Dynamic aerogel window with switchable solar transmittance and low haze
Transparent aerogel window based on silica aerogel has been investigated for achieving energy-saving buildings. However, most of the attention was paid to the effective thermal conductivity and solar transmittance of the aerogel. The research on solar transmittance control and visual experience is s...
Ausführliche Beschreibung
Autor*in: |
Pu, Jin Huan [verfasserIn] Yu, Xiyu [verfasserIn] Zhao, Yuewen [verfasserIn] Tang, G.H. [verfasserIn] Ren, Xingjie [verfasserIn] Du, Mu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Energy - Amsterdam [u.a.] : Elsevier Science, 1976, 285 |
---|---|
Übergeordnetes Werk: |
volume:285 |
DOI / URN: |
10.1016/j.energy.2023.129437 |
---|
Katalog-ID: |
ELV065659953 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV065659953 | ||
003 | DE-627 | ||
005 | 20231118093234.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231118s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.energy.2023.129437 |2 doi | |
035 | |a (DE-627)ELV065659953 | ||
035 | |a (ELSEVIER)S0360-5442(23)02831-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q VZ |
084 | |a 50.70 |2 bkl | ||
100 | 1 | |a Pu, Jin Huan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dynamic aerogel window with switchable solar transmittance and low haze |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Transparent aerogel window based on silica aerogel has been investigated for achieving energy-saving buildings. However, most of the attention was paid to the effective thermal conductivity and solar transmittance of the aerogel. The research on solar transmittance control and visual experience is still lacking. In the present study, a dynamic aerogel based on V O 2 / SiO 2 core–shell nanospheres is proposed to serve as an energy-saving window. The effects of particle size, outer-to-inner diameter ratio, volume fraction, and thickness on the radiative properties of aerogel windows are studied theoretically by combining the Mie theory and the Monte Carlo method. In particular, the solar control ability and haze of the dynamic aerogel are computed. The results show that a 0.25 cm thick aerogel doped with core–shell nanospheres of D / d = 2 ( f v = 0.01%) achieves solar control ability of 124.2 W/m 2 . The solar transmittance and haze are 70% (55%) and 0.067 (0.097) for the insulating (metallic) phase. The present study provides a guideline for designing highly transparent aerogel windows with switchable solar transmittance and low haze for energy-saving buildings. | ||
650 | 4 | |a Transparent aerogel | |
650 | 4 | |a VO | |
650 | 4 | |a Visual experience | |
650 | 4 | |a Dynamic solar control | |
700 | 1 | |a Yu, Xiyu |e verfasserin |4 aut | |
700 | 1 | |a Zhao, Yuewen |e verfasserin |4 aut | |
700 | 1 | |a Tang, G.H. |e verfasserin |4 aut | |
700 | 1 | |a Ren, Xingjie |e verfasserin |4 aut | |
700 | 1 | |a Du, Mu |e verfasserin |0 (orcid)0000-0002-9614-5508 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Energy |d Amsterdam [u.a.] : Elsevier Science, 1976 |g 285 |h Online-Ressource |w (DE-627)320597903 |w (DE-600)2019804-8 |w (DE-576)116451815 |x 1873-6785 |7 nnns |
773 | 1 | 8 | |g volume:285 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.70 |j Energie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 285 |
author_variant |
j h p jh jhp x y xy y z yz g t gt x r xr m d md |
---|---|
matchkey_str |
article:18736785:2023----::yaiarglidwihwthbeoatas |
hierarchy_sort_str |
2023 |
bklnumber |
50.70 |
publishDate |
2023 |
allfields |
10.1016/j.energy.2023.129437 doi (DE-627)ELV065659953 (ELSEVIER)S0360-5442(23)02831-1 DE-627 ger DE-627 rda eng 600 VZ 50.70 bkl Pu, Jin Huan verfasserin aut Dynamic aerogel window with switchable solar transmittance and low haze 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Transparent aerogel window based on silica aerogel has been investigated for achieving energy-saving buildings. However, most of the attention was paid to the effective thermal conductivity and solar transmittance of the aerogel. The research on solar transmittance control and visual experience is still lacking. In the present study, a dynamic aerogel based on V O 2 / SiO 2 core–shell nanospheres is proposed to serve as an energy-saving window. The effects of particle size, outer-to-inner diameter ratio, volume fraction, and thickness on the radiative properties of aerogel windows are studied theoretically by combining the Mie theory and the Monte Carlo method. In particular, the solar control ability and haze of the dynamic aerogel are computed. The results show that a 0.25 cm thick aerogel doped with core–shell nanospheres of D / d = 2 ( f v = 0.01%) achieves solar control ability of 124.2 W/m 2 . The solar transmittance and haze are 70% (55%) and 0.067 (0.097) for the insulating (metallic) phase. The present study provides a guideline for designing highly transparent aerogel windows with switchable solar transmittance and low haze for energy-saving buildings. Transparent aerogel VO Visual experience Dynamic solar control Yu, Xiyu verfasserin aut Zhao, Yuewen verfasserin aut Tang, G.H. verfasserin aut Ren, Xingjie verfasserin aut Du, Mu verfasserin (orcid)0000-0002-9614-5508 aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 285 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:285 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.70 Energie: Allgemeines VZ AR 285 |
