A structurally re-parameterized convolution neural network-based method for gearbox fault diagnosis in edge computing scenarios
Gearboxes operate in harsh environments. Cloud-based techniques have been previously adopted for fault diagnosis in Gearboxes. Cloud-based fault diagnosis methods are prone to time delays and loss of information. Therefore, edge computing-based fault diagnosis becomes an option. However, with limite...
Ausführliche Beschreibung
Autor*in: |
Wang, Yanzhi [verfasserIn] Wu, Jinhong [verfasserIn] Yu, Ziyang [verfasserIn] Hu, Jiexiang [verfasserIn] Zhou, Qi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Engineering applications of artificial intelligence - Amsterdam [u.a.] : Elsevier Science, 1988, 126 |
---|---|
Übergeordnetes Werk: |
volume:126 |
DOI / URN: |
10.1016/j.engappai.2023.107091 |
---|
Katalog-ID: |
ELV065558790 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV065558790 | ||
003 | DE-627 | ||
005 | 20231112093154.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231112s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.engappai.2023.107091 |2 doi | |
035 | |a (DE-627)ELV065558790 | ||
035 | |a (ELSEVIER)S0952-1976(23)01275-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 50.23 |2 bkl | ||
084 | |a 54.72 |2 bkl | ||
100 | 1 | |a Wang, Yanzhi |e verfasserin |4 aut | |
245 | 1 | 0 | |a A structurally re-parameterized convolution neural network-based method for gearbox fault diagnosis in edge computing scenarios |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Gearboxes operate in harsh environments. Cloud-based techniques have been previously adopted for fault diagnosis in Gearboxes. Cloud-based fault diagnosis methods are prone to time delays and loss of information. Therefore, edge computing-based fault diagnosis becomes an option. However, with limited hardware resources for edge devices, balancing the diagnostic capabilities of the model with operating performance becomes a challenge. This paper proposes a lightweight convolutional neural network for gearbox fault diagnosis in edge computing scenarios to achieve an accurate diagnosis and lightweight deployment of models. By constructing the Mel-Frequency Cepstral Coefficients (MFCC) feature matrix of input data, the methodology can suppress noise interference and improve diagnostic accuracy. Based on the structural re-parameterization, the model structure transforms from multiple branches at training time to a single branch at inference time. This improves the inference speed of the model and reduces the hardware cost when the model is deployed while ensuring that the diagnostic capability of the model remains unchanged. Validation experiments were conducted on a public dataset and a custom experimental device, using the NVIDIA Jetson Xavier NX kit as the edge computing platform. According to the experiment result, after extracting the MFCC feature matrix, the average diagnostic accuracy rate in the noisy environment of the presented methodology is improved by 12.22% and 9.44%, respectively. After structural re-parameterization, the Memory of the model decreases by 52.58%, and the inference speed is increased by 38.83%. | ||
650 | 4 | |a Lightweight neural network | |
650 | 4 | |a Edge computing | |
650 | 4 | |a Fault diagnosis | |
650 | 4 | |a Structural re-parameterization | |
650 | 4 | |a Noisy environments | |
650 | 4 | |a Deep learning | |
700 | 1 | |a Wu, Jinhong |e verfasserin |4 aut | |
700 | 1 | |a Yu, Ziyang |e verfasserin |4 aut | |
700 | 1 | |a Hu, Jiexiang |e verfasserin |4 aut | |
700 | 1 | |a Zhou, Qi |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Engineering applications of artificial intelligence |d Amsterdam [u.a.] : Elsevier Science, 1988 |g 126 |h Online-Ressource |w (DE-627)308447832 |w (DE-600)1502275-4 |w (DE-576)094752524 |x 0952-1976 |7 nnns |
773 | 1 | 8 | |g volume:126 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.23 |j Regelungstechnik |j Steuerungstechnik |q VZ |
936 | b | k | |a 54.72 |j Künstliche Intelligenz |q VZ |
951 | |a AR | ||
952 | |d 126 |
author_variant |
y w yw j w jw z y zy j h jh q z qz |
---|---|
matchkey_str |
article:09521976:2023----::srcualrprmtrzdovltonuantokaemtofrerofuti |
hierarchy_sort_str |
2023 |
bklnumber |
50.23 54.72 |
publishDate |
2023 |
allfields |
