Dual-channel early rumor detection based on factual evidence
Social media facilitates people's free expression and communication, but it also provides a platform for the generation and dissemination of rumors. In order to curb the spread of rumors in time and minimize their harm, early rumor detection methods were born and became a research hotspot. Earl...
Ausführliche Beschreibung
Autor*in: |
Wu, Yue [verfasserIn] Sun, Jiehu [verfasserIn] Yuan, Xue [verfasserIn] Huang, Zengxi [verfasserIn] Dai, Jiangchun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Expert systems with applications - Amsterdam [u.a.] : Elsevier Science, 1990, 238 |
---|---|
Übergeordnetes Werk: |
volume:238 |
DOI / URN: |
10.1016/j.eswa.2023.121928 |
---|
Katalog-ID: |
ELV065673735 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV065673735 | ||
003 | DE-627 | ||
005 | 20231119093103.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231119s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.eswa.2023.121928 |2 doi | |
035 | |a (DE-627)ELV065673735 | ||
035 | |a (ELSEVIER)S0957-4174(23)02430-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 54.72 |2 bkl | ||
100 | 1 | |a Wu, Yue |e verfasserin |0 (orcid)0000-0003-0775-8060 |4 aut | |
245 | 1 | 0 | |a Dual-channel early rumor detection based on factual evidence |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Social media facilitates people's free expression and communication, but it also provides a platform for the generation and dissemination of rumors. In order to curb the spread of rumors in time and minimize their harm, early rumor detection methods were born and became a research hotspot. Early rumor detection requires a balance between accuracy and timeliness, but most existing methods only focused on accuracy and neglected efficiency. In this regard, we analyze a large number of Internet rumors and found that some rumors have been repeatedly spread after a small amount of modification. Such old rumors can be quickly and easily identified through factual evidence, while other new rumors require more clues and time to crack. Based on this insight, we propose a dual-channel early rumor detection model named ERD-DC (Early Rumor Detection-Dual-Channel), which leverages deep learning algorithms. Specifically, ERD-DC consists of two distinct channels, a fast channel referred to as channel-E (channel-Easy) and a slow channel named channel-D (channel-Difficult). In the ERD-DC, posts are divided into ‘easy-to-identify’ and ‘difficult-to-identify’ based on the availability of relevant evidence online. Subsequently, both types of posts are directed to their respective channels for detection. Channel-E focuses on identifying easy-to-identify rumors through a straightforward and swift post-evidence matching process, primarily aimed at enhancing timeliness. In parallel, channel-D is tasked with uncovering difficult-to-identify rumors, leveraging a more comprehensive analysis of user behaviors and posts transmission structures to elevate overall accuracy. Experimental results on two real datasets demonstrate that ERD-DC outperforms other state-of-the-art models significantly in early rumor detection with an accuracy rate of 84%. | ||
650 | 4 | |a Early rumor detection | |
650 | 4 | |a Deep learning | |
650 | 4 | |a Dual-channel | |
650 | 4 | |a Factual evidence | |
700 | 1 | |a Sun, Jiehu |e verfasserin |4 aut | |
700 | 1 | |a Yuan, Xue |e verfasserin |4 aut | |
700 | 1 | |a Huang, Zengxi |e verfasserin |4 aut | |
700 | 1 | |a Dai, Jiangchun |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Expert systems with applications |d Amsterdam [u.a.] : Elsevier Science, 1990 |g 238 |h Online-Ressource |w (DE-627)320577961 |w (DE-600)2017237-0 |w (DE-576)11481807X |7 nnns |
773 | 1 | 8 | |g volume:238 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 54.72 |j Künstliche Intelligenz |q VZ |
951 | |a AR | ||
952 | |d 238 |
author_variant |
y w yw j s js x y xy z h zh j d jd |
---|---|
matchkey_str |
wuyuesunjiehuyuanxuehuangzengxidaijiangc:2023----:ulhneeryuodtcinaeof |
hierarchy_sort_str |
2023 |
bklnumber |
54.72 |
publishDate |
2023 |
allfields |
10.1016/j.eswa.2023.121928 doi (DE-627)ELV065673735 (ELSEVIER)S0957-4174(23)02430-2 DE-627 ger DE-627 rda eng 004 VZ 54.72 bkl Wu, Yue verfasserin (orcid)0000-0003-0775-8060 aut Dual-channel early rumor detection based on factual evidence 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Social media facilitates people's free expression and communication, but it also provides a platform for the generation and dissemination of rumors. In order to curb the spread of rumors in time and minimize their harm, early rumor detection methods were born and became a research hotspot. Early rumor detection requires a balance between accuracy and timeliness, but most existing methods only focused on accuracy and neglected efficiency. In this regard, we analyze a large number of Internet rumors and found that some rumors have been repeatedly spread after a small amount of modification. Such old rumors can be quickly and easily identified through factual evidence, while other new rumors require more clues and time to crack. Based on this insight, we propose a dual-channel early rumor detection model named ERD-DC (Early Rumor Detection-Dual-Channel), which leverages deep learning algorithms. Specifically, ERD-DC consists of two distinct channels, a fast