Development of map-based models for the performance characterization in a new prototype of Dual Source Heat Pump
This paper presents the development of accurate map-based models for characterizing a new Dual Source Heat Pump prototype. This unit includes three braze plate heat exchangers and a round tube fin heat exchanger, allowing the unit to select different operating modes such as heat pump, chiller, and d...
Ausführliche Beschreibung
Autor*in: |
Marchante-Avellaneda, Javier [verfasserIn] Navarro-Peris, Emilio [verfasserIn] Song, Yang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Applied thermal engineering - Amsterdam [u.a.] : Elsevier Science, 1996, 236 |
---|---|
Übergeordnetes Werk: |
volume:236 |
DOI / URN: |
10.1016/j.applthermaleng.2023.121743 |
---|
Katalog-ID: |
ELV065596293 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV065596293 | ||
003 | DE-627 | ||
005 | 20240114093738.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231116s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.applthermaleng.2023.121743 |2 doi | |
035 | |a (DE-627)ELV065596293 | ||
035 | |a (ELSEVIER)S1359-4311(23)01772-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 52.43 |2 bkl | ||
084 | |a 52.52 |2 bkl | ||
084 | |a 52.42 |2 bkl | ||
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Marchante-Avellaneda, Javier |e verfasserin |0 (orcid)0000-0001-5680-5033 |4 aut | |
245 | 1 | 0 | |a Development of map-based models for the performance characterization in a new prototype of Dual Source Heat Pump |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper presents the development of accurate map-based models for characterizing a new Dual Source Heat Pump prototype. This unit includes three braze plate heat exchangers and a round tube fin heat exchanger, allowing the unit to select different operating modes such as heat pump, chiller, and domestic hot water production using as source the ground or air. Therefore, due to the hybrid typology of this unit and the possibility of reversing the cycle, this work covers the main heat pump and refrigeration equipment technologies currently available on the market (air source and ground source units). The modeling strategy selected has been to provide several polynomial expressions to predict the performance of these units, i.e., compressor energy consumption and condenser and evaporator capacities. This approach allows obtaining accurate, compact, and easy-to-implement models for developing dynamic models of more complex systems where this type of unit – the heat pump – is an integrated part of the system. Currently, a clear example of this modeling strategy can be found in characterizing one of the main components installed in these machines, the compressor. The AHRI-540 standard specifies a polynomial model as a function of evaporating and condensing temperatures. In this sense, for the characterization of heat pumps, the polynomials developed depend only on the unit’s external variables, so they can be useful in many scenarios, obtaining direct feedback on the heat pump performance when developing a dynamic model to optimize system control strategies or to develop techno-economic studies. In this case, the hybrid typology of this unit makes it particularly relevant to optimize the control to manage the type of source to be used (air or ground), allowing the development of a more efficient and sustainable technology by selecting the most adequate source in terms of performance. This study focuses on obtaining the polynomial expressions that minimize the number of terms while simultaneously minimizing prediction error. By carefully selecting the most significant terms and suitable transformations in the characterized variables, the goal is to prevent overfitting, minimize potential extrapolation or interpolation errors and obtain polynomial expressions that can be fitted with small experimental samples. For this purpose, a detailed model implemented in a commercial software for heat pump characterization has been used, with which a large number of simulation results were generated. These simulation results include a fine meshing working map of the unit that allowed us to analyze the relationships between the characterized and external variables. | ||
650 | 4 | |a Polynomial models | |
650 | 4 | |a Heat pump performance | |
650 | 4 | |a Ground source heat pump | |
650 | 4 | |a Air source heat pump | |
650 | 4 | |a Dual source heat pump | |
700 | 1 | |a Navarro-Peris, Emilio |e verfasserin |4 aut | |
700 | 1 | |a Song, Yang |e verfasserin |0 (orcid)0000-0002-1187-7065 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied thermal engineering |d Amsterdam [u.a.] : Elsevier Science, 1996 |g 236 |h Online-Ressource |w (DE-627)320594122 |w (DE-600)2019322-1 |w (DE-576)256146322 |x 1359-4311 |7 nnns |
773 | 1 | 8 | |g volume:236 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 52.43 |j Kältetechnik |q VZ |
936 | b | k | |a 52.52 |j Thermische Energieerzeugung |j Wärmetechnik |q VZ |
936 | b | k | |a 52.42 |j Heizungstechnik |j Lüftungstechnik |j Klimatechnik |q VZ |
936 | b | k | |a 50.38 |j Technische Thermodynamik |q VZ |
951 | |a AR | ||
952 | |d 236 |
author_variant |
j m a jma e n p enp y s ys |
---|---|
matchkey_str |
article:13594311:2023----::eeomnompaemdlfrhpromnehrceiainnnwr |
hierarchy_sort_str |
2023 |
bklnumber |
52.43 52.52 52.42 50.38 |
publishDate |
2023 |
allfields |