10.1016/j.engappai.2023.107091 doi (DE-627)ELV065558790 (ELSEVIER)S0952-1976(23)01275-7 DE-627 ger DE-627 rda eng 004 VZ 50.23 bkl 54.72 bkl Wang, Yanzhi verfasserin aut A structurally re-parameterized convolution neural network-based method for gearbox fault diagnosis in edge computing scenarios 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Gearboxes operate in harsh environments. Cloud-based techniques have been previously adopted for fault diagnosis in Gearboxes. Cloud-based fault diagnosis methods are prone to time delays and loss of information. Therefore, edge computing-based fault diagnosis becomes an option. However, with limited hardware resources for edge devices, balancing the diagnostic capabilities of the model with operating performance becomes a challenge. This paper proposes a lightweight convolutional neural network for gearbox fault diagnosis in edge computing scenarios to achieve an accurate diagnosis and lightweight deployment of models. By constructing the Mel-Frequency Cepstral Coefficients (MFCC) feature matrix of input data, the methodology can suppress noise interference and improve diagnostic accuracy. Based on the structural re-parameterization, the model structure transforms from multiple branches at training time to a single branch at inference time. This improves the inference speed of the model and reduces the hardware cost when the model is deployed while ensuring that the diagnostic capability of the model remains unchanged. Validation experiments were conducted on a public dataset and a custom experimental device, using the NVIDIA Jetson Xavier NX kit as the edge computing platform. According to the experiment result, after extracting the MFCC feature matrix, the average diagnostic accuracy rate in the noisy environment of the presented methodology is improved by 12.22% and 9.44%, respectively. After structural re-parameterization, the Memory of the model decreases by 52.58%, and the inference speed is increased by 38.83%. Lightweight neural network Edge computing Fault diagnosis Structural re-parameterization Noisy environments Deep learning Wu, Jinhong verfasserin aut Yu, Ziyang verfasserin aut Hu, Jiexiang verfasserin aut Zhou, Qi verfasserin aut Enthalten in Engineering applications of artificial intelligence Amsterdam [u.a.] : Elsevier Science, 1988 126 Online-Ressource (DE-627)308447832 (DE-600)1502275-4 (DE-576)094752524 0952-1976 nnns volume:126 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.23 Regelungstechnik Steuerungstechnik VZ 54.72 Künstliche Intelligenz VZ AR 126 |
spelling |
10.1016/j.engappai.2023.107091 doi (DE-627)ELV065558790 (ELSEVIER)S0952-1976(23)01275-7 DE-627 ger DE-627 rda eng 004 VZ 50.23 bkl 54.72 bkl Wang, Yanzhi verfasserin aut A structurally re-parameterized convolution neural network-based method for gearbox fault diagnosis in edge computing scenarios 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Gearboxes operate in harsh environments. Cloud-based techniques have been previously adopted for fault diagnosis in Gearboxes. Cloud-based fault diagnosis methods are prone to time delays and loss of information. Therefore, edge computing-based fault diagnosis becomes an option. However, with limited hardware resources for edge devices, balancing the diagnostic capabilities of the model with operating performance becomes a challenge. This paper proposes a lightweight convolutional neural network for gearbox fault diagnosis in edge computing scenarios to achieve an accurate diagnosis and lightweight deployment of models. By constructing the Mel-Frequency Cepstral Coefficients (MFCC) feature matrix of input data, the methodology can suppress noise interference and improve diagnostic accuracy. Based on the structural re-parameterization, the model structure transforms from multiple branches at training time to a single branch at inference time. This improves the inference speed of the model and reduces the hardware cost when the model is deployed while ensuring that the diagnostic capability of the model remains unchanged. Validation experiments were conducted on a public dataset and a custom experimental device, using the NVIDIA Jetson Xavier NX kit as the edge computing platform. According to the experiment result, after extracting the MFCC feature matrix, the average diagnostic accuracy rate in the noisy environment of the presented methodology is improved by 12.22% and 9.44%, respectively. After structural re-parameterization, the Memory of the model decreases by 52.58%, and the inference speed is increased by 38.83%. Lightweight neural network Edge computing Fault diagnosis Structural re-parameterization Noisy environments Deep learning Wu, Jinhong verfasserin aut Yu, Ziyang verfasserin aut Hu, Jiexiang verfasserin aut Zhou, Qi verfasserin aut Enthalten in Engineering applications of artificial intelligence Amsterdam [u.a.] : Elsevier Science, 1988 126 Online-Ressource (DE-627)308447832 (DE-600)1502275-4 (DE-576)094752524 0952-1976 nnns volume:126 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.23 Regelungstechnik Steuerungstechnik VZ 54.72 Künstliche Intelligenz VZ AR 126 |
allfields_unstemmed |
