Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets
The scale-up of urban electric vehicle (EV) fleets, driven by environmental benefits, is resulting in surging aggregate energy demands that may reshape a city's power supply. This paper establishes an integrated data-driven assessment model for investigating the energy use (kWh) patterns and ch...
Ausführliche Beschreibung
Autor*in: |
Zhao, Yang [verfasserIn] Jiang, Ziyue [verfasserIn] Chen, Xinyu [verfasserIn] Liu, Peng [verfasserIn] Peng, Tianduo [verfasserIn] Shu, Zhan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Energy - Amsterdam [u.a.] : Elsevier Science, 1976, 285 |
---|---|
Übergeordnetes Werk: |
volume:285 |
DOI / URN: |
10.1016/j.energy.2023.129465 |
---|
Katalog-ID: |
ELV065660145 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV065660145 | ||
003 | DE-627 | ||
005 | 20231118093234.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231118s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.energy.2023.129465 |2 doi | |
035 | |a (DE-627)ELV065660145 | ||
035 | |a (ELSEVIER)S0360-5442(23)02859-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q VZ |
084 | |a 50.70 |2 bkl | ||
100 | 1 | |a Zhao, Yang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The scale-up of urban electric vehicle (EV) fleets, driven by environmental benefits, is resulting in surging aggregate energy demands that may reshape a city's power supply. This paper establishes an integrated data-driven assessment model for investigating the energy use (kWh) patterns and charging load (kW) profiles of urban-scale EV fleets. To this end, urban EV operating and operational datasets are linked with climate data and vehicle specifications. Four vehicle fleet types are distinguished: private, taxi, rental, and business fleets. Statistical models regarding distribution analysis, spectrum analysis, and identical distribution tests are employed to analyze the patterns of driving distances, energy consumption, and shares of active charging EVs. The minute-level changes in charging EV numbers and aggregate charging power are examined to reflect the grid load impact. The results show that private light-duty EVs in Beijing consume an average of 9.1 kWh/day, with more charging activities on Fridays. The primary load peaks of light-duty EVs in Beijing usually occur between 11 p.m. and 1 a.m., attributable chiefly to the private fleet's midnight peak load estimated at 28 % of the total daily charging private EV count multiplied by 5.5 kW/EV. Secondary peaks occur between 8 a.m. and 10 a.m. on weekdays for private fleets, and at 4 p.m. for public fleets. Our work can be extensively used for analyses on transport emissions, urban power supply, infrastructure build-ups, and policymaking. | ||
650 | 4 | |a Electric vehicles | |
650 | 4 | |a Energy use patterns | |
650 | 4 | |a Load profiles | |
650 | 4 | |a Statistical analysis | |
650 | 4 | |a Energy and environment | |
700 | 1 | |a Jiang, Ziyue |e verfasserin |4 aut | |
700 | 1 | |a Chen, Xinyu |e verfasserin |0 (orcid)0000-0001-5816-8621 |4 aut | |
700 | 1 | |a Liu, Peng |e verfasserin |4 aut | |
700 | 1 | |a Peng, Tianduo |e verfasserin |0 (orcid)0000-0002-9748-7315 |4 aut | |
700 | 1 | |a Shu, Zhan |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Energy |d Amsterdam [u.a.] : Elsevier Science, 1976 |g 285 |h Online-Ressource |w (DE-627)320597903 |w (DE-600)2019804-8 |w (DE-576)116451815 |x 1873-6785 |7 nnns |
773 | 1 | 8 | |g volume:285 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.70 |j Energie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 285 |
author_variant |
y z yz z j zj x c xc p l pl t p tp z s zs |
---|---|
matchkey_str |
article:18736785:2023----::oadniomnassanbltdtdieaayioeegueatrsnlapoie |
hierarchy_sort_str |
2023 |
bklnumber |
50.70 |
publishDate |
2023 |
allfields |
10.1016/j.energy.2023.129465 doi (DE-627)ELV065660145 (ELSEVIER)S0360-5442(23)02859-1 DE-627 ger DE-627 rda eng 600 VZ 50.70 bkl Zhao, Yang verfasserin aut Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The scale-up of urban electric vehicle (EV) fleets, driven by environmental benefits, is resulting in surging aggregate energy demands that may reshape a city's power supply. This paper establishes an integrated data-driven assessment model for investigating the energy use (kWh) patterns and charging load (kW) profiles of urban-scale EV fleets. To this end, urban EV operating and operational datasets are linked with climate data and vehicle specifications. Four vehicle fleet types are distinguished: private, taxi, rental, and business fleets. Statistical models regarding distribution analysis, spectrum analysis, and identical distribution tests are employed to analyze the patterns of driving distances, energy consumption, and shares of active