spelling |
10.1016/j.energy.2023.129437 doi (DE-627)ELV065659953 (ELSEVIER)S0360-5442(23)02831-1 DE-627 ger DE-627 rda eng 600 VZ 50.70 bkl Pu, Jin Huan verfasserin aut Dynamic aerogel window with switchable solar transmittance and low haze 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Transparent aerogel window based on silica aerogel has been investigated for achieving energy-saving buildings. However, most of the attention was paid to the effective thermal conductivity and solar transmittance of the aerogel. The research on solar transmittance control and visual experience is still lacking. In the present study, a dynamic aerogel based on V O 2 / SiO 2 core–shell nanospheres is proposed to serve as an energy-saving window. The effects of particle size, outer-to-inner diameter ratio, volume fraction, and thickness on the radiative properties of aerogel windows are studied theoretically by combining the Mie theory and the Monte Carlo method. In particular, the solar control ability and haze of the dynamic aerogel are computed. The results show that a 0.25 cm thick aerogel doped with core–shell nanospheres of D / d = 2 ( f v = 0.01%) achieves solar control ability of 124.2 W/m 2 . The solar transmittance and haze are 70% (55%) and 0.067 (0.097) for the insulating (metallic) phase. The present study provides a guideline for designing highly transparent aerogel windows with switchable solar transmittance and low haze for energy-saving buildings. Transparent aerogel VO Visual experience Dynamic solar control Yu, Xiyu verfasserin aut Zhao, Yuewen verfasserin aut Tang, G.H. verfasserin aut Ren, Xingjie verfasserin aut Du, Mu verfasserin (orcid)0000-0002-9614-5508 aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 285 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:285 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.70 Energie: Allgemeines VZ AR 285 |
allfields_unstemmed |
10.1016/j.energy.2023.129437 doi (DE-627)ELV065659953 (ELSEVIER)S0360-5442(23)02831-1 DE-627 ger DE-627 rda eng 600 VZ 50.70 bkl Pu, Jin Huan verfasserin aut Dynamic aerogel window with switchable solar transmittance and low haze 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Transparent aerogel window based on silica aerogel has been investigated for achieving energy-saving buildings. However, most of the attention was paid to the effective thermal conductivity and solar transmittance of the aerogel. The research on solar transmittance control and visual experience is still lacking. In the present study, a dynamic aerogel based on V O 2 / SiO 2 core–shell nanospheres is proposed to serve as an energy-saving window. The effects of particle size, outer-to-inner diameter ratio, volume fraction, and thickness on the radiative properties of aerogel windows are studied theoretically by combining the Mie theory and the Monte Carlo method. In particular, the solar control ability and haze of the dynamic aerogel are computed. The results show that a 0.25 cm thick aerogel doped with core–shell nanospheres of D / d = 2 ( f v = 0.01%) achieves solar control ability of 124.2 W/m 2 . The solar transmittance and haze are 70% (55%) and 0.067 (0.097) for the insulating (metallic) phase. The present study provides a guideline for designing highly transparent aerogel windows with switchable solar transmittance and low haze for energy-saving buildings. Transparent aerogel VO Visual experience Dynamic solar control Yu, Xiyu verfasserin aut Zhao, Yuewen verfasserin aut Tang, G.H. verfasserin aut Ren, Xingjie verfasserin aut Du, Mu verfasserin (orcid)0000-0002-9614-5508 aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 285 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:285 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.70 Energie: Allgemeines VZ AR 285 |
allfieldsGer |
10.1016/j.energy.2023.129437 doi (DE-627)ELV065659953 (ELSEVIER)S0360-5442(23)02831-1 DE-627 ger DE-627 rda eng 600 VZ 50.70 bkl Pu, Jin Huan verfasserin aut Dynamic aerogel window with switchable solar transmittance and low haze 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Transparent aerogel window based on silica aerogel has been investigated for achieving energy-saving buildings. However, most of the attention was paid to the effective thermal conductivity and solar transmittance of the aerogel. The research on solar transmittance control and visual experience is still lacking. In the present study, a dynamic aerogel based on V O 2 / SiO 2 core–shell nanospheres is proposed to serve as an energy-saving window. The effects of particle size, outer-to-inner diameter ratio, volume fraction, and thickness on the radiative