10.1016/j.engappai.2023.107091 doi (DE-627)ELV065558790 (ELSEVIER)S0952-1976(23)01275-7 DE-627 ger DE-627 rda eng 004 VZ 50.23 bkl 54.72 bkl Wang, Yanzhi verfasserin aut A structurally re-parameterized convolution neural network-based method for gearbox fault diagnosis in edge computing scenarios 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Gearboxes operate in harsh environments. Cloud-based techniques have been previously adopted for fault diagnosis in Gearboxes. Cloud-based fault diagnosis methods are prone to time delays and loss of information. Therefore, edge computing-based fault diagnosis becomes an option. However, with limited hardware resources for edge devices, balancing the diagnostic capabilities of the model with operating performance becomes a challenge. This paper proposes a lightweight convolutional neural network for gearbox fault diagnosis in edge computing scenarios to achieve an accurate diagnosis and lightweight deployment of models. By constructing the Mel-Frequency Cepstral Coefficients (MFCC) feature matrix of input data, the methodology can suppress noise interference and improve diagnostic accuracy. Based on the structural re-parameterization, the model structure transforms from multiple branches at training time to a single branch at inference time. This improves the inference speed of the model and reduces the hardware cost when the model is deployed while ensuring that the diagnostic capability of the model remains unchanged. Validation experiments were conducted on a public dataset and a custom experimental device, using the NVIDIA Jetson Xavier NX kit as the edge computing platform. According to the experiment result, after extracting the MFCC feature matrix, the average diagnostic accuracy rate in the noisy environment of the presented methodology is improved by 12.22% and 9.44%, respectively. After structural re-parameterization, the Memory of the model decreases by 52.58%, and the inference speed is increased by 38.83%. Lightweight neural network Edge computing Fault diagnosis Structural re-parameterization Noisy environments Deep learning Wu, Jinhong verfasserin aut Yu, Ziyang verfasserin aut Hu, Jiexiang verfasserin aut Zhou, Qi verfasserin aut Enthalten in Engineering applications of artificial intelligence Amsterdam [u.a.] : Elsevier Science, 1988 126 Online-Ressource (DE-627)308447832 (DE-600)1502275-4 (DE-576)094752524 0952-1976 nnns volume:126 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.23 Regelungstechnik Steuerungstechnik VZ 54.72 Künstliche Intelligenz VZ AR 126 |
allfieldsGer |
10.1016/j.engappai.2023.107091 doi (DE-627)ELV065558790 (ELSEVIER)S0952-1976(23)01275-7 DE-627 ger DE-627 rda eng 004 VZ 50.23 bkl 54.72 bkl Wang, Yanzhi verfasserin aut A structurally re-parameterized convolution neural network-based method for gearbox fault diagnosis in edge computing scenarios 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Gearboxes operate in harsh environments. Cloud-based techniques have been previously adopted for fault diagnosis in Gearboxes. Cloud-based fault diagnosis methods are prone to time delays and loss of information. Therefore, edge computing-based fault diagnosis becomes an option. However, with limited hardware resources for edge devices, balancing the diagnostic capabilities of the model with operating performance becomes a challenge. This paper proposes a lightweight convolutional neural network for gearbox fault diagnosis in edge computing scenarios to achieve an accurate diagnosis and lightweight deployment of models. By constructing the Mel-Frequency Cepstral Coefficients (MFCC) feature matrix of input data, the methodology can suppress noise interference and improve diagnostic accuracy. Based on the structural re-parameterization, the model structure transforms from multiple branches at training time to a single branch at inference time. This improves the inference speed of the model and reduces the hardware cost when the model is deployed while ensuring that the diagnostic capability of the model remains unchanged. Validation experiments were conducted on a public dataset and a custom experimental device, using the NVIDIA Jetson Xavier NX kit as the edge computing platform. According to the experiment result, after extracting the MFCC feature matrix, the average diagnostic accuracy rate in the noisy environment of the presented methodology is improved by 12.22% and 9.44%, respectively. After structural re-parameterization, the Memory of the model decreases by 52.58%, and the inference speed is increased by 38.83%. Lightweight neural network Edge computing Fault diagnosis Structural re-parameterization Noisy environments Deep learning Wu, Jinhong verfasserin aut Yu, Ziyang verfasserin aut Hu, Jiexiang verfasserin aut Zhou, Qi verfasserin aut Enthalten in Engineering applications of artificial intelligence Amsterdam [u.a.] : Elsevier Science, 1988 126 Online-Ressource (DE-627)308447832 (DE-600)1502275-4 (DE-576)094752524 0952-1976 nnns volume:126 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.23 Regelungstechnik Steuerungstechnik VZ 54.72 Künstliche Intelligenz VZ AR 126 |