charging EVs. The minute-level changes in charging EV numbers and aggregate charging power are examined to reflect the grid load impact. The results show that private light-duty EVs in Beijing consume an average of 9.1 kWh/day, with more charging activities on Fridays. The primary load peaks of light-duty EVs in Beijing usually occur between 11 p.m. and 1 a.m., attributable chiefly to the private fleet's midnight peak load estimated at 28 % of the total daily charging private EV count multiplied by 5.5 kW/EV. Secondary peaks occur between 8 a.m. and 10 a.m. on weekdays for private fleets, and at 4 p.m. for public fleets. Our work can be extensively used for analyses on transport emissions, urban power supply, infrastructure build-ups, and policymaking. Electric vehicles Energy use patterns Load profiles Statistical analysis Energy and environment Jiang, Ziyue verfasserin aut Chen, Xinyu verfasserin (orcid)0000-0001-5816-8621 aut Liu, Peng verfasserin aut Peng, Tianduo verfasserin (orcid)0000-0002-9748-7315 aut Shu, Zhan verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 285 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:285 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.70 Energie: Allgemeines VZ AR 285 |
spelling |
10.1016/j.energy.2023.129465 doi (DE-627)ELV065660145 (ELSEVIER)S0360-5442(23)02859-1 DE-627 ger DE-627 rda eng 600 VZ 50.70 bkl Zhao, Yang verfasserin aut Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The scale-up of urban electric vehicle (EV) fleets, driven by environmental benefits, is resulting in surging aggregate energy demands that may reshape a city's power supply. This paper establishes an integrated data-driven assessment model for investigating the energy use (kWh) patterns and charging load (kW) profiles of urban-scale EV fleets. To this end, urban EV operating and operational datasets are linked with climate data and vehicle specifications. Four vehicle fleet types are distinguished: private, taxi, rental, and business fleets. Statistical models regarding distribution analysis, spectrum analysis, and identical distribution tests are employed to analyze the patterns of driving distances, energy consumption, and shares of active charging EVs. The minute-level changes in charging EV numbers and aggregate charging power are examined to reflect the grid load impact. The results show that private light-duty EVs in Beijing consume an average of 9.1 kWh/day, with more charging activities on Fridays. The primary load peaks of light-duty EVs in Beijing usually occur between 11 p.m. and 1 a.m., attributable chiefly to the private fleet's midnight peak load estimated at 28 % of the total daily charging private EV count multiplied by 5.5 kW/EV. Secondary peaks occur between 8 a.m. and 10 a.m. on weekdays for private fleets, and at 4 p.m. for public fleets. Our work can be extensively used for analyses on transport emissions, urban power supply, infrastructure build-ups, and policymaking. Electric vehicles Energy use patterns Load profiles Statistical analysis Energy and environment Jiang, Ziyue verfasserin aut Chen, Xinyu verfasserin (orcid)0000-0001-5816-8621 aut Liu, Peng verfasserin aut Peng, Tianduo verfasserin (orcid)0000-0002-9748-7315 aut Shu, Zhan verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 285 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:285 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.70 Energie: Allgemeines VZ AR 285 |
allfields_unstemmed |
10.1016/j.energy.2023.129465 doi (DE-627)ELV065660145 (ELSEVIER)S0360-5442(23)02859-1 DE-627 ger DE-627 rda eng 600 VZ 50.70 bkl Zhao, Yang verfasserin aut Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The scale-up of urban electric vehicle (EV) fleets, driven by environmental benefits, is resulting in surging aggregate energy demands that may reshape a city's power supply. This paper establishes an integrated data-driven assessment model for investigating the energy use (kWh) patterns and charging load (kW) profiles of urban-scale EV fleets. To this end, urban EV operating and operational datasets are linked with climate data and vehicle specifications. Four vehicle fleet types are distinguished: private, taxi, rental, and business fleets. Statistical models regarding distribution analysis, spectrum analysis, and identical distribution tests are employed to analyze the patterns of driving distances, energy consumption, and shares of active charging EVs. The minute-level changes in charging EV numbers and aggregate charging power are examined to reflect the grid load impact. The results show that private light-duty EVs in Beijing consume an average of 9.1 kWh/day, with more charging activities on Fridays. The primary load peaks of light-duty EVs in Beijing usually occur between 11 p.m. and 1 a.m., attributable