Study on the evolution law and quantitative characterization of micro-crack propagation in the compressive failure process of rocks
Quantitative characterization of the evolution law of micro-crack propagation in rocks is important for understanding the rock failure mechanism. This study aims to establish a theoretical method for quantitatively characterizing the evolution of micro-crack propagations during the compressive failu...
Ausführliche Beschreibung
Autor*in: |
Li, Shengnan [verfasserIn] Huang, Zhonghua [verfasserIn] Huang, Kan [verfasserIn] Li, Yu [verfasserIn] Peng, Huihua [verfasserIn] Liang, Qiao [verfasserIn] Ma, Kai [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Engineering failure analysis - Oxford [u.a.] : Elsevier Science, 1994, 155 |
---|---|
Übergeordnetes Werk: |
volume:155 |
DOI / URN: |
10.1016/j.engfailanal.2023.107743 |
---|
Katalog-ID: |
ELV065636473 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV065636473 | ||
003 | DE-627 | ||
005 | 20231117093524.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231117s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.engfailanal.2023.107743 |2 doi | |
035 | |a (DE-627)ELV065636473 | ||
035 | |a (ELSEVIER)S1350-6307(23)00697-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q VZ |
084 | |a 51.32 |2 bkl | ||
084 | |a 50.16 |2 bkl | ||
100 | 1 | |a Li, Shengnan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Study on the evolution law and quantitative characterization of micro-crack propagation in the compressive failure process of rocks |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Quantitative characterization of the evolution law of micro-crack propagation in rocks is important for understanding the rock failure mechanism. This study aims to establish a theoretical method for quantitatively characterizing the evolution of micro-crack propagations during the compressive failure of rocks. Mechanical properties and failure characteristics of carbonaceous mudstone were investigated by triaxial compression tests. In order to study the evolution law of crack propagation morphology and quantity, numerical simulations of micro-crack propagation in rocks during triaxial compression were performed using the particle flow code (PFC). Based on the phenomenological theory, we proposed to define the rock damage increment by crack propagation quantity. The evolution law of crack quantity was characterized using the Logistic growth model. Furthermore, an equation for the evolution of micro-crack propagation quantity during compressive failure was established, and the rationality of the equation was verified. The results show that micro-cracks initiate in weak areas of rocks and develop and converge around existing cracks, eventually leading to localized failure through propagation and connection. The number of micro-cracks grows in an “S-shaped” pattern, accelerating before the peak stress, reaching a maximum growth rate at the peak stress, and decelerating in the post-peak stage. As the confining pressure increases, the number of rock micro-cracks increases, the propagation morphology becomes more complex, and the failure localization weakens. The proposed equation accurately characterizes the evolution of micro-crack propagation quantity in the rock failure process. In addition, the calculation results are in good agreement with the numerical analysis results, verifying the rationality of the equation. | ||
650 | 4 | |a Rock mechanics | |
650 | 4 | |a Constitutive model | |
650 | 4 | |a Crack propagation | |
650 | 4 | |a Mesomechanism | |
650 | 4 | |a Damage | |
650 | 4 | |a Nonlinear deformation | |
700 | 1 | |a Huang, Zhonghua |e verfasserin |4 aut | |
700 | 1 | |a Huang, Kan |e verfasserin |4 aut | |
700 | 1 | |a Li, Yu |e verfasserin |4 aut | |
700 | 1 | |a Peng, Huihua |e verfasserin |4 aut | |
700 | 1 | |a Liang, Qiao |e verfasserin |4 aut | |
700 | 1 | |a Ma, Kai |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Engineering failure analysis |d Oxford [u.a.] : Elsevier Science, 1994 |g 155 |h Online-Ressource |w (DE-627)320608697 |w (DE-600)2021082-6 |w (DE-576)120883619 |x 1350-6307 |7 nnns |
773 | 1 | 8 | |g volume:155 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 51.32 |j Werkstoffmechanik |q VZ |
936 | b | k | |a 50.16 |j Technische Zuverlässigkeit |j Instandhaltung |q VZ |
951 | |a AR | ||
952 | |d 155 |
author_variant |
s l sl z h zh k h kh y l yl h p hp q l ql k m km |
---|---|
matchkey_str |
article:13506307:2023----::tdotevltolwnqatttvcaatrztoomcorcpoaainnhcm |
hierarchy_sort_str |
2023 |
bklnumber |
51.32 50.16 |
publishDate |
2023 |
allfields |
