOI / URN:

10.1016/j.rse.2023.113856

Katalog-ID:

ELV065538919

Nicht das Richtige dabei?

Schreiben Sie uns!