chiefly to the private fleet's midnight peak load estimated at 28 % of the total daily charging private EV count multiplied by 5.5 kW/EV. Secondary peaks occur between 8 a.m. and 10 a.m. on weekdays for private fleets, and at 4 p.m. for public fleets. Our work can be extensively used for analyses on transport emissions, urban power supply, infrastructure build-ups, and policymaking. Electric vehicles Energy use patterns Load profiles Statistical analysis Energy and environment Jiang, Ziyue verfasserin aut Chen, Xinyu verfasserin (orcid)0000-0001-5816-8621 aut Liu, Peng verfasserin aut Peng, Tianduo verfasserin (orcid)0000-0002-9748-7315 aut Shu, Zhan verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 285 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:285 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.70 Energie: Allgemeines VZ AR 285 |
allfieldsGer |
10.1016/j.energy.2023.129465 doi (DE-627)ELV065660145 (ELSEVIER)S0360-5442(23)02859-1 DE-627 ger DE-627 rda eng 600 VZ 50.70 bkl Zhao, Yang verfasserin aut Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The scale-up of urban electric vehicle (EV) fleets, driven by environmental benefits, is resulting in surging aggregate energy demands that may reshape a city's power supply. This paper establishes an integrated data-driven assessment model for investigating the energy use (kWh) patterns and charging load (kW) profiles of urban-scale EV fleets. To this end, urban EV operating and operational datasets are linked with climate data and vehicle specifications. Four vehicle fleet types are distinguished: private, taxi, rental, and business fleets. Statistical models regarding distribution analysis, spectrum analysis, and identical distribution tests are employed to analyze the patterns of driving distances, energy consumption, and shares of active charging EVs. The minute-level changes in charging EV numbers and aggregate charging power are examined to reflect the grid load impact. The results show that private light-duty EVs in Beijing consume an average of 9.1 kWh/day, with more charging activities on Fridays. The primary load peaks of light-duty EVs in Beijing usually occur between 11 p.m. and 1 a.m., attributable chiefly to the private fleet's midnight peak load estimated at 28 % of the total daily charging private EV count multiplied by 5.5 kW/EV. Secondary peaks occur between 8 a.m. and 10 a.m. on weekdays for private fleets, and at 4 p.m. for public fleets. Our work can be extensively used for analyses on transport emissions, urban power supply, infrastructure build-ups, and policymaking. Electric vehicles Energy use patterns Load profiles Statistical analysis Energy and environment Jiang, Ziyue verfasserin aut Chen, Xinyu verfasserin (orcid)0000-0001-5816-8621 aut Liu, Peng verfasserin aut Peng, Tianduo verfasserin (orcid)0000-0002-9748-7315 aut Shu, Zhan verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 285 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:285 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.70 Energie: Allgemeines VZ AR 285 |
allfieldsSound |
10.1016/j.energy.2023.129465 doi (DE-627)ELV065660145 (ELSEVIER)S0360-5442(23)02859-1 DE-627 ger DE-627 rda eng 600 VZ 50.70 bkl Zhao, Yang verfasserin aut Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The scale-up of urban electric vehicle (EV) fleets, driven by environmental benefits, is resulting in surging aggregate energy demands that may reshape a city's power supply. This paper establishes an integrated data-driven assessment model for investigating the energy use (kWh) patterns and charging load (kW) profiles of urban-scale EV fleets. To this end, urban EV operating and operational datasets are linked with climate data and vehicle specifications. Four vehicle fleet types are distinguished: private, taxi, rental, and business fleets. Statistical models regarding distribution analysis, spectrum analysis, and identical distribution tests are employed to analyze the patterns of driving distances, energy consumption, and shares of active charging EVs. The minute-level changes in charging EV numbers and aggregate charging power are examined to reflect the grid load impact. The results show that private light-duty EVs in Beijing consume an average of 9.1 kWh/day, with more charging activities on Fridays. The primary load peaks of light-duty EVs in Beijing usually occur between 11 p.m. and 1 a.m., attributable chiefly to the private fleet's midnight peak load estimated at 28 % of the total daily charging private EV count multiplied by 5.5 kW/EV. Secondary peaks occur between 8 a.m. and 10 a.m. on weekdays for private fleets, and at 4 p.m. for public fleets. Our work can be extensively used for analyses on transport emissions, urban power supply, infrastructure build-ups, and policymaking. Electric vehicles Energy use patterns Load profiles Statistical analysis Energy and environment Jiang, Ziyue verfasserin aut Chen, Xinyu verfasserin (orcid)0000-0001-5816-8621 aut Liu, Peng verfasserin aut Peng, Tianduo verfasserin (orcid)0000-0002-9748-7315 aut Shu, Zhan verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 285 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:285 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.70 Energie: Allgemeines VZ AR 285 |