10.1016/j.engfailanal.2023.107743 doi (DE-627)ELV065636473 (ELSEVIER)S1350-6307(23)00697-0 DE-627 ger DE-627 rda eng 600 VZ 51.32 bkl 50.16 bkl Li, Shengnan verfasserin aut Study on the evolution law and quantitative characterization of micro-crack propagation in the compressive failure process of rocks 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Quantitative characterization of the evolution law of micro-crack propagation in rocks is important for understanding the rock failure mechanism. This study aims to establish a theoretical method for quantitatively characterizing the evolution of micro-crack propagations during the compressive failure of rocks. Mechanical properties and failure characteristics of carbonaceous mudstone were investigated by triaxial compression tests. In order to study the evolution law of crack propagation morphology and quantity, numerical simulations of micro-crack propagation in rocks during triaxial compression were performed using the particle flow code (PFC). Based on the phenomenological theory, we proposed to define the rock damage increment by crack propagation quantity. The evolution law of crack quantity was characterized using the Logistic growth model. Furthermore, an equation for the evolution of micro-crack propagation quantity during compressive failure was established, and the rationality of the equation was verified. The results show that micro-cracks initiate in weak areas of rocks and develop and converge around existing cracks, eventually leading to localized failure through propagation and connection. The number of micro-cracks grows in an “S-shaped” pattern, accelerating before the peak stress, reaching a maximum growth rate at the peak stress, and decelerating in the post-peak stage. As the confining pressure increases, the number of rock micro-cracks increases, the propagation morphology becomes more complex, and the failure localization weakens. The proposed equation accurately characterizes the evolution of micro-crack propagation quantity in the rock failure process. In addition, the calculation results are in good agreement with the numerical analysis results, verifying the rationality of the equation. Rock mechanics Constitutive model Crack propagation Mesomechanism Damage Nonlinear deformation Huang, Zhonghua verfasserin aut Huang, Kan verfasserin aut Li, Yu verfasserin aut Peng, Huihua verfasserin aut Liang, Qiao verfasserin aut Ma, Kai verfasserin aut Enthalten in Engineering failure analysis Oxford [u.a.] : Elsevier Science, 1994 155 Online-Ressource (DE-627)320608697 (DE-600)2021082-6 (DE-576)120883619 1350-6307 nnns volume:155 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.32 Werkstoffmechanik VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 155 |
spelling |
10.1016/j.engfailanal.2023.107743 doi (DE-627)ELV065636473 (ELSEVIER)S1350-6307(23)00697-0 DE-627 ger DE-627 rda eng 600 VZ 51.32 bkl 50.16 bkl Li, Shengnan verfasserin aut Study on the evolution law and quantitative characterization of micro-crack propagation in the compressive failure process of rocks 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Quantitative characterization of the evolution law of micro-crack propagation in rocks is important for understanding the rock failure mechanism. This study aims to establish a theoretical method for quantitatively characterizing the evolution of micro-crack propagations during the compressive failure of rocks. Mechanical properties and failure characteristics of carbonaceous mudstone were investigated by triaxial compression tests. In order to study the evolution law of crack propagation morphology and quantity, numerical simulations of micro-crack propagation in rocks during triaxial compression were performed using the particle flow code (PFC). Based on the phenomenological theory, we proposed to define the rock damage increment by crack propagation quantity. The evolution law of crack quantity was characterized using the Logistic growth model. Furthermore, an equation for the evolution of micro-crack propagation quantity during compressive failure was established, and the rationality of the equation was verified. The results show that micro-cracks initiate in weak areas of rocks and develop and converge around existing cracks, eventually leading to localized failure through propagation and connection. The number of micro-cracks grows in an “S-shaped” pattern, accelerating before the peak stress, reaching a maximum growth rate at the peak stress, and decelerating in the post-peak stage. As the confining pressure increases, the number of rock micro-cracks increases, the propagation morphology becomes more complex, and the failure localization weakens. The proposed equation accurately characterizes the evolution of micro-crack propagation quantity in the rock failure process. In addition, the calculation results are in good agreement with the numerical analysis results, verifying the rationality of the equation. Rock mechanics Constitutive model Crack propagation Mesomechanism Damage Nonlinear deformation Huang, Zhonghua verfasserin aut Huang, Kan verfasserin aut Li, Yu verfasserin aut Peng, Huihua verfasserin aut Liang, Qiao verfasserin aut Ma, Kai verfasserin aut Enthalten in Engineering failure analysis Oxford [u.a.] : Elsevier Science, 1994 155 Online-Ressource (DE-627)320608697 (DE-600)2021082-6 (DE-576)120883619 1350-6307 nnns volume:155 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.32 Werkstoffmechanik VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 155 |
allfields_unstemmed |