allfieldsSound |
10.1016/j.engappai.2023.107091 doi (DE-627)ELV065558790 (ELSEVIER)S0952-1976(23)01275-7 DE-627 ger DE-627 rda eng 004 VZ 50.23 bkl 54.72 bkl Wang, Yanzhi verfasserin aut A structurally re-parameterized convolution neural network-based method for gearbox fault diagnosis in edge computing scenarios 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Gearboxes operate in harsh environments. Cloud-based techniques have been previously adopted for fault diagnosis in Gearboxes. Cloud-based fault diagnosis methods are prone to time delays and loss of information. Therefore, edge computing-based fault diagnosis becomes an option. However, with limited hardware resources for edge devices, balancing the diagnostic capabilities of the model with operating performance becomes a challenge. This paper proposes a lightweight convolutional neural network for gearbox fault diagnosis in edge computing scenarios to achieve an accurate diagnosis and lightweight deployment of models. By constructing the Mel-Frequency Cepstral Coefficients (MFCC) feature matrix of input data, the methodology can suppress noise interference and improve diagnostic accuracy. Based on the structural re-parameterization, the model structure transforms from multiple branches at training time to a single branch at inference time. This improves the inference speed of the model and reduces the hardware cost when the model is deployed while ensuring that the diagnostic capability of the model remains unchanged. Validation experiments were conducted on a public dataset and a custom experimental device, using the NVIDIA Jetson Xavier NX kit as the edge computing platform. According to the experiment result, after extracting the MFCC feature matrix, the average diagnostic accuracy rate in the noisy environment of the presented methodology is improved by 12.22% and 9.44%, respectively. After structural re-parameterization, the Memory of the model decreases by 52.58%, and the inference speed is increased by 38.83%. Lightweight neural network Edge computing Fault diagnosis Structural re-parameterization Noisy environments Deep learning Wu, Jinhong verfasserin aut Yu, Ziyang verfasserin aut Hu, Jiexiang verfasserin aut Zhou, Qi verfasserin aut Enthalten in Engineering applications of artificial intelligence Amsterdam [u.a.] : Elsevier Science, 1988 126 Online-Ressource (DE-627)308447832 (DE-600)1502275-4 (DE-576)094752524 0952-1976 nnns volume:126 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.23 Regelungstechnik Steuerungstechnik VZ 54.72 Künstliche Intelligenz VZ AR 126 |
language |
English |
source |
Enthalten in Engineering applications of artificial intelligence 126 volume:126 |
sourceStr |
Enthalten in Engineering applications of artificial intelligence 126 volume:126 |
format_phy_str_mv |
Article |
bklname |
Regelungstechnik Steuerungstechnik Künstliche Intelligenz |
institution |
findex.gbv.de |
topic_facet |
Lightweight neural network Edge computing Fault diagnosis Structural re-parameterization Noisy environments Deep learning |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Engineering applications of artificial intelligence |
authorswithroles_txt_mv |
Wang, Yanzhi @@aut@@ Wu, Jinhong @@aut@@ Yu, Ziyang @@aut@@ Hu, Jiexiang @@aut@@ Zhou, Qi @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
308447832 |
dewey-sort |
14 |
id |
ELV065558790 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065558790</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231112093154.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231112s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.engappai.2023.107091</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065558790</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0952-1976(23)01275-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.23</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Yanzhi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A structurally re-parameterized convolution neural network-based method for gearbox fault diagnosis in edge computing scenarios</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Gearboxes operate in harsh environments. Cloud-based techniques have been previously adopted for fault diagnosis in Gearboxes. Cloud-based fault diagnosis methods are prone to time delays and loss of information. Therefore, edge computing-based fault diagnosis becomes an option. However, with limited hardware resources for edge devices, balancing the diagnostic capabilities of the model with operating performance becomes a