channel referred to as channel-E (channel-Easy) and a slow channel named channel-D (channel-Difficult). In the ERD-DC, posts are divided into ‘easy-to-identify’ and ‘difficult-to-identify’ based on the availability of relevant evidence online. Subsequently, both types of posts are directed to their respective channels for detection. Channel-E focuses on identifying easy-to-identify rumors through a straightforward and swift post-evidence matching process, primarily aimed at enhancing timeliness. In parallel, channel-D is tasked with uncovering difficult-to-identify rumors, leveraging a more comprehensive analysis of user behaviors and posts transmission structures to elevate overall accuracy. Experimental results on two real datasets demonstrate that ERD-DC outperforms other state-of-the-art models significantly in early rumor detection with an accuracy rate of 84%. Early rumor detection Deep learning Dual-channel Factual evidence Sun, Jiehu verfasserin aut Yuan, Xue verfasserin aut Huang, Zengxi verfasserin aut Dai, Jiangchun verfasserin aut Enthalten in Expert systems with applications Amsterdam [u.a.] : Elsevier Science, 1990 238 Online-Ressource (DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X nnns volume:238 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 238 |
spelling |
10.1016/j.eswa.2023.121928 doi (DE-627)ELV065673735 (ELSEVIER)S0957-4174(23)02430-2 DE-627 ger DE-627 rda eng 004 VZ 54.72 bkl Wu, Yue verfasserin (orcid)0000-0003-0775-8060 aut Dual-channel early rumor detection based on factual evidence 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Social media facilitates people's free expression and communication, but it also provides a platform for the generation and dissemination of rumors. In order to curb the spread of rumors in time and minimize their harm, early rumor detection methods were born and became a research hotspot. Early rumor detection requires a balance between accuracy and timeliness, but most existing methods only focused on accuracy and neglected efficiency. In this regard, we analyze a large number of Internet rumors and found that some rumors have been repeatedly spread after a small amount of modification. Such old rumors can be quickly and easily identified through factual evidence, while other new rumors require more clues and time to crack. Based on this insight, we propose a dual-channel early rumor detection model named ERD-DC (Early Rumor Detection-Dual-Channel), which leverages deep learning algorithms. Specifically, ERD-DC consists of two distinct channels, a fast channel referred to as channel-E (channel-Easy) and a slow channel named channel-D (channel-Difficult). In the ERD-DC, posts are divided into ‘easy-to-identify’ and ‘difficult-to-identify’ based on the availability of relevant evidence online. Subsequently, both types of posts are directed to their respective channels for detection. Channel-E focuses on identifying easy-to-identify rumors through a straightforward and swift post-evidence matching process, primarily aimed at enhancing timeliness. In parallel, channel-D is tasked with uncovering difficult-to-identify rumors, leveraging a more comprehensive analysis of user behaviors and posts transmission structures to elevate overall accuracy. Experimental results on two real datasets demonstrate that ERD-DC outperforms other state-of-the-art models significantly in early rumor detection with an accuracy rate of 84%. Early rumor detection Deep learning Dual-channel Factual evidence Sun, Jiehu verfasserin aut Yuan, Xue verfasserin aut Huang, Zengxi verfasserin aut Dai, Jiangchun verfasserin aut Enthalten in Expert systems with applications Amsterdam [u.a.] : Elsevier Science, 1990 238 Online-Ressource (DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X nnns volume:238 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 238 |
allfields_unstemmed |
10.1016/j.eswa.2023.121928 doi (DE-627)ELV065673735 (ELSEVIER)S0957-4174(23)02430-2 DE-627 ger DE-627 rda eng 004 VZ 54.72 bkl Wu, Yue verfasserin (orcid)0000-0003-0775-8060 aut Dual-channel early rumor detection based on factual evidence 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Social media facilitates people's free expression and communication, but it also provides a platform for the generation and dissemination of rumors. In order to curb the spread of rumors in time and minimize their harm, early rumor detection methods were born and became a research hotspot. Early rumor detection requires a balance between accuracy and timeliness, but most existing methods only focused on accuracy and neglected efficiency. In this regard, we analyze a large number of Internet rumors and found that some rumors have been repeatedly spread after a small amount of modification. Such old rumors can be quickly and easily identified through factual evidence, while other new rumors require more clues and time to crack. Based on this insight, we propose a dual-channel early rumor detection model named ERD-DC (Early Rumor Detection-Dual-Channel), which leverages deep learning algorithms. Specifically, ERD-DC consists of two distinct channels, a fast channel referred to as channel-E (channel-Easy) and a slow channel named channel-D (channel-Difficult). In the ERD-DC, posts are divided into ‘easy-to-identify’ and ‘difficult-to-identify’ based on the availability of relevant evidence online. Subsequently, both types