10.1016/j.engfailanal.2023.107743 doi (DE-627)ELV065636473 (ELSEVIER)S1350-6307(23)00697-0 DE-627 ger DE-627 rda eng 600 VZ 51.32 bkl 50.16 bkl Li, Shengnan verfasserin aut Study on the evolution law and quantitative characterization of micro-crack propagation in the compressive failure process of rocks 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Quantitative characterization of the evolution law of micro-crack propagation in rocks is important for understanding the rock failure mechanism. This study aims to establish a theoretical method for quantitatively characterizing the evolution of micro-crack propagations during the compressive failure of rocks. Mechanical properties and failure characteristics of carbonaceous mudstone were investigated by triaxial compression tests. In order to study the evolution law of crack propagation morphology and quantity, numerical simulations of micro-crack propagation in rocks during triaxial compression were performed using the particle flow code (PFC). Based on the phenomenological theory, we proposed to define the rock damage increment by crack propagation quantity. The evolution law of crack quantity was characterized using the Logistic growth model. Furthermore, an equation for the evolution of micro-crack propagation quantity during compressive failure was established, and the rationality of the equation was verified. The results show that micro-cracks initiate in weak areas of rocks and develop and converge around existing cracks, eventually leading to localized failure through propagation and connection. The number of micro-cracks grows in an “S-shaped” pattern, accelerating before the peak stress, reaching a maximum growth rate at the peak stress, and decelerating in the post-peak stage. As the confining pressure increases, the number of rock micro-cracks increases, the propagation morphology becomes more complex, and the failure localization weakens. The proposed equation accurately characterizes the evolution of micro-crack propagation quantity in the rock failure process. In addition, the calculation results are in good agreement with the numerical analysis results, verifying the rationality of the equation. Rock mechanics Constitutive model Crack propagation Mesomechanism Damage Nonlinear deformation Huang, Zhonghua verfasserin aut Huang, Kan verfasserin aut Li, Yu verfasserin aut Peng, Huihua verfasserin aut Liang, Qiao verfasserin aut Ma, Kai verfasserin aut Enthalten in Engineering failure analysis Oxford [u.a.] : Elsevier Science, 1994 155 Online-Ressource (DE-627)320608697 (DE-600)2021082-6 (DE-576)120883619 1350-6307 nnns volume:155 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.32 Werkstoffmechanik VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 155 |
allfieldsGer |
10.1016/j.engfailanal.2023.107743 doi (DE-627)ELV065636473 (ELSEVIER)S1350-6307(23)00697-0 DE-627 ger DE-627 rda eng 600 VZ 51.32 bkl 50.16 bkl Li, Shengnan verfasserin aut Study on the evolution law and quantitative characterization of micro-crack propagation in the compressive failure process of rocks 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Quantitative characterization of the evolution law of micro-crack propagation in rocks is important for understanding the rock failure mechanism. This study aims to establish a theoretical method for quantitatively characterizing the evolution of micro-crack propagations during the compressive failure of rocks. Mechanical properties and failure characteristics of carbonaceous mudstone were investigated by triaxial compression tests. In order to study the evolution law of crack propagation morphology and quantity, numerical simulations of micro-crack propagation in rocks during triaxial compression were performed using the particle flow code (PFC). Based on the phenomenological theory, we proposed to define the rock damage increment by crack propagation quantity. The evolution law of crack quantity was characterized using the Logistic growth model. Furthermore, an equation for the evolution of micro-crack propagation quantity during compressive failure was established, and the rationality of the equation was verified. The results show that micro-cracks initiate in weak areas of rocks and develop and converge around existing cracks, eventually leading to localized failure through propagation and connection. The number of micro-cracks grows in an “S-shaped” pattern, accelerating before the peak stress, reaching a maximum growth rate at the peak stress, and decelerating in the post-peak stage. As the confining pressure increases, the number of rock micro-cracks increases, the propagation morphology becomes more complex, and the failure localization weakens. The proposed equation accurately characterizes the evolution of micro-crack propagation quantity in the rock failure process. In addition, the calculation results are in good agreement with the numerical analysis results, verifying the rationality of the equation. Rock mechanics Constitutive model Crack propagation Mesomechanism Damage Nonlinear deformation Huang, Zhonghua verfasserin aut Huang, Kan verfasserin aut Li, Yu verfasserin aut Peng, Huihua verfasserin aut Liang, Qiao verfasserin aut Ma, Kai verfasserin aut Enthalten in Engineering failure analysis Oxford [u.a.] : Elsevier Science, 1994 155 Online-Ressource (DE-627)320608697 (DE-600)2021082-6 (DE-576)120883619 1350-6307 nnns volume:155 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.32 Werkstoffmechanik VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 155 |