challenge. This paper proposes a lightweight convolutional neural network for gearbox fault diagnosis in edge computing scenarios to achieve an accurate diagnosis and lightweight deployment of models. By constructing the Mel-Frequency Cepstral Coefficients (MFCC) feature matrix of input data, the methodology can suppress noise interference and improve diagnostic accuracy. Based on the structural re-parameterization, the model structure transforms from multiple branches at training time to a single branch at inference time. This improves the inference speed of the model and reduces the hardware cost when the model is deployed while ensuring that the diagnostic capability of the model remains unchanged. Validation experiments were conducted on a public dataset and a custom experimental device, using the NVIDIA Jetson Xavier NX kit as the edge computing platform. According to the experiment result, after extracting the MFCC feature matrix, the average diagnostic accuracy rate in the noisy environment of the presented methodology is improved by 12.22% and 9.44%, respectively. After structural re-parameterization, the Memory of the model decreases by 52.58%, and the inference speed is increased by 38.83%.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lightweight neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Edge computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fault diagnosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structural re-parameterization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noisy environments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Jinhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Ziyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Jiexiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Qi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Engineering applications of artificial intelligence</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1988</subfield><subfield code="g">126</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)308447832</subfield><subfield code="w">(DE-600)1502275-4</subfield><subfield code="w">(DE-576)094752524</subfield><subfield code="x">0952-1976</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.23</subfield><subfield code="j">Regelungstechnik</subfield><subfield code="j">Steuerungstechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">126</subfield></datafield></record></collection>
|
author |
Wang, Yanzhi |
spellingShingle |
Wang, Yanzhi ddc 004 bkl 50.23 bkl 54.72 misc Lightweight neural network misc Edge computing misc Fault diagnosis misc Structural re-parameterization misc Noisy environments misc Deep learning A structurally re-parameterized convolution neural network-based method for gearbox fault diagnosis in edge computing scenarios |
authorStr |
Wang, Yanzhi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)308447832 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0952-1976 |
topic_title |
004 VZ 50.23 bkl 54.72 bkl A structurally re-parameterized convolution neural network-based method for gearbox fault diagnosis in edge computing scenarios Lightweight neural network Edge computing Fault diagnosis Structural re-parameterization Noisy environments Deep learning |
topic |
ddc 004 bkl 50.23 bkl 54.72 misc Lightweight neural network misc Edge computing misc Fault diagnosis misc Structural re-parameterization misc Noisy environments misc Deep learning |
topic_unstemmed |
ddc 004 bkl 50.23 bkl 54.72 misc Lightweight neural network misc Edge computing misc Fault diagnosis misc Structural re-parameterization misc Noisy environments misc Deep learning |
topic_browse |
ddc 004 bkl 50.23 bkl 54.72 misc Lightweight neural network misc Edge computing misc Fault diagnosis misc Structural re-parameterization misc Noisy environments misc Deep learning |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Engineering applications of artificial intelligence |
hierarchy_parent_id |
308447832 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Engineering applications of artificial intelligence |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)308447832 (DE-600)1502275-4 (DE-576)094752524 |
title |
A structurally re-parameterized convolution neural network-based method for gearbox fault diagnosis in edge computing scenarios |
ctrlnum |
(DE-627)ELV065558790 (ELSEVIER)S0952-1976(23)01275-7 |
title_full |
A structurally re-parameterized convolution neural network-based method for gearbox fault diagnosis in edge computing scenarios |
author_sort |
Wang, Yanzhi |
journal |
Engineering applications of artificial intelligence |
journalStr |
Engineering applications of artificial intelligence |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Wang, Yanzhi Wu, Jinhong Yu, Ziyang Hu, Jiexiang Zhou, Qi |