of posts are directed to their respective channels for detection. Channel-E focuses on identifying easy-to-identify rumors through a straightforward and swift post-evidence matching process, primarily aimed at enhancing timeliness. In parallel, channel-D is tasked with uncovering difficult-to-identify rumors, leveraging a more comprehensive analysis of user behaviors and posts transmission structures to elevate overall accuracy. Experimental results on two real datasets demonstrate that ERD-DC outperforms other state-of-the-art models significantly in early rumor detection with an accuracy rate of 84%. Early rumor detection Deep learning Dual-channel Factual evidence Sun, Jiehu verfasserin aut Yuan, Xue verfasserin aut Huang, Zengxi verfasserin aut Dai, Jiangchun verfasserin aut Enthalten in Expert systems with applications Amsterdam [u.a.] : Elsevier Science, 1990 238 Online-Ressource (DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X nnns volume:238 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 238 |
allfieldsGer |
10.1016/j.eswa.2023.121928 doi (DE-627)ELV065673735 (ELSEVIER)S0957-4174(23)02430-2 DE-627 ger DE-627 rda eng 004 VZ 54.72 bkl Wu, Yue verfasserin (orcid)0000-0003-0775-8060 aut Dual-channel early rumor detection based on factual evidence 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Social media facilitates people's free expression and communication, but it also provides a platform for the generation and dissemination of rumors. In order to curb the spread of rumors in time and minimize their harm, early rumor detection methods were born and became a research hotspot. Early rumor detection requires a balance between accuracy and timeliness, but most existing methods only focused on accuracy and neglected efficiency. In this regard, we analyze a large number of Internet rumors and found that some rumors have been repeatedly spread after a small amount of modification. Such old rumors can be quickly and easily identified through factual evidence, while other new rumors require more clues and time to crack. Based on this insight, we propose a dual-channel early rumor detection model named ERD-DC (Early Rumor Detection-Dual-Channel), which leverages deep learning algorithms. Specifically, ERD-DC consists of two distinct channels, a fast channel referred to as channel-E (channel-Easy) and a slow channel named channel-D (channel-Difficult). In the ERD-DC, posts are divided into ‘easy-to-identify’ and ‘difficult-to-identify’ based on the availability of relevant evidence online. Subsequently, both types of posts are directed to their respective channels for detection. Channel-E focuses on identifying easy-to-identify rumors through a straightforward and swift post-evidence matching process, primarily aimed at enhancing timeliness. In parallel, channel-D is tasked with uncovering difficult-to-identify rumors, leveraging a more comprehensive analysis of user behaviors and posts transmission structures to elevate overall accuracy. Experimental results on two real datasets demonstrate that ERD-DC outperforms other state-of-the-art models significantly in early rumor detection with an accuracy rate of 84%. Early rumor detection Deep learning Dual-channel Factual evidence Sun, Jiehu verfasserin aut Yuan, Xue verfasserin aut Huang, Zengxi verfasserin aut Dai, Jiangchun verfasserin aut Enthalten in Expert systems with applications Amsterdam [u.a.] : Elsevier Science, 1990 238 Online-Ressource (DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X nnns volume:238 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 238 |
allfieldsSound |
10.1016/j.eswa.2023.121928 doi (DE-627)ELV065673735 (ELSEVIER)S0957-4174(23)02430-2 DE-627 ger DE-627 rda eng 004 VZ 54.72 bkl Wu, Yue verfasserin (orcid)0000-0003-0775-8060 aut Dual-channel early rumor detection based on factual evidence 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Social media facilitates people's free expression and communication, but it also provides a platform for the generation and dissemination of rumors. In order to curb the spread of rumors in time and minimize their harm, early rumor detection methods were born and became a research hotspot. Early rumor detection requires a balance between accuracy and timeliness, but most existing methods only focused on accuracy and neglected efficiency. In this regard, we analyze a large number of Internet rumors and found that some rumors have been repeatedly spread after a small amount of modification. Such old rumors can be quickly and easily identified through factual evidence, while other new rumors require more clues and time to crack. Based on this insight, we propose a dual-channel early rumor detection model named ERD-DC (Early Rumor Detection-Dual-Channel), which leverages deep learning algorithms. Specifically, ERD-DC consists of two distinct channels, a fast channel referred to as channel-E (channel-Easy) and a slow channel named channel-D (channel-Difficult). In the ERD-DC, posts are divided into ‘easy-to-identify’ and ‘difficult-to-identify’ based on the availability of relevant evidence online. Subsequently, both types of posts are directed to their respective channels for detection. Channel-E focuses on identifying easy-to-identify rumors through a straightforward and swift post-evidence matching process, primarily aimed at enhancing timeliness. In parallel, channel-D is tasked with uncovering difficult-to-identify rumors, leveraging a more comprehensive analysis of user behaviors and posts transmission structures to elevate overall accuracy. Experimental results on two real datasets demonstrate that ERD-DC outperforms other state-of-the-art models significantly in early rumor detection with an accuracy rate of 84%. Early rumor detection Deep learning Dual-channel Factual evidence Sun, Jiehu verfasserin aut Yuan, Xue verfasserin aut Huang, Zengxi verfasserin aut Dai, Jiangchun verfasserin aut Enthalten in Expert systems with applications Amsterdam [u.a.] : Elsevier Science, 1990 238 Online-Ressource (DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X nnns volume:238 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 238 |