10.1016/j.applthermaleng.2023.121743 doi (DE-627)ELV065596293 (ELSEVIER)S1359-4311(23)01772-6 DE-627 ger DE-627 rda eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Marchante-Avellaneda, Javier verfasserin (orcid)0000-0001-5680-5033 aut Development of map-based models for the performance characterization in a new prototype of Dual Source Heat Pump 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents the development of accurate map-based models for characterizing a new Dual Source Heat Pump prototype. This unit includes three braze plate heat exchangers and a round tube fin heat exchanger, allowing the unit to select different operating modes such as heat pump, chiller, and domestic hot water production using as source the ground or air. Therefore, due to the hybrid typology of this unit and the possibility of reversing the cycle, this work covers the main heat pump and refrigeration equipment technologies currently available on the market (air source and ground source units). The modeling strategy selected has been to provide several polynomial expressions to predict the performance of these units, i.e., compressor energy consumption and condenser and evaporator capacities. This approach allows obtaining accurate, compact, and easy-to-implement models for developing dynamic models of more complex systems where this type of unit – the heat pump – is an integrated part of the system. Currently, a clear example of this modeling strategy can be found in characterizing one of the main components installed in these machines, the compressor. The AHRI-540 standard specifies a polynomial model as a function of evaporating and condensing temperatures. In this sense, for the characterization of heat pumps, the polynomials developed depend only on the unit’s external variables, so they can be useful in many scenarios, obtaining direct feedback on the heat pump performance when developing a dynamic model to optimize system control strategies or to develop techno-economic studies. In this case, the hybrid typology of this unit makes it particularly relevant to optimize the control to manage the type of source to be used (air or ground), allowing the development of a more efficient and sustainable technology by selecting the most adequate source in terms of performance. This study focuses on obtaining the polynomial expressions that minimize the number of terms while simultaneously minimizing prediction error. By carefully selecting the most significant terms and suitable transformations in the characterized variables, the goal is to prevent overfitting, minimize potential extrapolation or interpolation errors and obtain polynomial expressions that can be fitted with small experimental samples. For this purpose, a detailed model implemented in a commercial software for heat pump characterization has been used, with which a large number of simulation results were generated. These simulation results include a fine meshing working map of the unit that allowed us to analyze the relationships between the characterized and external variables. Polynomial models Heat pump performance Ground source heat pump Air source heat pump Dual source heat pump Navarro-Peris, Emilio verfasserin aut Song, Yang verfasserin (orcid)0000-0002-1187-7065 aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 236 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:236 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 236 |
spelling |
10.1016/j.applthermaleng.2023.121743 doi (DE-627)ELV065596293 (ELSEVIER)S1359-4311(23)01772-6 DE-627 ger DE-627 rda eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Marchante-Avellaneda, Javier verfasserin (orcid)0000-0001-5680-5033 aut Development of map-based models for the performance characterization in a new prototype of Dual Source Heat Pump 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents the development of accurate map-based models for characterizing a new Dual Source Heat Pump prototype. This unit includes three braze plate heat exchangers and a round tube fin heat exchanger, allowing the unit to select different operating modes such as heat pump, chiller, and domestic hot water production using as source the ground or air. Therefore, due to the hybrid typology of this unit and the possibility of reversing the cycle, this work covers the main heat pump and refrigeration equipment technologies currently available on the market (air source and ground source units). The modeling strategy selected has been to provide several polynomial expressions to predict the performance of these units, i.e., compressor energy consumption and condenser and evaporator capacities. This approach allows obtaining accurate, compact, and easy-to-implement models for developing dynamic models of more complex systems where this type of unit – the heat pump – is an integrated part of the system. Currently, a clear example of this modeling strategy can be found in characterizing one of the main components installed in these machines, the compressor. The AHRI-540 standard specifies a polynomial model as a function of evaporating and condensing temperatures. In this sense, for the characterization of heat pumps, the polynomials developed depend only on the unit’s external variables, so they can be useful in many scenarios, obtaining direct feedback on the heat pump performance when developing a dynamic model to optimize system control strategies or to develop techno-economic studies. In this case, the hybrid typology of this unit makes it particularly relevant to optimize the control to manage the type of source to be used (air or ground), allowing the development of a more