Bi-directional regulation of electroactive microbial community using Au/antimicrobial peptide nanocomposite
The power generation and pollutants removal efficiencies of mixed electroactive microbial community rely on the effective electron transfer between outer membrane proteins of electroactive electricigens. However, the poor conductivity of protein and various non-electrogenic bacteria greatly hinder t...
Ausführliche Beschreibung
Autor*in: |
Yang, Zhiyuan [verfasserIn] Wang, Jingzhen [verfasserIn] Liu, Xiaoliang [verfasserIn] Lin, Mingzhen [verfasserIn] Dong, Huihui [verfasserIn] Zhai, Xinru [verfasserIn] Hou, Yunhua [verfasserIn] Yang, Qinzheng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Process biochemistry - Amsterdam [u.a.] : Elsevier Science, 1991, 134 |
---|---|
Übergeordnetes Werk: |
volume:134 |
DOI / URN: |
10.1016/j.procbio.2023.10.025 |
---|
Katalog-ID: |
ELV065614933 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV065614933 | ||
003 | DE-627 | ||
005 | 20231117093221.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231117s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.procbio.2023.10.025 |2 doi | |
035 | |a (DE-627)ELV065614933 | ||
035 | |a (ELSEVIER)S1359-5113(23)00346-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 42.30 |2 bkl | ||
084 | |a 58.30 |2 bkl | ||
084 | |a 58.34 |2 bkl | ||
100 | 1 | |a Yang, Zhiyuan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Bi-directional regulation of electroactive microbial community using Au/antimicrobial peptide nanocomposite |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The power generation and pollutants removal efficiencies of mixed electroactive microbial community rely on the effective electron transfer between outer membrane proteins of electroactive electricigens. However, the poor conductivity of protein and various non-electrogenic bacteria greatly hinder the electron transfer and effective contact between electricigens. Herein, we report a novel “bi-directional” microbial community regulation method that can selectively inhibit Gram-positive non-electrogenic bacteria and enhances the conductivity and electron transfer between electrogenic bacteria and the electrode in MFC by taking the advantages of the excellent conductive and bacteriostatic properties of Au/Nisin nanocomposite. The Au/Nisin stimulation endows microbial fuel cell (MFC) a high-efficiency functional community, which increases the power density and decolorization rate by 103 % and 33 %, respectively. The high conductivity, and selectivity and antimicrobial activity of the nanocomposite improve the electrochemical activity of the bioanode, hereby promoting the microbial extracellular electron transfer and increasing the proportion of electrogenic bacteria such as Proteobacteria, Bacteroidetes and Desulfovibrio in the biofilm. Our work successfully demonstrates that the construction of multifunctional metallic peptide nanocomposite can effectively regulate microbial community to improve the electrochemical performance of MFC. | ||
650 | 4 | |a Electroactive microbial community | |
650 | 4 | |a Electricigens | |
650 | 4 | |a Au/Nisin | |
650 | 4 | |a Nanocomposite | |
650 | 4 | |a Bi-directional regulation | |
650 | 4 | |a Biofilm | |
700 | 1 | |a Wang, Jingzhen |e verfasserin |4 aut | |
700 | 1 | |a Liu, Xiaoliang |e verfasserin |4 aut | |
700 | 1 | |a Lin, Mingzhen |e verfasserin |4 aut | |
700 | 1 | |a Dong, Huihui |e verfasserin |4 aut | |
700 | 1 | |a Zhai, Xinru |e verfasserin |4 aut | |
700 | 1 | |a Hou, Yunhua |e verfasserin |4 aut | |
700 | 1 | |a Yang, Qinzheng |e verfasserin |0 (orcid)0000-0002-7650-5000 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Process biochemistry |d Amsterdam [u.a.] : Elsevier Science, 1991 |g 134 |h Online-Ressource |w (DE-627)320570916 |w (DE-600)2016483-X |w (DE-576)259484989 |x 0032-9592 |7 nnns |
773 | 1 | 8 | |g volume:134 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 42.30 |j Mikrobiologie |q VZ |
936 | b | k | |a 58.30 |j Biotechnologie |q VZ |
936 | b | k | |a 58.34 |j Lebensmitteltechnologie |q VZ |
951 | |a AR | ||
952 | |d 134 |
author_variant |
z y zy j w jw x l xl m l ml h d hd x z xz y h yh q y qy |
---|---|
matchkey_str |
article:00329592:2023----::iietoargltooeetocieirbacmuiysnaatmco |
hierarchy_sort_str |
2023 |
bklnumber |
42.30 58.30 58.34 |
publishDate |
2023 |
allfields |