language |
English |
source |
Enthalten in Energy 285 volume:285 |
sourceStr |
Enthalten in Energy 285 volume:285 |
format_phy_str_mv |
Article |
bklname |
Energie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Electric vehicles Energy use patterns Load profiles Statistical analysis Energy and environment |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Energy |
authorswithroles_txt_mv |
Zhao, Yang @@aut@@ Jiang, Ziyue @@aut@@ Chen, Xinyu @@aut@@ Liu, Peng @@aut@@ Peng, Tianduo @@aut@@ Shu, Zhan @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320597903 |
dewey-sort |
3600 |
id |
ELV065660145 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065660145</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231118093234.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231118s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.energy.2023.129465</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065660145</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-5442(23)02859-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhao, Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The scale-up of urban electric vehicle (EV) fleets, driven by environmental benefits, is resulting in surging aggregate energy demands that may reshape a city's power supply. This paper establishes an integrated data-driven assessment model for investigating the energy use (kWh) patterns and charging load (kW) profiles of urban-scale EV fleets. To this end, urban EV operating and operational datasets are linked with climate data and vehicle specifications. Four vehicle fleet types are distinguished: private, taxi, rental, and business fleets. Statistical models regarding distribution analysis, spectrum analysis, and identical distribution tests are employed to analyze the patterns of driving distances, energy consumption, and shares of active charging EVs. The minute-level changes in charging EV numbers and aggregate charging power are examined to reflect the grid load impact. The results show that private light-duty EVs in Beijing consume an average of 9.1 kWh/day, with more charging activities on Fridays. The primary load peaks of light-duty EVs in Beijing usually occur between 11 p.m. and 1 a.m., attributable chiefly to the private fleet's midnight peak load estimated at 28 % of the total daily charging private EV count multiplied by 5.5 kW/EV. Secondary peaks occur between 8 a.m. and 10 a.m. on weekdays for private fleets, and at 4 p.m. for public fleets. Our work can be extensively used for analyses on transport emissions, urban power supply, infrastructure build-ups, and policymaking.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric vehicles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy use patterns</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Load profiles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy and environment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Ziyue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Xinyu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5816-8621</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Peng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Tianduo</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9748-7315</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shu, Zhan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1976</subfield><subfield code="g">285</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320597903</subfield><subfield code="w">(DE-600)2019804-8</subfield><subfield code="w">(DE-576)116451815</subfield><subfield code="x">1873-6785</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">285</subfield></datafield></record></collection>
|
author |
Zhao, Yang |
spellingShingle |
Zhao, Yang ddc 600 bkl 50.70 misc Electric vehicles misc Energy use patterns misc Load profiles misc Statistical analysis misc Energy and environment Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets |
authorStr |
Zhao, Yang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320597903 |
format |
electronic Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-6785 |
topic_title |
600 VZ 50.70 bkl Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets Electric vehicles Energy use patterns Load profiles Statistical analysis Energy and environment |