efficient and sustainable technology by selecting the most adequate source in terms of performance. This study focuses on obtaining the polynomial expressions that minimize the number of terms while simultaneously minimizing prediction error. By carefully selecting the most significant terms and suitable transformations in the characterized variables, the goal is to prevent overfitting, minimize potential extrapolation or interpolation errors and obtain polynomial expressions that can be fitted with small experimental samples. For this purpose, a detailed model implemented in a commercial software for heat pump characterization has been used, with which a large number of simulation results were generated. These simulation results include a fine meshing working map of the unit that allowed us to analyze the relationships between the characterized and external variables. Polynomial models Heat pump performance Ground source heat pump Air source heat pump Dual source heat pump Navarro-Peris, Emilio verfasserin aut Song, Yang verfasserin (orcid)0000-0002-1187-7065 aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 236 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:236 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 236 |
allfields_unstemmed |
10.1016/j.applthermaleng.2023.121743 doi (DE-627)ELV065596293 (ELSEVIER)S1359-4311(23)01772-6 DE-627 ger DE-627 rda eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Marchante-Avellaneda, Javier verfasserin (orcid)0000-0001-5680-5033 aut Development of map-based models for the performance characterization in a new prototype of Dual Source Heat Pump 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents the development of accurate map-based models for characterizing a new Dual Source Heat Pump prototype. This unit includes three braze plate heat exchangers and a round tube fin heat exchanger, allowing the unit to select different operating modes such as heat pump, chiller, and domestic hot water production using as source the ground or air. Therefore, due to the hybrid typology of this unit and the possibility of reversing the cycle, this work covers the main heat pump and refrigeration equipment technologies currently available on the market (air source and ground source units). The modeling strategy selected has been to provide several polynomial expressions to predict the performance of these units, i.e., compressor energy consumption and condenser and evaporator capacities. This approach allows obtaining accurate, compact, and easy-to-implement models for developing dynamic models of more complex systems where this type of unit – the heat pump – is an integrated part of the system. Currently, a clear example of this modeling strategy can be found in characterizing one of the main components installed in these machines, the compressor. The AHRI-540 standard specifies a polynomial model as a function of evaporating and condensing temperatures. In this sense, for the characterization of heat pumps, the polynomials developed depend only on the unit’s external variables, so they can be useful in many scenarios, obtaining direct feedback on the heat pump performance when developing a dynamic model to optimize system control strategies or to develop techno-economic studies. In this case, the hybrid typology of this unit makes it particularly relevant to optimize the control to manage the type of source to be used (air or ground), allowing the development of a more efficient and sustainable technology by selecting the most adequate source in terms of performance. This study focuses on obtaining the polynomial expressions that minimize the number of terms while simultaneously minimizing prediction error. By carefully selecting the most significant terms and suitable transformations in the characterized variables, the goal is to prevent overfitting, minimize potential extrapolation or interpolation errors and obtain polynomial expressions that can be fitted with small experimental samples. For this purpose, a detailed model implemented in a commercial software for heat pump characterization has been used, with which a large number of simulation results were generated. These simulation results include a fine meshing working map of the unit that allowed us to analyze the relationships between the characterized and external variables. Polynomial models Heat pump performance Ground source heat pump Air source heat pump Dual source heat pump Navarro-Peris, Emilio verfasserin aut Song, Yang verfasserin (orcid)0000-0002-1187-7065 aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 236 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:236 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 236 |
allfieldsGer |