language |
English |
source |
Enthalten in Expert systems with applications 238 volume:238 |
sourceStr |
Enthalten in Expert systems with applications 238 volume:238 |
format_phy_str_mv |
Article |
bklname |
Künstliche Intelligenz |
institution |
findex.gbv.de |
topic_facet |
Early rumor detection Deep learning Dual-channel Factual evidence |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Expert systems with applications |
authorswithroles_txt_mv |
Wu, Yue @@aut@@ Sun, Jiehu @@aut@@ Yuan, Xue @@aut@@ Huang, Zengxi @@aut@@ Dai, Jiangchun @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320577961 |
dewey-sort |
14 |
id |
ELV065673735 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065673735</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231119093103.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231119s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.eswa.2023.121928</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065673735</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0957-4174(23)02430-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Yue</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0775-8060</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dual-channel early rumor detection based on factual evidence</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Social media facilitates people's free expression and communication, but it also provides a platform for the generation and dissemination of rumors. In order to curb the spread of rumors in time and minimize their harm, early rumor detection methods were born and became a research hotspot. Early rumor detection requires a balance between accuracy and timeliness, but most existing methods only focused on accuracy and neglected efficiency. In this regard, we analyze a large number of Internet rumors and found that some rumors have been repeatedly spread after a small amount of modification. Such old rumors can be quickly and easily identified through factual evidence, while other new rumors require more clues and time to crack. Based on this insight, we propose a dual-channel early rumor detection model named ERD-DC (Early Rumor Detection-Dual-Channel), which leverages deep learning algorithms. Specifically, ERD-DC consists of two distinct channels, a fast channel referred to as channel-E (channel-Easy) and a slow channel named channel-D (channel-Difficult). In the ERD-DC, posts are divided into ‘easy-to-identify’ and ‘difficult-to-identify’ based on the availability of relevant evidence online. Subsequently, both types of posts are directed to their respective channels for detection. Channel-E focuses on identifying easy-to-identify rumors through a straightforward and swift post-evidence matching process, primarily aimed at enhancing timeliness. In parallel, channel-D is tasked with uncovering difficult-to-identify rumors, leveraging a more comprehensive analysis of user behaviors and posts transmission structures to elevate overall accuracy. Experimental results on two real datasets demonstrate that ERD-DC outperforms other state-of-the-art models significantly in early rumor detection with an accuracy rate of 84%.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Early rumor detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dual-channel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Factual evidence</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Jiehu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Zengxi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Jiangchun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Expert systems with applications</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1990</subfield><subfield code="g">238</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320577961</subfield><subfield code="w">(DE-600)2017237-0</subfield><subfield code="w">(DE-576)11481807X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:238</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">238</subfield></datafield></record></collection>
|
author |
Wu, Yue |
spellingShingle |
Wu, Yue ddc 004 bkl 54.72 misc Early rumor detection misc Deep learning misc Dual-channel misc Factual evidence Dual-channel early rumor detection based on factual evidence |
authorStr |
Wu, Yue |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320577961 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 VZ 54.72 bkl Dual-channel early rumor detection based on factual evidence Early rumor detection Deep learning Dual-channel Factual evidence |
topic |
ddc 004 bkl 54.72 misc Early rumor detection misc Deep learning misc Dual-channel misc Factual evidence |