10.1016/j.procbio.2023.10.025 doi (DE-627)ELV065614933 (ELSEVIER)S1359-5113(23)00346-X DE-627 ger DE-627 rda eng 530 VZ 42.30 bkl 58.30 bkl 58.34 bkl Yang, Zhiyuan verfasserin aut Bi-directional regulation of electroactive microbial community using Au/antimicrobial peptide nanocomposite 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The power generation and pollutants removal efficiencies of mixed electroactive microbial community rely on the effective electron transfer between outer membrane proteins of electroactive electricigens. However, the poor conductivity of protein and various non-electrogenic bacteria greatly hinder the electron transfer and effective contact between electricigens. Herein, we report a novel “bi-directional” microbial community regulation method that can selectively inhibit Gram-positive non-electrogenic bacteria and enhances the conductivity and electron transfer between electrogenic bacteria and the electrode in MFC by taking the advantages of the excellent conductive and bacteriostatic properties of Au/Nisin nanocomposite. The Au/Nisin stimulation endows microbial fuel cell (MFC) a high-efficiency functional community, which increases the power density and decolorization rate by 103 % and 33 %, respectively. The high conductivity, and selectivity and antimicrobial activity of the nanocomposite improve the electrochemical activity of the bioanode, hereby promoting the microbial extracellular electron transfer and increasing the proportion of electrogenic bacteria such as Proteobacteria, Bacteroidetes and Desulfovibrio in the biofilm. Our work successfully demonstrates that the construction of multifunctional metallic peptide nanocomposite can effectively regulate microbial community to improve the electrochemical performance of MFC. Electroactive microbial community Electricigens Au/Nisin Nanocomposite Bi-directional regulation Biofilm Wang, Jingzhen verfasserin aut Liu, Xiaoliang verfasserin aut Lin, Mingzhen verfasserin aut Dong, Huihui verfasserin aut Zhai, Xinru verfasserin aut Hou, Yunhua verfasserin aut Yang, Qinzheng verfasserin (orcid)0000-0002-7650-5000 aut Enthalten in Process biochemistry Amsterdam [u.a.] : Elsevier Science, 1991 134 Online-Ressource (DE-627)320570916 (DE-600)2016483-X (DE-576)259484989 0032-9592 nnns volume:134 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.30 Mikrobiologie VZ 58.30 Biotechnologie VZ 58.34 Lebensmitteltechnologie VZ AR 134 |
spelling |
10.1016/j.procbio.2023.10.025 doi (DE-627)ELV065614933 (ELSEVIER)S1359-5113(23)00346-X DE-627 ger DE-627 rda eng 530 VZ 42.30 bkl 58.30 bkl 58.34 bkl Yang, Zhiyuan verfasserin aut Bi-directional regulation of electroactive microbial community using Au/antimicrobial peptide nanocomposite 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The power generation and pollutants removal efficiencies of mixed electroactive microbial community rely on the effective electron transfer between outer membrane proteins of electroactive electricigens. However, the poor conductivity of protein and various non-electrogenic bacteria greatly hinder the electron transfer and effective contact between electricigens. Herein, we report a novel “bi-directional” microbial community regulation method that can selectively inhibit Gram-positive non-electrogenic bacteria and enhances the conductivity and electron transfer between electrogenic bacteria and the electrode in MFC by taking the advantages of the excellent conductive and bacteriostatic properties of Au/Nisin nanocomposite. The Au/Nisin stimulation endows microbial fuel cell (MFC) a high-efficiency functional community, which increases the power density and decolorization rate by 103 % and 33 %, respectively. The high conductivity, and selectivity and antimicrobial activity of the nanocomposite improve the electrochemical activity of the bioanode, hereby promoting the microbial extracellular electron transfer and increasing the proportion of electrogenic bacteria such as Proteobacteria, Bacteroidetes and Desulfovibrio in the biofilm. Our work successfully demonstrates that the construction of multifunctional metallic peptide nanocomposite can effectively regulate microbial community to improve the electrochemical performance of MFC. Electroactive microbial community Electricigens Au/Nisin Nanocomposite Bi-directional regulation Biofilm Wang, Jingzhen verfasserin aut Liu, Xiaoliang verfasserin aut Lin, Mingzhen verfasserin aut Dong, Huihui verfasserin aut Zhai, Xinru verfasserin aut Hou, Yunhua verfasserin aut Yang, Qinzheng verfasserin (orcid)0000-0002-7650-5000 aut Enthalten in Process biochemistry Amsterdam [u.a.] : Elsevier Science, 1991 134 Online-Ressource (DE-627)320570916 (DE-600)2016483-X (DE-576)259484989 0032-9592 nnns volume:134 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.30 Mikrobiologie VZ 58.30 Biotechnologie VZ 58.34 Lebensmitteltechnologie VZ AR 134 |
allfields_unstemmed |