allfieldsSound |
10.1016/j.engfailanal.2023.107743 doi (DE-627)ELV065636473 (ELSEVIER)S1350-6307(23)00697-0 DE-627 ger DE-627 rda eng 600 VZ 51.32 bkl 50.16 bkl Li, Shengnan verfasserin aut Study on the evolution law and quantitative characterization of micro-crack propagation in the compressive failure process of rocks 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Quantitative characterization of the evolution law of micro-crack propagation in rocks is important for understanding the rock failure mechanism. This study aims to establish a theoretical method for quantitatively characterizing the evolution of micro-crack propagations during the compressive failure of rocks. Mechanical properties and failure characteristics of carbonaceous mudstone were investigated by triaxial compression tests. In order to study the evolution law of crack propagation morphology and quantity, numerical simulations of micro-crack propagation in rocks during triaxial compression were performed using the particle flow code (PFC). Based on the phenomenological theory, we proposed to define the rock damage increment by crack propagation quantity. The evolution law of crack quantity was characterized using the Logistic growth model. Furthermore, an equation for the evolution of micro-crack propagation quantity during compressive failure was established, and the rationality of the equation was verified. The results show that micro-cracks initiate in weak areas of rocks and develop and converge around existing cracks, eventually leading to localized failure through propagation and connection. The number of micro-cracks grows in an “S-shaped” pattern, accelerating before the peak stress, reaching a maximum growth rate at the peak stress, and decelerating in the post-peak stage. As the confining pressure increases, the number of rock micro-cracks increases, the propagation morphology becomes more complex, and the failure localization weakens. The proposed equation accurately characterizes the evolution of micro-crack propagation quantity in the rock failure process. In addition, the calculation results are in good agreement with the numerical analysis results, verifying the rationality of the equation. Rock mechanics Constitutive model Crack propagation Mesomechanism Damage Nonlinear deformation Huang, Zhonghua verfasserin aut Huang, Kan verfasserin aut Li, Yu verfasserin aut Peng, Huihua verfasserin aut Liang, Qiao verfasserin aut Ma, Kai verfasserin aut Enthalten in Engineering failure analysis Oxford [u.a.] : Elsevier Science, 1994 155 Online-Ressource (DE-627)320608697 (DE-600)2021082-6 (DE-576)120883619 1350-6307 nnns volume:155 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.32 Werkstoffmechanik VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 155 |
language |
English |
source |
Enthalten in Engineering failure analysis 155 volume:155 |
sourceStr |
Enthalten in Engineering failure analysis 155 volume:155 |
format_phy_str_mv |
Article |
bklname |
Werkstoffmechanik Technische Zuverlässigkeit Instandhaltung |
institution |
findex.gbv.de |
topic_facet |
Rock mechanics Constitutive model Crack propagation Mesomechanism Damage Nonlinear deformation |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Engineering failure analysis |
authorswithroles_txt_mv |
Li, Shengnan @@aut@@ Huang, Zhonghua @@aut@@ Huang, Kan @@aut@@ Li, Yu @@aut@@ Peng, Huihua @@aut@@ Liang, Qiao @@aut@@ Ma, Kai @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320608697 |
dewey-sort |
3600 |
id |
ELV065636473 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065636473</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231117093524.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231117s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.engfailanal.2023.107743</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065636473</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1350-6307(23)00697-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Shengnan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study on the evolution law and quantitative characterization of micro-crack propagation in the compressive failure process of rocks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Quantitative characterization of the evolution law of micro-crack propagation in rocks is important for understanding the rock failure mechanism. This study aims to establish a theoretical method for quantitatively characterizing the evolution of micro-crack propagations during the compressive failure of rocks. Mechanical properties and failure characteristics of carbonaceous mudstone were investigated by triaxial compression tests. In order to study the evolution law of crack propagation morphology and quantity, numerical simulations of micro-crack propagation in rocks during triaxial compression were