container_volume |
126 |
class |
004 VZ 50.23 bkl 54.72 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Yanzhi |
doi_str_mv |
10.1016/j.engappai.2023.107091 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
a structurally re-parameterized convolution neural network-based method for gearbox fault diagnosis in edge computing scenarios |
title_auth |
A structurally re-parameterized convolution neural network-based method for gearbox fault diagnosis in edge computing scenarios |
abstract |
Gearboxes operate in harsh environments. Cloud-based techniques have been previously adopted for fault diagnosis in Gearboxes. Cloud-based fault diagnosis methods are prone to time delays and loss of information. Therefore, edge computing-based fault diagnosis becomes an option. However, with limited hardware resources for edge devices, balancing the diagnostic capabilities of the model with operating performance becomes a challenge. This paper proposes a lightweight convolutional neural network for gearbox fault diagnosis in edge computing scenarios to achieve an accurate diagnosis and lightweight deployment of models. By constructing the Mel-Frequency Cepstral Coefficients (MFCC) feature matrix of input data, the methodology can suppress noise interference and improve diagnostic accuracy. Based on the structural re-parameterization, the model structure transforms from multiple branches at training time to a single branch at inference time. This improves the inference speed of the model and reduces the hardware cost when the model is deployed while ensuring that the diagnostic capability of the model remains unchanged. Validation experiments were conducted on a public dataset and a custom experimental device, using the NVIDIA Jetson Xavier NX kit as the edge computing platform. According to the experiment result, after extracting the MFCC feature matrix, the average diagnostic accuracy rate in the noisy environment of the presented methodology is improved by 12.22% and 9.44%, respectively. After structural re-parameterization, the Memory of the model decreases by 52.58%, and the inference speed is increased by 38.83%. |
abstractGer |
Gearboxes operate in harsh environments. Cloud-based techniques have been previously adopted for fault diagnosis in Gearboxes. Cloud-based fault diagnosis methods are prone to time delays and loss of information. Therefore, edge computing-based fault diagnosis becomes an option. However, with limited hardware resources for edge devices, balancing the diagnostic capabilities of the model with operating performance becomes a challenge. This paper proposes a lightweight convolutional neural network for gearbox fault diagnosis in edge computing scenarios to achieve an accurate diagnosis and lightweight deployment of models. By constructing the Mel-Frequency Cepstral Coefficients (MFCC) feature matrix of input data, the methodology can suppress noise interference and improve diagnostic accuracy. Based on the structural re-parameterization, the model structure transforms from multiple branches at training time to a single branch at inference time. This improves the inference speed of the model and reduces the hardware cost when the model is deployed while ensuring that the diagnostic capability of the model remains unchanged. Validation experiments were conducted on a public dataset and a custom experimental device, using the NVIDIA Jetson Xavier NX kit as the edge computing platform. According to the experiment result, after extracting the MFCC feature matrix, the average diagnostic accuracy rate in the noisy environment of the presented methodology is improved by 12.22% and 9.44%, respectively. After structural re-parameterization, the Memory of the model decreases by 52.58%, and the inference speed is increased by 38.83%. |
abstract_unstemmed |
Gearboxes operate in harsh environments. Cloud-based techniques have been previously adopted for fault diagnosis in Gearboxes. Cloud-based fault diagnosis methods are prone to time delays and loss of information. Therefore, edge computing-based fault diagnosis becomes an option. However, with limited hardware resources for edge devices, balancing the diagnostic capabilities of the model with operating performance becomes a challenge. This paper proposes a lightweight convolutional neural network for gearbox fault diagnosis in edge computing scenarios to achieve an accurate diagnosis and lightweight deployment of models. By constructing the Mel-Frequency Cepstral Coefficients (MFCC) feature matrix of input data, the methodology can suppress noise interference and improve diagnostic accuracy. Based on the structural re-parameterization, the model structure transforms from multiple branches at training time to a single branch at inference time. This improves the inference speed of the model and reduces the hardware cost when the model is deployed while ensuring that the diagnostic capability of the model remains unchanged. Validation experiments were conducted on a public dataset and a custom experimental device, using the NVIDIA Jetson Xavier NX kit as the edge computing platform. According to the experiment result, after extracting the MFCC feature matrix, the average diagnostic accuracy rate in the noisy environment of the presented methodology is improved by 12.22% and 9.44%, respectively. After structural re-parameterization, the Memory of the model decreases by 52.58%, and the inference speed is increased by 38.83%. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
A structurally re-parameterized convolution neural network-based method for gearbox fault diagnosis in edge computing scenarios |
remote_bool |
true |
author2 |
Wu, Jinhong Yu, Ziyang Hu, Jiexiang Zhou, Qi |
author2Str |
Wu, Jinhong Yu, Ziyang Hu, Jiexiang Zhou, Qi |
ppnlink |
308447832 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.engappai.2023.107091 |
up_date |
2024-07-06T23:27:16.650Z |
_version_ |
1803874139271856128 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065558790</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231112093154.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231112s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.engappai.2023.107091</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065558790</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0952-1976(23)01275-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.23</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Yanzhi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A structurally re-parameterized convolution neural network-based method for gearbox fault diagnosis in edge computing scenarios</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Gearboxes operate in harsh environments. Cloud-based techniques have been previously adopted for fault diagnosis in Gearboxes. Cloud-based fault diagnosis methods are prone to time delays and loss of information. Therefore, edge computing-based fault diagnosis becomes an option. However, with limited hardware resources for edge devices, balancing the diagnostic capabilities of the model with operating performance becomes a challenge. This paper proposes a lightweight convolutional neural network for gearbox fault diagnosis in edge computing scenarios to achieve an accurate diagnosis and lightweight deployment of models. By constructing the Mel-Frequency Cepstral Coefficients (MFCC) feature matrix of input data, the methodology can suppress noise interference and improve diagnostic accuracy. Based on the structural re-parameterization, the model structure transforms from multiple branches at training time to a single branch at inference time. This improves the inference speed of the model and reduces the hardware cost when the model is deployed while ensuring that the diagnostic capability of the model remains unchanged. Validation experiments were conducted on a public dataset and a custom experimental device, using the NVIDIA Jetson Xavier NX kit as the edge computing platform. According to the experiment result, after extracting the MFCC feature matrix, the average diagnostic accuracy rate in the noisy environment of the presented methodology is improved by 12.22% and 9.44%, respectively. After structural re-parameterization, the Memory of the model decreases by 52.58%, and the inference speed is increased by 38.83%.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lightweight neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Edge computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fault diagnosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structural re-parameterization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noisy environments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Jinhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Ziyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Jiexiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Qi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Engineering applications of artificial intelligence</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1988</subfield><subfield code="g">126</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)308447832</subfield><subfield code="w">(DE-600)1502275-4</subfield><subfield code="w">(DE-576)094752524</subfield><subfield code="x">0952-1976</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.23</subfield><subfield code="j">Regelungstechnik</subfield><subfield code="j">Steuerungstechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">126</subfield></datafield></record></collection>
|
score |
7.401662 |