topic_unstemmed |
ddc 004 bkl 54.72 misc Early rumor detection misc Deep learning misc Dual-channel misc Factual evidence |
topic_browse |
ddc 004 bkl 54.72 misc Early rumor detection misc Deep learning misc Dual-channel misc Factual evidence |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Expert systems with applications |
hierarchy_parent_id |
320577961 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Expert systems with applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X |
title |
Dual-channel early rumor detection based on factual evidence |
ctrlnum |
(DE-627)ELV065673735 (ELSEVIER)S0957-4174(23)02430-2 |
title_full |
Dual-channel early rumor detection based on factual evidence |
author_sort |
Wu, Yue |
journal |
Expert systems with applications |
journalStr |
Expert systems with applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Wu, Yue Sun, Jiehu Yuan, Xue Huang, Zengxi Dai, Jiangchun |
container_volume |
238 |
class |
004 VZ 54.72 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wu, Yue |
doi_str_mv |
10.1016/j.eswa.2023.121928 |
normlink |
(ORCID)0000-0003-0775-8060 |
normlink_prefix_str_mv |
(orcid)0000-0003-0775-8060 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
dual-channel early rumor detection based on factual evidence |
title_auth |
Dual-channel early rumor detection based on factual evidence |
abstract |
Social media facilitates people's free expression and communication, but it also provides a platform for the generation and dissemination of rumors. In order to curb the spread of rumors in time and minimize their harm, early rumor detection methods were born and became a research hotspot. Early rumor detection requires a balance between accuracy and timeliness, but most existing methods only focused on accuracy and neglected efficiency. In this regard, we analyze a large number of Internet rumors and found that some rumors have been repeatedly spread after a small amount of modification. Such old rumors can be quickly and easily identified through factual evidence, while other new rumors require more clues and time to crack. Based on this insight, we propose a dual-channel early rumor detection model named ERD-DC (Early Rumor Detection-Dual-Channel), which leverages deep learning algorithms. Specifically, ERD-DC consists of two distinct channels, a fast channel referred to as channel-E (channel-Easy) and a slow channel named channel-D (channel-Difficult). In the ERD-DC, posts are divided into ‘easy-to-identify’ and ‘difficult-to-identify’ based on the availability of relevant evidence online. Subsequently, both types of posts are directed to their respective channels for detection. Channel-E focuses on identifying easy-to-identify rumors through a straightforward and swift post-evidence matching process, primarily aimed at enhancing timeliness. In parallel, channel-D is tasked with uncovering difficult-to-identify rumors, leveraging a more comprehensive analysis of user behaviors and posts transmission structures to elevate overall accuracy. Experimental results on two real datasets demonstrate that ERD-DC outperforms other state-of-the-art models significantly in early rumor detection with an accuracy rate of 84%. |
abstractGer |
Social media facilitates people's free expression and communication, but it also provides a platform for the generation and dissemination of rumors. In order to curb the spread of rumors in time and minimize their harm, early rumor detection methods were born and became a research hotspot. Early rumor detection requires a balance between accuracy and timeliness, but most existing methods only focused on accuracy and neglected efficiency. In this regard, we analyze a large number of Internet rumors and found that some rumors have been repeatedly spread after a small amount of modification. Such old rumors can be quickly and easily identified through factual evidence, while other new rumors require more clues and time to crack. Based on this insight, we propose a dual-channel early rumor detection model named ERD-DC (Early Rumor Detection-Dual-Channel), which leverages deep learning algorithms. Specifically, ERD-DC consists of two distinct channels, a fast channel referred to as channel-E (channel-Easy) and a slow channel named channel-D (channel-Difficult). In the ERD-DC, posts are divided into ‘easy-to-identify’ and ‘difficult-to-identify’ based on the availability of relevant evidence online. Subsequently, both types of posts are directed to their respective channels for detection. Channel-E focuses on identifying easy-to-identify rumors through a straightforward and swift post-evidence matching process, primarily aimed at enhancing timeliness. In parallel, channel-D is tasked with uncovering difficult-to-identify rumors, leveraging a more comprehensive analysis of user behaviors and posts transmission structures to elevate overall accuracy. Experimental results on two real datasets demonstrate that ERD-DC outperforms other state-of-the-art models significantly in early rumor detection with an accuracy rate of 84%. |
abstract_unstemmed |