topic |
ddc 600 bkl 50.70 misc Electric vehicles misc Energy use patterns misc Load profiles misc Statistical analysis misc Energy and environment |
topic_unstemmed |
ddc 600 bkl 50.70 misc Electric vehicles misc Energy use patterns misc Load profiles misc Statistical analysis misc Energy and environment |
topic_browse |
ddc 600 bkl 50.70 misc Electric vehicles misc Energy use patterns misc Load profiles misc Statistical analysis misc Energy and environment |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energy |
hierarchy_parent_id |
320597903 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 |
title |
Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets |
ctrlnum |
(DE-627)ELV065660145 (ELSEVIER)S0360-5442(23)02859-1 |
title_full |
Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets |
author_sort |
Zhao, Yang |
journal |
Energy |
journalStr |
Energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Zhao, Yang Jiang, Ziyue Chen, Xinyu Liu, Peng Peng, Tianduo Shu, Zhan |
container_volume |
285 |
class |
600 VZ 50.70 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhao, Yang |
doi_str_mv |
10.1016/j.energy.2023.129465 |
normlink |
(ORCID)0000-0001-5816-8621 (ORCID)0000-0002-9748-7315 |
normlink_prefix_str_mv |
(orcid)0000-0001-5816-8621 (orcid)0000-0002-9748-7315 |
dewey-full |
600 |
author2-role |
verfasserin |
title_sort |
toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets |
title_auth |
Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets |
abstract |
The scale-up of urban electric vehicle (EV) fleets, driven by environmental benefits, is resulting in surging aggregate energy demands that may reshape a city's power supply. This paper establishes an integrated data-driven assessment model for investigating the energy use (kWh) patterns and charging load (kW) profiles of urban-scale EV fleets. To this end, urban EV operating and operational datasets are linked with climate data and vehicle specifications. Four vehicle fleet types are distinguished: private, taxi, rental, and business fleets. Statistical models regarding distribution analysis, spectrum analysis, and identical distribution tests are employed to analyze the patterns of driving distances, energy consumption, and shares of active charging EVs. The minute-level changes in charging EV numbers and aggregate charging power are examined to reflect the grid load impact. The results show that private light-duty EVs in Beijing consume an average of 9.1 kWh/day, with more charging activities on Fridays. The primary load peaks of light-duty EVs in Beijing usually occur between 11 p.m. and 1 a.m., attributable chiefly to the private fleet's midnight peak load estimated at 28 % of the total daily charging private EV count multiplied by 5.5 kW/EV. Secondary peaks occur between 8 a.m. and 10 a.m. on weekdays for private fleets, and at 4 p.m. for public fleets. Our work can be extensively used for analyses on transport emissions, urban power supply, infrastructure build-ups, and policymaking. |
abstractGer |
The scale-up of urban electric vehicle (EV) fleets, driven by environmental benefits, is resulting in surging aggregate energy demands that may reshape a city's power supply. This paper establishes an integrated data-driven assessment model for investigating the energy use (kWh) patterns and charging load (kW) profiles of urban-scale EV fleets. To this end, urban EV operating and operational datasets are linked with climate data and vehicle specifications. Four vehicle fleet types are distinguished: private, taxi, rental, and business fleets. Statistical models regarding distribution analysis, spectrum analysis, and identical distribution tests are employed to analyze the patterns of driving distances, energy consumption, and shares of active charging EVs. The minute-level changes in charging EV numbers and aggregate charging power are examined to reflect the grid load impact. The results show that private light-duty EVs in Beijing consume an average of 9.1 kWh/day, with more charging activities on Fridays. The primary load peaks of light-duty EVs in Beijing usually occur between 11 p.m. and 1 a.m., attributable chiefly to the private fleet's midnight peak load estimated at 28 % of the total daily charging private EV count multiplied by 5.5 kW/EV. Secondary peaks occur between 8 a.m. and 10 a.m. on weekdays for private fleets, and at 4 p.m. for public fleets. Our work can be extensively used for analyses on transport emissions, urban power supply, infrastructure build-ups, and policymaking. |
abstract_unstemmed |