10.1016/j.applthermaleng.2023.121743 doi (DE-627)ELV065596293 (ELSEVIER)S1359-4311(23)01772-6 DE-627 ger DE-627 rda eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Marchante-Avellaneda, Javier verfasserin (orcid)0000-0001-5680-5033 aut Development of map-based models for the performance characterization in a new prototype of Dual Source Heat Pump 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents the development of accurate map-based models for characterizing a new Dual Source Heat Pump prototype. This unit includes three braze plate heat exchangers and a round tube fin heat exchanger, allowing the unit to select different operating modes such as heat pump, chiller, and domestic hot water production using as source the ground or air. Therefore, due to the hybrid typology of this unit and the possibility of reversing the cycle, this work covers the main heat pump and refrigeration equipment technologies currently available on the market (air source and ground source units). The modeling strategy selected has been to provide several polynomial expressions to predict the performance of these units, i.e., compressor energy consumption and condenser and evaporator capacities. This approach allows obtaining accurate, compact, and easy-to-implement models for developing dynamic models of more complex systems where this type of unit – the heat pump – is an integrated part of the system. Currently, a clear example of this modeling strategy can be found in characterizing one of the main components installed in these machines, the compressor. The AHRI-540 standard specifies a polynomial model as a function of evaporating and condensing temperatures. In this sense, for the characterization of heat pumps, the polynomials developed depend only on the unit’s external variables, so they can be useful in many scenarios, obtaining direct feedback on the heat pump performance when developing a dynamic model to optimize system control strategies or to develop techno-economic studies. In this case, the hybrid typology of this unit makes it particularly relevant to optimize the control to manage the type of source to be used (air or ground), allowing the development of a more efficient and sustainable technology by selecting the most adequate source in terms of performance. This study focuses on obtaining the polynomial expressions that minimize the number of terms while simultaneously minimizing prediction error. By carefully selecting the most significant terms and suitable transformations in the characterized variables, the goal is to prevent overfitting, minimize potential extrapolation or interpolation errors and obtain polynomial expressions that can be fitted with small experimental samples. For this purpose, a detailed model implemented in a commercial software for heat pump characterization has been used, with which a large number of simulation results were generated. These simulation results include a fine meshing working map of the unit that allowed us to analyze the relationships between the characterized and external variables. Polynomial models Heat pump performance Ground source heat pump Air source heat pump Dual source heat pump Navarro-Peris, Emilio verfasserin aut Song, Yang verfasserin (orcid)0000-0002-1187-7065 aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 236 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:236 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 236 |
allfieldsSound |
10.1016/j.applthermaleng.2023.121743 doi (DE-627)ELV065596293 (ELSEVIER)S1359-4311(23)01772-6 DE-627 ger DE-627 rda eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Marchante-Avellaneda, Javier verfasserin (orcid)0000-0001-5680-5033 aut Development of map-based models for the performance characterization in a new prototype of Dual Source Heat Pump 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents the development of accurate map-based models for characterizing a new Dual Source Heat Pump prototype. This unit includes three braze plate heat exchangers and a round tube fin heat exchanger, allowing the unit to select different operating modes such as heat pump, chiller, and domestic hot water production using as source the ground or air. Therefore, due to the hybrid typology of this unit and the possibility of reversing the cycle, this work covers the main heat pump and refrigeration equipment technologies currently available on the market (air source and ground source units). The modeling strategy selected has been to provide several polynomial expressions to predict the performance of these units, i.e., compressor energy consumption and condenser and evaporator capacities. This approach allows obtaining accurate, compact, and easy-to-implement models for developing dynamic models of more complex systems where this type of unit – the heat pump – is an integrated part of the system. Currently, a clear example of this modeling strategy can be found in characterizing one of the main components installed in these machines, the compressor. The AHRI-540 standard specifies a polynomial model as a function of evaporating and condensing temperatures. In this sense, for the characterization of heat pumps, the polynomials developed depend only on the unit’s external variables, so they can be useful in many scenarios, obtaining direct feedback on the heat pump performance when developing a dynamic model to optimize system control strategies or to develop techno-economic studies. In this case, the hybrid typology of this unit makes it particularly relevant to optimize the control to manage the type of source to be used (air or ground), allowing the development of a more efficient and sustainable technology by selecting the most adequate source in terms of performance. This study focuses on obtaining the polynomial expressions that minimize the number of terms while simultaneously minimizing prediction error. By carefully selecting the most significant terms and suitable transformations in the characterized variables, the goal is to prevent overfitting, minimize potential extrapolation or interpolation errors and obtain polynomial expressions that can be fitted with small experimental samples. For this purpose, a detailed model implemented in a commercial software for heat pump characterization has been used, with which a large number of simulation results were generated. These simulation results include a fine meshing working map of the unit that allowed us to analyze the relationships between the characterized and external variables. Polynomial models Heat pump performance Ground source heat pump Air source heat pump Dual source heat pump Navarro-Peris, Emilio verfasserin aut Song, Yang verfasserin (orcid)0000-0002-1187-7065 aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 236 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:236 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 236 |