10.1016/j.procbio.2023.10.025 doi (DE-627)ELV065614933 (ELSEVIER)S1359-5113(23)00346-X DE-627 ger DE-627 rda eng 530 VZ 42.30 bkl 58.30 bkl 58.34 bkl Yang, Zhiyuan verfasserin aut Bi-directional regulation of electroactive microbial community using Au/antimicrobial peptide nanocomposite 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The power generation and pollutants removal efficiencies of mixed electroactive microbial community rely on the effective electron transfer between outer membrane proteins of electroactive electricigens. However, the poor conductivity of protein and various non-electrogenic bacteria greatly hinder the electron transfer and effective contact between electricigens. Herein, we report a novel “bi-directional” microbial community regulation method that can selectively inhibit Gram-positive non-electrogenic bacteria and enhances the conductivity and electron transfer between electrogenic bacteria and the electrode in MFC by taking the advantages of the excellent conductive and bacteriostatic properties of Au/Nisin nanocomposite. The Au/Nisin stimulation endows microbial fuel cell (MFC) a high-efficiency functional community, which increases the power density and decolorization rate by 103 % and 33 %, respectively. The high conductivity, and selectivity and antimicrobial activity of the nanocomposite improve the electrochemical activity of the bioanode, hereby promoting the microbial extracellular electron transfer and increasing the proportion of electrogenic bacteria such as Proteobacteria, Bacteroidetes and Desulfovibrio in the biofilm. Our work successfully demonstrates that the construction of multifunctional metallic peptide nanocomposite can effectively regulate microbial community to improve the electrochemical performance of MFC. Electroactive microbial community Electricigens Au/Nisin Nanocomposite Bi-directional regulation Biofilm Wang, Jingzhen verfasserin aut Liu, Xiaoliang verfasserin aut Lin, Mingzhen verfasserin aut Dong, Huihui verfasserin aut Zhai, Xinru verfasserin aut Hou, Yunhua verfasserin aut Yang, Qinzheng verfasserin (orcid)0000-0002-7650-5000 aut Enthalten in Process biochemistry Amsterdam [u.a.] : Elsevier Science, 1991 134 Online-Ressource (DE-627)320570916 (DE-600)2016483-X (DE-576)259484989 0032-9592 nnns volume:134 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.30 Mikrobiologie VZ 58.30 Biotechnologie VZ 58.34 Lebensmitteltechnologie VZ AR 134 |
allfieldsGer |
10.1016/j.procbio.2023.10.025 doi (DE-627)ELV065614933 (ELSEVIER)S1359-5113(23)00346-X DE-627 ger DE-627 rda eng 530 VZ 42.30 bkl 58.30 bkl 58.34 bkl Yang, Zhiyuan verfasserin aut Bi-directional regulation of electroactive microbial community using Au/antimicrobial peptide nanocomposite 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The power generation and pollutants removal efficiencies of mixed electroactive microbial community rely on the effective electron transfer between outer membrane proteins of electroactive electricigens. However, the poor conductivity of protein and various non-electrogenic bacteria greatly hinder the electron transfer and effective contact between electricigens. Herein, we report a novel “bi-directional” microbial community regulation method that can selectively inhibit Gram-positive non-electrogenic bacteria and enhances the conductivity and electron transfer between electrogenic bacteria and the electrode in MFC by taking the advantages of the excellent conductive and bacteriostatic properties of Au/Nisin nanocomposite. The Au/Nisin stimulation endows microbial fuel cell (MFC) a high-efficiency functional community, which increases the power density and decolorization rate by 103 % and 33 %, respectively. The high conductivity, and selectivity and antimicrobial activity of the nanocomposite improve the electrochemical activity of the bioanode, hereby promoting the microbial extracellular electron transfer and increasing the proportion of electrogenic bacteria such as Proteobacteria, Bacteroidetes and Desulfovibrio in the biofilm. Our work successfully demonstrates that the construction of multifunctional metallic peptide nanocomposite can effectively regulate microbial community to improve the electrochemical performance of MFC. Electroactive microbial community Electricigens Au/Nisin Nanocomposite Bi-directional regulation Biofilm Wang, Jingzhen verfasserin aut Liu, Xiaoliang verfasserin aut Lin, Mingzhen verfasserin aut Dong, Huihui verfasserin aut Zhai, Xinru verfasserin aut Hou, Yunhua verfasserin aut Yang, Qinzheng verfasserin (orcid)0000-0002-7650-5000 aut Enthalten in Process biochemistry Amsterdam [u.a.] : Elsevier Science, 1991 134 Online-Ressource (DE-627)320570916 (DE-600)2016483-X (DE-576)259484989 0032-9592 nnns volume:134 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.30 Mikrobiologie VZ 58.30 Biotechnologie VZ 58.34 Lebensmitteltechnologie VZ AR 134 |