performed using the particle flow code (PFC). Based on the phenomenological theory, we proposed to define the rock damage increment by crack propagation quantity. The evolution law of crack quantity was characterized using the Logistic growth model. Furthermore, an equation for the evolution of micro-crack propagation quantity during compressive failure was established, and the rationality of the equation was verified. The results show that micro-cracks initiate in weak areas of rocks and develop and converge around existing cracks, eventually leading to localized failure through propagation and connection. The number of micro-cracks grows in an “S-shaped” pattern, accelerating before the peak stress, reaching a maximum growth rate at the peak stress, and decelerating in the post-peak stage. As the confining pressure increases, the number of rock micro-cracks increases, the propagation morphology becomes more complex, and the failure localization weakens. The proposed equation accurately characterizes the evolution of micro-crack propagation quantity in the rock failure process. In addition, the calculation results are in good agreement with the numerical analysis results, verifying the rationality of the equation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rock mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constitutive model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crack propagation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mesomechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Damage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear deformation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Zhonghua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Kan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Huihua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Qiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Kai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Engineering failure analysis</subfield><subfield code="d">Oxford [u.a.] : Elsevier Science, 1994</subfield><subfield code="g">155</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320608697</subfield><subfield code="w">(DE-600)2021082-6</subfield><subfield code="w">(DE-576)120883619</subfield><subfield code="x">1350-6307</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:155</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.32</subfield><subfield code="j">Werkstoffmechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="j">Technische Zuverlässigkeit</subfield><subfield code="j">Instandhaltung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">155</subfield></datafield></record></collection>
|
author |
Li, Shengnan |
spellingShingle |
Li, Shengnan ddc 600 bkl 51.32 bkl 50.16 misc Rock mechanics misc Constitutive model misc Crack propagation misc Mesomechanism misc Damage misc Nonlinear deformation Study on the evolution law and quantitative characterization of micro-crack propagation in the compressive failure process of rocks |
authorStr |
Li, Shengnan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320608697 |
format |
electronic Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1350-6307 |
topic_title |
600 VZ 51.32 bkl 50.16 bkl Study on the evolution law and quantitative characterization of micro-crack propagation in the compressive failure process of rocks Rock mechanics Constitutive model Crack propagation Mesomechanism Damage Nonlinear deformation |
topic |
ddc 600 bkl 51.32 bkl 50.16 misc Rock mechanics misc Constitutive model misc Crack propagation misc Mesomechanism misc Damage misc Nonlinear deformation |
topic_unstemmed |
ddc 600 bkl 51.32 bkl 50.16 misc Rock mechanics misc Constitutive model misc Crack propagation misc Mesomechanism misc Damage misc Nonlinear deformation |
topic_browse |
ddc 600 bkl 51.32 bkl 50.16 misc Rock mechanics misc Constitutive model misc Crack propagation misc Mesomechanism misc Damage misc Nonlinear deformation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Engineering failure analysis |
hierarchy_parent_id |
320608697 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Engineering failure analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320608697 (DE-600)2021082-6 (DE-576)120883619 |
title |
Study on the evolution law and quantitative characterization of micro-crack propagation in the compressive failure process of rocks |
ctrlnum |
(DE-627)ELV065636473 (ELSEVIER)S1350-6307(23)00697-0 |
title_full |
Study on the evolution law and quantitative characterization of micro-crack propagation in the compressive failure process of rocks |
author_sort |
Li, Shengnan |
journal |
Engineering failure analysis |
journalStr |
Engineering failure analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Li, Shengnan Huang, Zhonghua Huang, Kan Li, Yu Peng, Huihua Liang, Qiao Ma, Kai |
container_volume |
155 |
class |
600 VZ 51.32 bkl 50.16 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Shengnan |
doi_str_mv |
10.1016/j.engfailanal.2023.107743 |
dewey-full |
600 |
author2-role |
verfasserin |
title_sort |
study on the evolution law and quantitative characterization of micro-crack propagation in the compressive failure process of rocks |