language |
English |
source |
Enthalten in Applied thermal engineering 236 volume:236 |
sourceStr |
Enthalten in Applied thermal engineering 236 volume:236 |
format_phy_str_mv |
Article |
bklname |
Kältetechnik Thermische Energieerzeugung Wärmetechnik Heizungstechnik Lüftungstechnik Klimatechnik Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Polynomial models Heat pump performance Ground source heat pump Air source heat pump Dual source heat pump |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Applied thermal engineering |
authorswithroles_txt_mv |
Marchante-Avellaneda, Javier @@aut@@ Navarro-Peris, Emilio @@aut@@ Song, Yang @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320594122 |
dewey-sort |
3690 |
id |
ELV065596293 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065596293</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240114093738.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231116s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.applthermaleng.2023.121743</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065596293</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1359-4311(23)01772-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.42</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marchante-Avellaneda, Javier</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5680-5033</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development of map-based models for the performance characterization in a new prototype of Dual Source Heat Pump</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents the development of accurate map-based models for characterizing a new Dual Source Heat Pump prototype. This unit includes three braze plate heat exchangers and a round tube fin heat exchanger, allowing the unit to select different operating modes such as heat pump, chiller, and domestic hot water production using as source the ground or air. Therefore, due to the hybrid typology of this unit and the possibility of reversing the cycle, this work covers the main heat pump and refrigeration equipment technologies currently available on the market (air source and ground source units). The modeling strategy selected has been to provide several polynomial expressions to predict the performance of these units, i.e., compressor energy consumption and condenser and evaporator capacities. This approach allows obtaining accurate, compact, and easy-to-implement models for developing dynamic models of more complex systems where this type of unit – the heat pump – is an integrated part of the system. Currently, a clear example of this modeling strategy can be found in characterizing one of the main components installed in these machines, the compressor. The AHRI-540 standard specifies a polynomial model as a function of evaporating and condensing temperatures. In this sense, for the characterization of heat pumps, the polynomials developed depend only on the unit’s external variables, so they can be useful in many scenarios, obtaining direct feedback on the heat pump performance when developing a dynamic model to optimize system control strategies or to develop techno-economic studies. In this case, the hybrid typology of this unit makes it particularly relevant to optimize the control to manage the type of source to be used (air or ground), allowing the development of a more efficient and sustainable technology by selecting the most adequate source in terms of performance. This study focuses on obtaining the polynomial expressions that minimize the number of terms while simultaneously minimizing prediction error. By carefully selecting the most significant terms and suitable transformations in the characterized variables, the goal is to prevent overfitting, minimize potential extrapolation or interpolation errors and obtain polynomial expressions that can be fitted with small experimental samples. For this purpose, a detailed model implemented in a commercial software for heat pump characterization has been used, with which a large number of simulation results were generated. These simulation results include a fine meshing working map of the unit that allowed us to analyze the relationships between the characterized and external variables.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomial models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat pump performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ground source heat pump</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air source heat pump</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dual source heat pump</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Navarro-Peris, Emilio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1187-7065</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied thermal engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1996</subfield><subfield code="g">236</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320594122</subfield><subfield code="w">(DE-600)2019322-1</subfield><subfield code="w">(DE-576)256146322</subfield><subfield code="x">1359-4311</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:236</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.42</subfield><subfield code="j">Heizungstechnik</subfield><subfield code="j">Lüftungstechnik</subfield><subfield code="j">Klimatechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">236</subfield></datafield></record></collection>