properties of aerogel windows are studied theoretically by combining the Mie theory and the Monte Carlo method. In particular, the solar control ability and haze of the dynamic aerogel are computed. The results show that a 0.25 cm thick aerogel doped with core–shell nanospheres of D / d = 2 ( f v = 0.01%) achieves solar control ability of 124.2 W/m 2 . The solar transmittance and haze are 70% (55%) and 0.067 (0.097) for the insulating (metallic) phase. The present study provides a guideline for designing highly transparent aerogel windows with switchable solar transmittance and low haze for energy-saving buildings. Transparent aerogel VO Visual experience Dynamic solar control Yu, Xiyu verfasserin aut Zhao, Yuewen verfasserin aut Tang, G.H. verfasserin aut Ren, Xingjie verfasserin aut Du, Mu verfasserin (orcid)0000-0002-9614-5508 aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 285 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:285 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.70 Energie: Allgemeines VZ AR 285 |
allfieldsSound |
10.1016/j.energy.2023.129437 doi (DE-627)ELV065659953 (ELSEVIER)S0360-5442(23)02831-1 DE-627 ger DE-627 rda eng 600 VZ 50.70 bkl Pu, Jin Huan verfasserin aut Dynamic aerogel window with switchable solar transmittance and low haze 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Transparent aerogel window based on silica aerogel has been investigated for achieving energy-saving buildings. However, most of the attention was paid to the effective thermal conductivity and solar transmittance of the aerogel. The research on solar transmittance control and visual experience is still lacking. In the present study, a dynamic aerogel based on V O 2 / SiO 2 core–shell nanospheres is proposed to serve as an energy-saving window. The effects of particle size, outer-to-inner diameter ratio, volume fraction, and thickness on the radiative properties of aerogel windows are studied theoretically by combining the Mie theory and the Monte Carlo method. In particular, the solar control ability and haze of the dynamic aerogel are computed. The results show that a 0.25 cm thick aerogel doped with core–shell nanospheres of D / d = 2 ( f v = 0.01%) achieves solar control ability of 124.2 W/m 2 . The solar transmittance and haze are 70% (55%) and 0.067 (0.097) for the insulating (metallic) phase. The present study provides a guideline for designing highly transparent aerogel windows with switchable solar transmittance and low haze for energy-saving buildings. Transparent aerogel VO Visual experience Dynamic solar control Yu, Xiyu verfasserin aut Zhao, Yuewen verfasserin aut Tang, G.H. verfasserin aut Ren, Xingjie verfasserin aut Du, Mu verfasserin (orcid)0000-0002-9614-5508 aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 285 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:285 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.70 Energie: Allgemeines VZ AR 285 |
language |
English |
source |
Enthalten in Energy 285 volume:285 |
sourceStr |
Enthalten in Energy 285 volume:285 |
format_phy_str_mv |
Article |
bklname |
Energie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Transparent aerogel VO Visual experience Dynamic solar control |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Energy |
authorswithroles_txt_mv |
Pu, Jin Huan @@aut@@ Yu, Xiyu @@aut@@ Zhao, Yuewen @@aut@@ Tang, G.H. @@aut@@ Ren, Xingjie @@aut@@ Du, Mu @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320597903 |
dewey-sort |
3600 |
id |
ELV065659953 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065659953</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231118093234.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231118s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.energy.2023.129437</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065659953</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-5442(23)02831-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pu, Jin Huan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic aerogel window with switchable solar transmittance and low haze</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Transparent aerogel window based on silica aerogel has been investigated for achieving energy-saving buildings. However, most of the attention was paid to the effective thermal conductivity and solar transmittance of the aerogel. The research on solar transmittance control and visual experience is still lacking. In the present study, a dynamic aerogel based on V O 2 / SiO 2 core–shell nanospheres is proposed to serve as an energy-saving window. The effects of particle size, outer-to-inner diameter ratio, volume fraction, and thickness on the radiative properties of aerogel windows are studied theoretically by combining the Mie theory and the Monte Carlo method. In particular, the solar control ability and haze of the dynamic aerogel are computed. The results show that a 0.25 cm thick aerogel doped with core–shell nanospheres of D / d = 2 ( f v = 0.01%) achieves solar control ability of 124.2 W/m 2 . The solar transmittance and haze are 70% (55%) and 0.067 (0.097) for the insulating (metallic) phase. The present study provides a guideline for designing highly transparent aerogel windows with switchable solar transmittance and low haze for energy-saving buildings.