title_auth |
Study on the evolution law and quantitative characterization of micro-crack propagation in the compressive failure process of rocks |
abstract |
Quantitative characterization of the evolution law of micro-crack propagation in rocks is important for understanding the rock failure mechanism. This study aims to establish a theoretical method for quantitatively characterizing the evolution of micro-crack propagations during the compressive failure of rocks. Mechanical properties and failure characteristics of carbonaceous mudstone were investigated by triaxial compression tests. In order to study the evolution law of crack propagation morphology and quantity, numerical simulations of micro-crack propagation in rocks during triaxial compression were performed using the particle flow code (PFC). Based on the phenomenological theory, we proposed to define the rock damage increment by crack propagation quantity. The evolution law of crack quantity was characterized using the Logistic growth model. Furthermore, an equation for the evolution of micro-crack propagation quantity during compressive failure was established, and the rationality of the equation was verified. The results show that micro-cracks initiate in weak areas of rocks and develop and converge around existing cracks, eventually leading to localized failure through propagation and connection. The number of micro-cracks grows in an “S-shaped” pattern, accelerating before the peak stress, reaching a maximum growth rate at the peak stress, and decelerating in the post-peak stage. As the confining pressure increases, the number of rock micro-cracks increases, the propagation morphology becomes more complex, and the failure localization weakens. The proposed equation accurately characterizes the evolution of micro-crack propagation quantity in the rock failure process. In addition, the calculation results are in good agreement with the numerical analysis results, verifying the rationality of the equation. |
abstractGer |
Quantitative characterization of the evolution law of micro-crack propagation in rocks is important for understanding the rock failure mechanism. This study aims to establish a theoretical method for quantitatively characterizing the evolution of micro-crack propagations during the compressive failure of rocks. Mechanical properties and failure characteristics of carbonaceous mudstone were investigated by triaxial compression tests. In order to study the evolution law of crack propagation morphology and quantity, numerical simulations of micro-crack propagation in rocks during triaxial compression were performed using the particle flow code (PFC). Based on the phenomenological theory, we proposed to define the rock damage increment by crack propagation quantity. The evolution law of crack quantity was characterized using the Logistic growth model. Furthermore, an equation for the evolution of micro-crack propagation quantity during compressive failure was established, and the rationality of the equation was verified. The results show that micro-cracks initiate in weak areas of rocks and develop and converge around existing cracks, eventually leading to localized failure through propagation and connection. The number of micro-cracks grows in an “S-shaped” pattern, accelerating before the peak stress, reaching a maximum growth rate at the peak stress, and decelerating in the post-peak stage. As the confining pressure increases, the number of rock micro-cracks increases, the propagation morphology becomes more complex, and the failure localization weakens. The proposed equation accurately characterizes the evolution of micro-crack propagation quantity in the rock failure process. In addition, the calculation results are in good agreement with the numerical analysis results, verifying the rationality of the equation. |
abstract_unstemmed |
Quantitative characterization of the evolution law of micro-crack propagation in rocks is important for understanding the rock failure mechanism. This study aims to establish a theoretical method for quantitatively characterizing the evolution of micro-crack propagations during the compressive failure of rocks. Mechanical properties and failure characteristics of carbonaceous mudstone were investigated by triaxial compression tests. In order to study the evolution law of crack propagation morphology and quantity, numerical simulations of micro-crack propagation in rocks during triaxial compression were performed using the particle flow code (PFC). Based on the phenomenological theory, we proposed to define the rock damage increment by crack propagation quantity. The evolution law of crack quantity was characterized using the Logistic growth model. Furthermore, an equation for the evolution of micro-crack propagation quantity during compressive failure was established, and the rationality of the equation was verified. The results show that micro-cracks initiate in weak areas of rocks and develop and converge around existing cracks, eventually leading to localized failure through propagation and connection. The number of micro-cracks grows in an “S-shaped” pattern, accelerating before the peak stress, reaching a maximum growth rate at the peak stress, and decelerating in the post-peak stage. As the confining pressure increases, the number of rock micro-cracks increases, the propagation morphology becomes more complex, and the failure localization weakens. The proposed equation accurately characterizes the evolution of micro-crack propagation quantity in the rock failure process. In addition, the calculation results are in good agreement with the numerical analysis results, verifying the rationality of the equation. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Study on the evolution law and quantitative characterization of micro-crack propagation in the compressive failure process of rocks |
remote_bool |
true |
author2 |
Huang, Zhonghua Huang, Kan Li, Yu Peng, Huihua Liang, Qiao Ma, Kai |
author2Str |
Huang, Zhonghua Huang, Kan Li, Yu Peng, Huihua Liang, Qiao Ma, Kai |
ppnlink |
320608697 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.engfailanal.2023.107743 |
up_date |
2024-07-06T23:43:25.648Z |
_version_ |
1803875155337805824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065636473</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231117093524.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231117s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.engfailanal.2023.107743</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065636473</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1350-6307(23)00697-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Shengnan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study on the evolution law and quantitative characterization of micro-crack propagation in the compressive failure process of rocks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Quantitative characterization of the evolution law of micro-crack propagation in rocks is important for understanding the rock failure mechanism. This study aims to establish a theoretical method for quantitatively characterizing the evolution of micro-crack propagations during the compressive failure of rocks. Mechanical properties and failure characteristics of carbonaceous mudstone were investigated by triaxial compression tests. In order to study the evolution law of crack propagation morphology and quantity, numerical simulations of micro-crack propagation in rocks during triaxial compression were performed using the particle flow code (PFC). Based on the phenomenological theory, we proposed to define the rock damage increment by crack propagation quantity. The evolution law of crack quantity was characterized using the Logistic growth model. Furthermore, an equation for the evolution of micro-crack propagation quantity during compressive failure was established, and the rationality of the equation was verified. The results show that micro-cracks initiate in weak areas of rocks and develop and converge around existing cracks, eventually leading to localized failure through propagation and connection. The number of micro-cracks grows in an “S-shaped” pattern, accelerating before the peak stress, reaching a maximum growth rate at the peak stress, and decelerating in the post-peak stage. As the confining pressure increases, the number of rock micro-cracks increases, the propagation morphology becomes more complex, and the failure localization weakens. The proposed equation accurately characterizes the evolution of micro-crack propagation quantity in the rock failure process. In addition, the calculation results are in good agreement with the numerical analysis results, verifying the rationality of the equation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rock mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constitutive model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crack propagation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mesomechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Damage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear deformation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Zhonghua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Kan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Huihua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Qiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Kai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Engineering failure analysis</subfield><subfield code="d">Oxford [u.a.] : Elsevier Science, 1994</subfield><subfield code="g">155</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320608697</subfield><subfield code="w">(DE-600)2021082-6</subfield><subfield code="w">(DE-576)120883619</subfield><subfield code="x">1350-6307</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:155</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.32</subfield><subfield code="j">Werkstoffmechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="j">Technische Zuverlässigkeit</subfield><subfield code="j">Instandhaltung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">155</subfield></datafield></record></collection>
|
score |
7.399987 |