|
author |
Marchante-Avellaneda, Javier |
spellingShingle |
Marchante-Avellaneda, Javier ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 misc Polynomial models misc Heat pump performance misc Ground source heat pump misc Air source heat pump misc Dual source heat pump Development of map-based models for the performance characterization in a new prototype of Dual Source Heat Pump |
authorStr |
Marchante-Avellaneda, Javier |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320594122 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1359-4311 |
topic_title |
690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Development of map-based models for the performance characterization in a new prototype of Dual Source Heat Pump Polynomial models Heat pump performance Ground source heat pump Air source heat pump Dual source heat pump |
topic |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 misc Polynomial models misc Heat pump performance misc Ground source heat pump misc Air source heat pump misc Dual source heat pump |
topic_unstemmed |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 misc Polynomial models misc Heat pump performance misc Ground source heat pump misc Air source heat pump misc Dual source heat pump |
topic_browse |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 misc Polynomial models misc Heat pump performance misc Ground source heat pump misc Air source heat pump misc Dual source heat pump |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied thermal engineering |
hierarchy_parent_id |
320594122 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Applied thermal engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 |
title |
Development of map-based models for the performance characterization in a new prototype of Dual Source Heat Pump |
ctrlnum |
(DE-627)ELV065596293 (ELSEVIER)S1359-4311(23)01772-6 |
title_full |
Development of map-based models for the performance characterization in a new prototype of Dual Source Heat Pump |
author_sort |
Marchante-Avellaneda, Javier |
journal |
Applied thermal engineering |
journalStr |
Applied thermal engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Marchante-Avellaneda, Javier Navarro-Peris, Emilio Song, Yang |
container_volume |
236 |
class |
690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Marchante-Avellaneda, Javier |
doi_str_mv |
10.1016/j.applthermaleng.2023.121743 |
normlink |
(ORCID)0000-0001-5680-5033 (ORCID)0000-0002-1187-7065 |
normlink_prefix_str_mv |
(orcid)0000-0001-5680-5033 (orcid)0000-0002-1187-7065 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
development of map-based models for the performance characterization in a new prototype of dual source heat pump |
title_auth |
Development of map-based models for the performance characterization in a new prototype of Dual Source Heat Pump |
abstract |
This paper presents the development of accurate map-based models for characterizing a new Dual Source Heat Pump prototype. This unit includes three braze plate heat exchangers and a round tube fin heat exchanger, allowing the unit to select different operating modes such as heat pump, chiller, and domestic hot water production using as source the ground or air. Therefore, due to the hybrid typology of this unit and the possibility of reversing the cycle, this work covers the main heat pump and refrigeration equipment technologies currently available on the market (air source and ground source units). The modeling strategy selected has been to provide several polynomial expressions to predict the performance of these units, i.e., compressor energy consumption and condenser and evaporator capacities. This approach allows obtaining accurate, compact, and easy-to-implement models for developing dynamic models of more complex systems where this type of unit – the heat pump – is an integrated part of the system. Currently, a clear example of this modeling strategy can be found in characterizing one of the main components installed in these machines, the compressor. The AHRI-540 standard specifies a polynomial model as a function of evaporating and condensing temperatures. In this sense, for the characterization of heat pumps, the polynomials developed depend only on the unit’s external variables, so they can be useful in many scenarios, obtaining direct feedback on the heat pump performance when developing a dynamic model to optimize system control strategies or to develop techno-economic studies. In this case, the hybrid typology of this unit makes it particularly relevant to optimize the control to manage the type of source to be used (air or ground), allowing the development of a more efficient and sustainable technology by selecting the most adequate source in terms of performance. This study focuses on obtaining the polynomial expressions that minimize the number of terms while simultaneously minimizing prediction error. By carefully selecting the most significant terms and suitable transformations in the characterized variables, the goal is to prevent overfitting, minimize potential extrapolation or interpolation errors and obtain polynomial expressions that can be fitted with small experimental samples. For this purpose, a detailed model implemented in a commercial software for heat pump characterization has been used, with which a large number of simulation results were generated. These simulation results include a fine meshing working map of the unit that allowed us to analyze the relationships between the characterized and external variables. |