allfieldsSound |
10.1016/j.procbio.2023.10.025 doi (DE-627)ELV065614933 (ELSEVIER)S1359-5113(23)00346-X DE-627 ger DE-627 rda eng 530 VZ 42.30 bkl 58.30 bkl 58.34 bkl Yang, Zhiyuan verfasserin aut Bi-directional regulation of electroactive microbial community using Au/antimicrobial peptide nanocomposite 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The power generation and pollutants removal efficiencies of mixed electroactive microbial community rely on the effective electron transfer between outer membrane proteins of electroactive electricigens. However, the poor conductivity of protein and various non-electrogenic bacteria greatly hinder the electron transfer and effective contact between electricigens. Herein, we report a novel “bi-directional” microbial community regulation method that can selectively inhibit Gram-positive non-electrogenic bacteria and enhances the conductivity and electron transfer between electrogenic bacteria and the electrode in MFC by taking the advantages of the excellent conductive and bacteriostatic properties of Au/Nisin nanocomposite. The Au/Nisin stimulation endows microbial fuel cell (MFC) a high-efficiency functional community, which increases the power density and decolorization rate by 103 % and 33 %, respectively. The high conductivity, and selectivity and antimicrobial activity of the nanocomposite improve the electrochemical activity of the bioanode, hereby promoting the microbial extracellular electron transfer and increasing the proportion of electrogenic bacteria such as Proteobacteria, Bacteroidetes and Desulfovibrio in the biofilm. Our work successfully demonstrates that the construction of multifunctional metallic peptide nanocomposite can effectively regulate microbial community to improve the electrochemical performance of MFC. Electroactive microbial community Electricigens Au/Nisin Nanocomposite Bi-directional regulation Biofilm Wang, Jingzhen verfasserin aut Liu, Xiaoliang verfasserin aut Lin, Mingzhen verfasserin aut Dong, Huihui verfasserin aut Zhai, Xinru verfasserin aut Hou, Yunhua verfasserin aut Yang, Qinzheng verfasserin (orcid)0000-0002-7650-5000 aut Enthalten in Process biochemistry Amsterdam [u.a.] : Elsevier Science, 1991 134 Online-Ressource (DE-627)320570916 (DE-600)2016483-X (DE-576)259484989 0032-9592 nnns volume:134 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.30 Mikrobiologie VZ 58.30 Biotechnologie VZ 58.34 Lebensmitteltechnologie VZ AR 134 |
language |
English |
source |
Enthalten in Process biochemistry 134 volume:134 |
sourceStr |
Enthalten in Process biochemistry 134 volume:134 |
format_phy_str_mv |
Article |
bklname |
Mikrobiologie Biotechnologie Lebensmitteltechnologie |
institution |
findex.gbv.de |
topic_facet |
Electroactive microbial community Electricigens Au/Nisin Nanocomposite Bi-directional regulation Biofilm |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Process biochemistry |
authorswithroles_txt_mv |
Yang, Zhiyuan @@aut@@ Wang, Jingzhen @@aut@@ Liu, Xiaoliang @@aut@@ Lin, Mingzhen @@aut@@ Dong, Huihui @@aut@@ Zhai, Xinru @@aut@@ Hou, Yunhua @@aut@@ Yang, Qinzheng @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320570916 |
dewey-sort |
3530 |
id |
ELV065614933 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065614933</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231117093221.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231117s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.procbio.2023.10.025</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065614933</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1359-5113(23)00346-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.34</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Zhiyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bi-directional regulation of electroactive microbial community using Au/antimicrobial peptide nanocomposite</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The power generation and pollutants removal efficiencies of mixed electroactive microbial community rely on the effective electron transfer between outer membrane proteins of electroactive electricigens. However, the poor conductivity of protein and various non-electrogenic bacteria greatly hinder the electron transfer and effective contact between electricigens. Herein, we report a novel “bi-directional” microbial community regulation method that can selectively inhibit Gram-positive non-electrogenic bacteria and enhances the conductivity and electron transfer between electrogenic bacteria and the electrode in MFC by taking the advantages of the excellent conductive and