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transparent aerogel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">VO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Visual experience</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic solar control</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Xiyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yuewen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, G.H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Xingjie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Mu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9614-5508</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1976</subfield><subfield code="g">285</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320597903</subfield><subfield code="w">(DE-600)2019804-8</subfield><subfield code="w">(DE-576)116451815</subfield><subfield code="x">1873-6785</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">285</subfield></datafield></record></collection>
|
author |
Pu, Jin Huan |
spellingShingle |
Pu, Jin Huan ddc 600 bkl 50.70 misc Transparent aerogel misc VO misc Visual experience misc Dynamic solar control Dynamic aerogel window with switchable solar transmittance and low haze |
authorStr |
Pu, Jin Huan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320597903 |
format |
electronic Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-6785 |
topic_title |
600 VZ 50.70 bkl Dynamic aerogel window with switchable solar transmittance and low haze Transparent aerogel VO Visual experience Dynamic solar control |
topic |
ddc 600 bkl 50.70 misc Transparent aerogel misc VO misc Visual experience misc Dynamic solar control |
topic_unstemmed |
ddc 600 bkl 50.70 misc Transparent aerogel misc VO misc Visual experience misc Dynamic solar control |
topic_browse |
ddc 600 bkl 50.70 misc Transparent aerogel misc VO misc Visual experience misc Dynamic solar control |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energy |
hierarchy_parent_id |
320597903 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 |
title |
Dynamic aerogel window with switchable solar transmittance and low haze |
ctrlnum |
(DE-627)ELV065659953 (ELSEVIER)S0360-5442(23)02831-1 |
title_full |
Dynamic aerogel window with switchable solar transmittance and low haze |
author_sort |
Pu, Jin Huan |
journal |
Energy |
journalStr |
Energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Pu, Jin Huan Yu, Xiyu Zhao, Yuewen Tang, G.H. Ren, Xingjie Du, Mu |
container_volume |
285 |
class |
600 VZ 50.70 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Pu, Jin Huan |
doi_str_mv |
10.1016/j.energy.2023.129437 |
normlink |
(ORCID)0000-0002-9614-5508 |
normlink_prefix_str_mv |
(orcid)0000-0002-9614-5508 |
dewey-full |
600 |
author2-role |
verfasserin |
title_sort |
dynamic aerogel window with switchable solar transmittance and low haze |
title_auth |
Dynamic aerogel window with switchable solar transmittance and low haze |
abstract |
Transparent aerogel window based on silica aerogel has been investigated for achieving energy-saving buildings. However, most of the attention was paid to the effective thermal conductivity and solar transmittance of the aerogel. The research on solar transmittance control and visual experience is still lacking. In the present study, a dynamic aerogel based on V O 2 / SiO 2 core–shell nanospheres is proposed to serve as an energy-saving window. The effects of particle size, outer-to-inner diameter ratio, volume fraction, and thickness on the radiative properties of aerogel windows are studied theoretically by combining the Mie theory and the Monte Carlo method. In particular, the solar control ability and haze of the dynamic aerogel are computed. The results show that a 0.25 cm thick aerogel doped with core–shell nanospheres of D / d = 2 ( f v = 0.01%) achieves solar control ability of 124.2 W/m 2 . The solar transmittance and haze are 70% (55%) and 0.067 (0.097) for the insulating (metallic) phase. The present study provides a guideline for designing highly transparent aerogel windows with switchable solar transmittance and low haze for energy-saving buildings. |
abstractGer |
Transparent aerogel window based on silica aerogel has been investigated for achieving energy-saving buildings. However, most of the attention was paid to the effective thermal conductivity and solar transmittance of the aerogel. The research on solar transmittance control and visual experience is still lacking. In the present study, a dynamic aerogel based on V O 2 / SiO 2 core–shell nanospheres is proposed to serve as an energy-saving window. The effects of particle size, outer-to-inner diameter ratio, volume fraction, and thickness on the radiative properties of aerogel windows are studied theoretically by combining the Mie theory and the Monte Carlo method. In particular, the solar control ability and haze of the dynamic aerogel are computed. The results show that a 0.25 cm thick aerogel doped with core–shell nanospheres of D / d = 2 ( f v = 0.01%) achieves solar control ability of 124.2 W/m 2 . The solar transmittance and haze are 70% (55%) and 0.067 (0.097) for the insulating (metallic) phase. The present study provides a guideline for designing highly transparent aerogel windows with switchable solar transmittance and low haze for energy-saving buildings. |