abstractGer |
This paper presents the development of accurate map-based models for characterizing a new Dual Source Heat Pump prototype. This unit includes three braze plate heat exchangers and a round tube fin heat exchanger, allowing the unit to select different operating modes such as heat pump, chiller, and domestic hot water production using as source the ground or air. Therefore, due to the hybrid typology of this unit and the possibility of reversing the cycle, this work covers the main heat pump and refrigeration equipment technologies currently available on the market (air source and ground source units). The modeling strategy selected has been to provide several polynomial expressions to predict the performance of these units, i.e., compressor energy consumption and condenser and evaporator capacities. This approach allows obtaining accurate, compact, and easy-to-implement models for developing dynamic models of more complex systems where this type of unit – the heat pump – is an integrated part of the system. Currently, a clear example of this modeling strategy can be found in characterizing one of the main components installed in these machines, the compressor. The AHRI-540 standard specifies a polynomial model as a function of evaporating and condensing temperatures. In this sense, for the characterization of heat pumps, the polynomials developed depend only on the unit’s external variables, so they can be useful in many scenarios, obtaining direct feedback on the heat pump performance when developing a dynamic model to optimize system control strategies or to develop techno-economic studies. In this case, the hybrid typology of this unit makes it particularly relevant to optimize the control to manage the type of source to be used (air or ground), allowing the development of a more efficient and sustainable technology by selecting the most adequate source in terms of performance. This study focuses on obtaining the polynomial expressions that minimize the number of terms while simultaneously minimizing prediction error. By carefully selecting the most significant terms and suitable transformations in the characterized variables, the goal is to prevent overfitting, minimize potential extrapolation or interpolation errors and obtain polynomial expressions that can be fitted with small experimental samples. For this purpose, a detailed model implemented in a commercial software for heat pump characterization has been used, with which a large number of simulation results were generated. These simulation results include a fine meshing working map of the unit that allowed us to analyze the relationships between the characterized and external variables. |
abstract_unstemmed |
This paper presents the development of accurate map-based models for characterizing a new Dual Source Heat Pump prototype. This unit includes three braze plate heat exchangers and a round tube fin heat exchanger, allowing the unit to select different operating modes such as heat pump, chiller, and domestic hot water production using as source the ground or air. Therefore, due to the hybrid typology of this unit and the possibility of reversing the cycle, this work covers the main heat pump and refrigeration equipment technologies currently available on the market (air source and ground source units). The modeling strategy selected has been to provide several polynomial expressions to predict the performance of these units, i.e., compressor energy consumption and condenser and evaporator capacities. This approach allows obtaining accurate, compact, and easy-to-implement models for developing dynamic models of more complex systems where this type of unit – the heat pump – is an integrated part of the system. Currently, a clear example of this modeling strategy can be found in characterizing one of the main components installed in these machines, the compressor. The AHRI-540 standard specifies a polynomial model as a function of evaporating and condensing temperatures. In this sense, for the characterization of heat pumps, the polynomials developed depend only on the unit’s external variables, so they can be useful in many scenarios, obtaining direct feedback on the heat pump performance when developing a dynamic model to optimize system control strategies or to develop techno-economic studies. In this case, the hybrid typology of this unit makes it particularly relevant to optimize the control to manage the type of source to be used (air or ground), allowing the development of a more efficient and sustainable technology by selecting the most adequate source in terms of performance. This study focuses on obtaining the polynomial expressions that minimize the number of terms while simultaneously minimizing prediction error. By carefully selecting the most significant terms and suitable transformations in the characterized variables, the goal is to prevent overfitting, minimize potential extrapolation or interpolation errors and obtain polynomial expressions that can be fitted with small experimental samples. For this purpose, a detailed model implemented in a commercial software for heat pump characterization has been used, with which a large number of simulation results were generated. These simulation results include a fine meshing working map of the unit that allowed us to analyze the relationships between the characterized and external variables. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Development of map-based models for the performance characterization in a new prototype of Dual Source Heat Pump |