Social media facilitates people's free expression and communication, but it also provides a platform for the generation and dissemination of rumors. In order to curb the spread of rumors in time and minimize their harm, early rumor detection methods were born and became a research hotspot. Early rumor detection requires a balance between accuracy and timeliness, but most existing methods only focused on accuracy and neglected efficiency. In this regard, we analyze a large number of Internet rumors and found that some rumors have been repeatedly spread after a small amount of modification. Such old rumors can be quickly and easily identified through factual evidence, while other new rumors require more clues and time to crack. Based on this insight, we propose a dual-channel early rumor detection model named ERD-DC (Early Rumor Detection-Dual-Channel), which leverages deep learning algorithms. Specifically, ERD-DC consists of two distinct channels, a fast channel referred to as channel-E (channel-Easy) and a slow channel named channel-D (channel-Difficult). In the ERD-DC, posts are divided into ‘easy-to-identify’ and ‘difficult-to-identify’ based on the availability of relevant evidence online. Subsequently, both types of posts are directed to their respective channels for detection. Channel-E focuses on identifying easy-to-identify rumors through a straightforward and swift post-evidence matching process, primarily aimed at enhancing timeliness. In parallel, channel-D is tasked with uncovering difficult-to-identify rumors, leveraging a more comprehensive analysis of user behaviors and posts transmission structures to elevate overall accuracy. Experimental results on two real datasets demonstrate that ERD-DC outperforms other state-of-the-art models significantly in early rumor detection with an accuracy rate of 84%. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Dual-channel early rumor detection based on factual evidence |
remote_bool |
true |
author2 |
Sun, Jiehu Yuan, Xue Huang, Zengxi Dai, Jiangchun |
author2Str |
Sun, Jiehu Yuan, Xue Huang, Zengxi Dai, Jiangchun |
ppnlink |
320577961 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.eswa.2023.121928 |
up_date |
2024-07-06T23:51:05.096Z |
_version_ |
1803875637105000448 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065673735</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231119093103.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231119s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.eswa.2023.121928</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065673735</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0957-4174(23)02430-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Yue</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0775-8060</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dual-channel early rumor detection based on factual evidence</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Social media facilitates people's free expression and communication, but it also provides a platform for the generation and dissemination of rumors. In order to curb the spread of rumors in time and minimize their harm, early rumor detection methods were born and became a research hotspot. Early rumor detection requires a balance between accuracy and timeliness, but most existing methods only focused on accuracy and neglected efficiency. In this regard, we analyze a large number of Internet rumors and found that some rumors have been repeatedly spread after a small amount of modification. Such old rumors can be quickly and easily identified through factual evidence, while other new rumors require more clues and time to crack. Based on this insight, we propose a dual-channel early rumor detection model named ERD-DC (Early Rumor Detection-Dual-Channel), which leverages deep learning algorithms. Specifically, ERD-DC consists of two distinct channels, a fast channel referred to as channel-E (channel-Easy) and a slow channel named channel-D (channel-Difficult). In the ERD-DC, posts are divided into ‘easy-to-identify’ and ‘difficult-to-identify’ based on the availability of relevant evidence online. Subsequently, both types of posts are directed to their respective channels for detection. Channel-E focuses on identifying easy-to-identify rumors through a straightforward and swift post-evidence matching process, primarily aimed at enhancing timeliness. In parallel, channel-D is tasked with uncovering difficult-to-identify rumors, leveraging a more comprehensive analysis of user behaviors and posts transmission structures to elevate overall accuracy. Experimental results on two real datasets demonstrate that ERD-DC outperforms other state-of-the-art models significantly in early rumor detection with an accuracy rate of 84%.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Early rumor detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dual-channel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Factual evidence</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Jiehu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Zengxi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Jiangchun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Expert systems with applications</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1990</subfield><subfield code="g">238</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320577961</subfield><subfield code="w">(DE-600)2017237-0</subfield><subfield code="w">(DE-576)11481807X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:238</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">238</subfield></datafield></record></collection>
|
score |
7.401787 |