bacteriostatic properties of Au/Nisin nanocomposite. The Au/Nisin stimulation endows microbial fuel cell (MFC) a high-efficiency functional community, which increases the power density and decolorization rate by 103 % and 33 %, respectively. The high conductivity, and selectivity and antimicrobial activity of the nanocomposite improve the electrochemical activity of the bioanode, hereby promoting the microbial extracellular electron transfer and increasing the proportion of electrogenic bacteria such as Proteobacteria, Bacteroidetes and Desulfovibrio in the biofilm. Our work successfully demonstrates that the construction of multifunctional metallic peptide nanocomposite can effectively regulate microbial community to improve the electrochemical performance of MFC.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electroactive microbial community</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electricigens</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Au/Nisin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanocomposite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bi-directional regulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biofilm</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jingzhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xiaoliang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Mingzhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Huihui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhai, Xinru</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hou, Yunhua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Qinzheng</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7650-5000</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Process biochemistry</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1991</subfield><subfield code="g">134</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320570916</subfield><subfield code="w">(DE-600)2016483-X</subfield><subfield code="w">(DE-576)259484989</subfield><subfield code="x">0032-9592</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:134</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.30</subfield><subfield code="j">Mikrobiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.30</subfield><subfield code="j">Biotechnologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.34</subfield><subfield code="j">Lebensmitteltechnologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">134</subfield></datafield></record></collection>
|
author |
Yang, Zhiyuan |
spellingShingle |
Yang, Zhiyuan ddc 530 bkl 42.30 bkl 58.30 bkl 58.34 misc Electroactive microbial community misc Electricigens misc Au/Nisin misc Nanocomposite misc Bi-directional regulation misc Biofilm Bi-directional regulation of electroactive microbial community using Au/antimicrobial peptide nanocomposite |
authorStr |
Yang, Zhiyuan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320570916 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0032-9592 |
topic_title |
530 VZ 42.30 bkl 58.30 bkl 58.34 bkl Bi-directional regulation of electroactive microbial community using Au/antimicrobial peptide nanocomposite Electroactive microbial community Electricigens Au/Nisin Nanocomposite Bi-directional regulation Biofilm |
topic |
ddc 530 bkl 42.30 bkl 58.30 bkl 58.34 misc Electroactive microbial community misc Electricigens misc Au/Nisin misc Nanocomposite misc Bi-directional regulation misc Biofilm |
topic_unstemmed |
ddc 530 bkl 42.30 bkl 58.30 bkl 58.34 misc Electroactive microbial community misc Electricigens misc Au/Nisin misc Nanocomposite misc Bi-directional regulation misc Biofilm |
topic_browse |
ddc 530 bkl 42.30 bkl 58.30 bkl 58.34 misc Electroactive microbial community misc Electricigens misc Au/Nisin misc Nanocomposite misc Bi-directional regulation misc Biofilm |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Process biochemistry |
hierarchy_parent_id |
320570916 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Process biochemistry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320570916 (DE-600)2016483-X (DE-576)259484989 |
title |
Bi-directional regulation of electroactive microbial community using Au/antimicrobial peptide nanocomposite |
ctrlnum |
(DE-627)ELV065614933 (ELSEVIER)S1359-5113(23)00346-X |
title_full |
Bi-directional regulation of electroactive microbial community using Au/antimicrobial peptide nanocomposite |
author_sort |
Yang, Zhiyuan |
journal |
Process biochemistry |
journalStr |
Process biochemistry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Yang, Zhiyuan Wang, Jingzhen Liu, Xiaoliang Lin, Mingzhen Dong, Huihui Zhai, Xinru Hou, Yunhua Yang, Qinzheng |
container_volume |
134 |
class |