remote_bool |
true |
author2 |
Navarro-Peris, Emilio Song, Yang |
author2Str |
Navarro-Peris, Emilio Song, Yang |
ppnlink |
320594122 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.applthermaleng.2023.121743 |
up_date |
2024-07-06T23:35:00.632Z |
_version_ |
1803874625793294336 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065596293</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240114093738.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231116s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.applthermaleng.2023.121743</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065596293</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1359-4311(23)01772-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.42</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marchante-Avellaneda, Javier</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5680-5033</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development of map-based models for the performance characterization in a new prototype of Dual Source Heat Pump</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents the development of accurate map-based models for characterizing a new Dual Source Heat Pump prototype. This unit includes three braze plate heat exchangers and a round tube fin heat exchanger, allowing the unit to select different operating modes such as heat pump, chiller, and domestic hot water production using as source the ground or air. Therefore, due to the hybrid typology of this unit and the possibility of reversing the cycle, this work covers the main heat pump and refrigeration equipment technologies currently available on the market (air source and ground source units). The modeling strategy selected has been to provide several polynomial expressions to predict the performance of these units, i.e., compressor energy consumption and condenser and evaporator capacities. This approach allows obtaining accurate, compact, and easy-to-implement models for developing dynamic models of more complex systems where this type of unit – the heat pump – is an integrated part of the system. Currently, a clear example of this modeling strategy can be found in characterizing one of the main components installed in these machines, the compressor. The AHRI-540 standard specifies a polynomial model as a function of evaporating and condensing temperatures. In this sense, for the characterization of heat pumps, the polynomials developed depend only on the unit’s external variables, so they can be useful in many scenarios, obtaining direct feedback on the heat pump performance when developing a dynamic model to optimize system control strategies or to develop techno-economic studies. In this case, the hybrid typology of this unit makes it particularly relevant to optimize the control to manage the type of source to be used (air or ground), allowing the development of a more efficient and sustainable technology by selecting the most adequate source in terms of performance. This study focuses on obtaining the polynomial expressions that minimize the number of terms while simultaneously minimizing prediction error. By carefully selecting the most significant terms and suitable transformations in the characterized variables, the goal is to prevent overfitting, minimize potential extrapolation or interpolation errors and obtain polynomial expressions that can be fitted with small experimental samples. For this purpose, a detailed model implemented in a commercial software for heat pump characterization has been used, with which a large number of simulation results were generated. These simulation results include a fine meshing working map of the unit that allowed us to analyze the relationships between the characterized and external variables.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomial models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat pump performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ground source heat pump</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air source heat pump</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dual source heat pump</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Navarro-Peris, Emilio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1187-7065</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied thermal engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1996</subfield><subfield code="g">236</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320594122</subfield><subfield code="w">(DE-600)2019322-1</subfield><subfield code="w">(DE-576)256146322</subfield><subfield code="x">1359-4311</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:236</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.42</subfield><subfield code="j">Heizungstechnik</subfield><subfield code="j">Lüftungstechnik</subfield><subfield code="j">Klimatechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">236</subfield></datafield></record></collection>
|
score |
7.4008713 |