abstract_unstemmed |
Transparent aerogel window based on silica aerogel has been investigated for achieving energy-saving buildings. However, most of the attention was paid to the effective thermal conductivity and solar transmittance of the aerogel. The research on solar transmittance control and visual experience is still lacking. In the present study, a dynamic aerogel based on V O 2 / SiO 2 core–shell nanospheres is proposed to serve as an energy-saving window. The effects of particle size, outer-to-inner diameter ratio, volume fraction, and thickness on the radiative properties of aerogel windows are studied theoretically by combining the Mie theory and the Monte Carlo method. In particular, the solar control ability and haze of the dynamic aerogel are computed. The results show that a 0.25 cm thick aerogel doped with core–shell nanospheres of D / d = 2 ( f v = 0.01%) achieves solar control ability of 124.2 W/m 2 . The solar transmittance and haze are 70% (55%) and 0.067 (0.097) for the insulating (metallic) phase. The present study provides a guideline for designing highly transparent aerogel windows with switchable solar transmittance and low haze for energy-saving buildings. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Dynamic aerogel window with switchable solar transmittance and low haze |
remote_bool |
true |
author2 |
Yu, Xiyu Zhao, Yuewen Tang, G.H. Ren, Xingjie Du, Mu |
author2Str |
Yu, Xiyu Zhao, Yuewen Tang, G.H. Ren, Xingjie Du, Mu |
ppnlink |
320597903 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.energy.2023.129437 |
up_date |
2024-07-06T23:48:21.568Z |
_version_ |
1803875465633464320 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065659953</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231118093234.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231118s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.energy.2023.129437</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065659953</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-5442(23)02831-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pu, Jin Huan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic aerogel window with switchable solar transmittance and low haze</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Transparent aerogel window based on silica aerogel has been investigated for achieving energy-saving buildings. However, most of the attention was paid to the effective thermal conductivity and solar transmittance of the aerogel. The research on solar transmittance control and visual experience is still lacking. In the present study, a dynamic aerogel based on V O 2 / SiO 2 core–shell nanospheres is proposed to serve as an energy-saving window. The effects of particle size, outer-to-inner diameter ratio, volume fraction, and thickness on the radiative properties of aerogel windows are studied theoretically by combining the Mie theory and the Monte Carlo method. In particular, the solar control ability and haze of the dynamic aerogel are computed. The results show that a 0.25 cm thick aerogel doped with core–shell nanospheres of D / d = 2 ( f v = 0.01%) achieves solar control ability of 124.2 W/m 2 . The solar transmittance and haze are 70% (55%) and 0.067 (0.097) for the insulating (metallic) phase. The present study provides a guideline for designing highly transparent aerogel windows with switchable solar transmittance and low haze for energy-saving buildings.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transparent aerogel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">VO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Visual experience</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic solar control</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Xiyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yuewen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, G.H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Xingjie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Mu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9614-5508</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1976</subfield><subfield code="g">285</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320597903</subfield><subfield code="w">(DE-600)2019804-8</subfield><subfield code="w">(DE-576)116451815</subfield><subfield code="x">1873-6785</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">285</subfield></datafield></record></collection>
|
score |
7.4025326 |