530 VZ 42.30 bkl 58.30 bkl 58.34 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yang, Zhiyuan |
doi_str_mv |
10.1016/j.procbio.2023.10.025 |
normlink |
(ORCID)0000-0002-7650-5000 |
normlink_prefix_str_mv |
(orcid)0000-0002-7650-5000 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
bi-directional regulation of electroactive microbial community using au/antimicrobial peptide nanocomposite |
title_auth |
Bi-directional regulation of electroactive microbial community using Au/antimicrobial peptide nanocomposite |
abstract |
The power generation and pollutants removal efficiencies of mixed electroactive microbial community rely on the effective electron transfer between outer membrane proteins of electroactive electricigens. However, the poor conductivity of protein and various non-electrogenic bacteria greatly hinder the electron transfer and effective contact between electricigens. Herein, we report a novel “bi-directional” microbial community regulation method that can selectively inhibit Gram-positive non-electrogenic bacteria and enhances the conductivity and electron transfer between electrogenic bacteria and the electrode in MFC by taking the advantages of the excellent conductive and bacteriostatic properties of Au/Nisin nanocomposite. The Au/Nisin stimulation endows microbial fuel cell (MFC) a high-efficiency functional community, which increases the power density and decolorization rate by 103 % and 33 %, respectively. The high conductivity, and selectivity and antimicrobial activity of the nanocomposite improve the electrochemical activity of the bioanode, hereby promoting the microbial extracellular electron transfer and increasing the proportion of electrogenic bacteria such as Proteobacteria, Bacteroidetes and Desulfovibrio in the biofilm. Our work successfully demonstrates that the construction of multifunctional metallic peptide nanocomposite can effectively regulate microbial community to improve the electrochemical performance of MFC. |
abstractGer |
The power generation and pollutants removal efficiencies of mixed electroactive microbial community rely on the effective electron transfer between outer membrane proteins of electroactive electricigens. However, the poor conductivity of protein and various non-electrogenic bacteria greatly hinder the electron transfer and effective contact between electricigens. Herein, we report a novel “bi-directional” microbial community regulation method that can selectively inhibit Gram-positive non-electrogenic bacteria and enhances the conductivity and electron transfer between electrogenic bacteria and the electrode in MFC by taking the advantages of the excellent conductive and bacteriostatic properties of Au/Nisin nanocomposite. The Au/Nisin stimulation endows microbial fuel cell (MFC) a high-efficiency functional community, which increases the power density and decolorization rate by 103 % and 33 %, respectively. The high conductivity, and selectivity and antimicrobial activity of the nanocomposite improve the electrochemical activity of the bioanode, hereby promoting the microbial extracellular electron transfer and increasing the proportion of electrogenic bacteria such as Proteobacteria, Bacteroidetes and Desulfovibrio in the biofilm. Our work successfully demonstrates that the construction of multifunctional metallic peptide nanocomposite can effectively regulate microbial community to improve the electrochemical performance of MFC. |
abstract_unstemmed |
The power generation and pollutants removal efficiencies of mixed electroactive microbial community rely on the effective electron transfer between outer membrane proteins of electroactive electricigens. However, the poor conductivity of protein and various non-electrogenic bacteria greatly hinder the electron transfer and effective contact between electricigens. Herein, we report a novel “bi-directional” microbial community regulation method that can selectively inhibit Gram-positive non-electrogenic bacteria and enhances the conductivity and electron transfer between electrogenic bacteria and the electrode in MFC by taking the advantages of the excellent conductive and bacteriostatic properties of Au/Nisin nanocomposite. The Au/Nisin stimulation endows microbial fuel cell (MFC) a high-efficiency functional community, which increases the power density and decolorization rate by 103 % and 33 %, respectively. The high conductivity, and selectivity and antimicrobial activity of the nanocomposite improve the electrochemical activity of the bioanode, hereby promoting the microbial extracellular electron transfer and increasing the proportion of electrogenic bacteria such as Proteobacteria, Bacteroidetes and Desulfovibrio in the biofilm. Our work successfully demonstrates that the construction of multifunctional metallic peptide nanocomposite can effectively regulate microbial community to improve the electrochemical performance of MFC. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Bi-directional regulation of electroactive microbial community using Au/antimicrobial peptide nanocomposite |