The scale-up of urban electric vehicle (EV) fleets, driven by environmental benefits, is resulting in surging aggregate energy demands that may reshape a city's power supply. This paper establishes an integrated data-driven assessment model for investigating the energy use (kWh) patterns and charging load (kW) profiles of urban-scale EV fleets. To this end, urban EV operating and operational datasets are linked with climate data and vehicle specifications. Four vehicle fleet types are distinguished: private, taxi, rental, and business fleets. Statistical models regarding distribution analysis, spectrum analysis, and identical distribution tests are employed to analyze the patterns of driving distances, energy consumption, and shares of active charging EVs. The minute-level changes in charging EV numbers and aggregate charging power are examined to reflect the grid load impact. The results show that private light-duty EVs in Beijing consume an average of 9.1 kWh/day, with more charging activities on Fridays. The primary load peaks of light-duty EVs in Beijing usually occur between 11 p.m. and 1 a.m., attributable chiefly to the private fleet's midnight peak load estimated at 28 % of the total daily charging private EV count multiplied by 5.5 kW/EV. Secondary peaks occur between 8 a.m. and 10 a.m. on weekdays for private fleets, and at 4 p.m. for public fleets. Our work can be extensively used for analyses on transport emissions, urban power supply, infrastructure build-ups, and policymaking. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets |
remote_bool |
true |
author2 |
Jiang, Ziyue Chen, Xinyu Liu, Peng Peng, Tianduo Shu, Zhan |
author2Str |
Jiang, Ziyue Chen, Xinyu Liu, Peng Peng, Tianduo Shu, Zhan |
ppnlink |
320597903 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.energy.2023.129465 |
up_date |
2024-07-06T23:48:23.774Z |
_version_ |
1803875467946622976 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065660145</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231118093234.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231118s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.energy.2023.129465</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065660145</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-5442(23)02859-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhao, Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The scale-up of urban electric vehicle (EV) fleets, driven by environmental benefits, is resulting in surging aggregate energy demands that may reshape a city's power supply. This paper establishes an integrated data-driven assessment model for investigating the energy use (kWh) patterns and charging load (kW) profiles of urban-scale EV fleets. To this end, urban EV operating and operational datasets are linked with climate data and vehicle specifications. Four vehicle fleet types are distinguished: private, taxi, rental, and business fleets. Statistical models regarding distribution analysis, spectrum analysis, and identical distribution tests are employed to analyze the patterns of driving distances, energy consumption, and shares of active charging EVs. The minute-level changes in charging EV numbers and aggregate charging power are examined to reflect the grid load impact. The results show that private light-duty EVs in Beijing consume an average of 9.1 kWh/day, with more charging activities on Fridays. The primary load peaks of light-duty EVs in Beijing usually occur between 11 p.m. and 1 a.m., attributable chiefly to the private fleet's midnight peak load estimated at 28 % of the total daily charging private EV count multiplied by 5.5 kW/EV. Secondary peaks occur between 8 a.m. and 10 a.m. on weekdays for private fleets, and at 4 p.m. for public fleets. Our work can be extensively used for analyses on transport emissions, urban power supply, infrastructure build-ups, and policymaking.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric vehicles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy use patterns</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Load profiles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy and environment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Ziyue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Xinyu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5816-8621</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Peng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Tianduo</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9748-7315</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shu, Zhan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1976</subfield><subfield code="g">285</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320597903</subfield><subfield code="w">(DE-600)2019804-8</subfield><subfield code="w">(DE-576)116451815</subfield><subfield code="x">1873-6785</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">285</subfield></datafield></record></collection>
|
score |
7.4019136 |