remote_bool |
true |
author2 |
Wang, Jingzhen Liu, Xiaoliang Lin, Mingzhen Dong, Huihui Zhai, Xinru Hou, Yunhua Yang, Qinzheng |
author2Str |
Wang, Jingzhen Liu, Xiaoliang Lin, Mingzhen Dong, Huihui Zhai, Xinru Hou, Yunhua Yang, Qinzheng |
ppnlink |
320570916 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.procbio.2023.10.025 |
up_date |
2024-07-06T23:38:54.704Z |
_version_ |
1803874871233478656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065614933</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231117093221.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231117s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.procbio.2023.10.025</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065614933</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1359-5113(23)00346-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.34</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Zhiyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bi-directional regulation of electroactive microbial community using Au/antimicrobial peptide nanocomposite</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The power generation and pollutants removal efficiencies of mixed electroactive microbial community rely on the effective electron transfer between outer membrane proteins of electroactive electricigens. However, the poor conductivity of protein and various non-electrogenic bacteria greatly hinder the electron transfer and effective contact between electricigens. Herein, we report a novel “bi-directional” microbial community regulation method that can selectively inhibit Gram-positive non-electrogenic bacteria and enhances the conductivity and electron transfer between electrogenic bacteria and the electrode in MFC by taking the advantages of the excellent conductive and bacteriostatic properties of Au/Nisin nanocomposite. The Au/Nisin stimulation endows microbial fuel cell (MFC) a high-efficiency functional community, which increases the power density and decolorization rate by 103 % and 33 %, respectively. The high conductivity, and selectivity and antimicrobial activity of the nanocomposite improve the electrochemical activity of the bioanode, hereby promoting the microbial extracellular electron transfer and increasing the proportion of electrogenic bacteria such as Proteobacteria, Bacteroidetes and Desulfovibrio in the biofilm. Our work successfully demonstrates that the construction of multifunctional metallic peptide nanocomposite can effectively regulate microbial community to improve the electrochemical performance of MFC.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electroactive microbial community</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electricigens</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Au/Nisin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanocomposite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bi-directional regulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biofilm</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jingzhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xiaoliang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Mingzhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Huihui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhai, Xinru</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hou, Yunhua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Qinzheng</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7650-5000</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Process biochemistry</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1991</subfield><subfield code="g">134</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320570916</subfield><subfield code="w">(DE-600)2016483-X</subfield><subfield code="w">(DE-576)259484989</subfield><subfield code="x">0032-9592</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:134</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.30</subfield><subfield code="j">Mikrobiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.30</subfield><subfield code="j">Biotechnologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.34</subfield><subfield code="j">Lebensmitteltechnologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">134</subfield></datafield></record></collection>
|
score |
7.4007797 |