Measurement of impinging and boiling droplet temperature by two-color/two-dye laser-induced fluorescence technique using continuous-wave laser
The 2-color/2-dye laser-induced fluorescence technique is a non-intrusive method for measuring temperature in millimeter-scale fluids. This study determines optimal conditions for fluorescein disodium (FL) and Sulforhodamine 640 (SRh640) with a low-cost continuous-wave laser to reduce dye saturation...
Ausführliche Beschreibung
Autor*in: |
Heo, JeongBeom [verfasserIn] Kwon, Daehee [verfasserIn] Yeom, Eunseop [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of heat and mass transfer - Amsterdam [u.a.] : Elsevier, 1960, 219 |
---|---|
Übergeordnetes Werk: |
volume:219 |
DOI / URN: |
10.1016/j.ijheatmasstransfer.2023.124902 |
---|
Katalog-ID: |
ELV065741501 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV065741501 | ||
003 | DE-627 | ||
005 | 20231126093059.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231122s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijheatmasstransfer.2023.124902 |2 doi | |
035 | |a (DE-627)ELV065741501 | ||
035 | |a (ELSEVIER)S0017-9310(23)01047-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Heo, JeongBeom |e verfasserin |4 aut | |
245 | 1 | 0 | |a Measurement of impinging and boiling droplet temperature by two-color/two-dye laser-induced fluorescence technique using continuous-wave laser |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The 2-color/2-dye laser-induced fluorescence technique is a non-intrusive method for measuring temperature in millimeter-scale fluids. This study determines optimal conditions for fluorescein disodium (FL) and Sulforhodamine 640 (SRh640) with a low-cost continuous-wave laser to reduce dye saturation and morphology-dependent resonances. The signal images of both dyes, captured by two high-speed cameras, were clearly distinguishable from the background with high contrast under specific concentration conditions. As a result, three concentration combinations were selected based on preliminary experiments, and the fluorescence signal ratio was analyzed to establish a temperature relationship between 32 and 71 °C. The intensities of FL and SRh640 increases and decrease with the temperature, respectively. Errors resulting from laser light attenuation in single-signal images were reduced using the ratiometric method. Solution 1 (CFL = 1.55 × 10−4 / CSRh640 = 3.2 × 10−6 M) exhibited the highest sensitivity at 0.718 (%/ °C) and a strong linear relationship (r2 = 0.997), so it was determined to be suitable concentration for measuring the droplet temperature. The proposed method estimated the temporal temperature variations of ethanol droplets impinging on a heated surface at TW = 80, 150 and 200 °C. At TW = 80 °C, contact boiling initiated without a recoil process, and the heat transfer elevated the droplet's temperature near the surface, leading to bubble formation and growth. As surface temperature increases, the film boiling behavior can be observed. The temporal evolution of the average heat transfer rate was analyzed. | ||
650 | 4 | |a Laser-induced fluorescence | |
650 | 4 | |a Thermometry | |
650 | 4 | |a Continuous-wave laser | |
650 | 4 | |a Droplet temperature | |
700 | 1 | |a Kwon, Daehee |e verfasserin |4 aut | |
700 | 1 | |a Yeom, Eunseop |e verfasserin |0 (orcid)0000-0002-9717-030X |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of heat and mass transfer |d Amsterdam [u.a.] : Elsevier, 1960 |g 219 |h Online-Ressource |w (DE-627)320505081 |w (DE-600)2012726-1 |w (DE-576)096806575 |x 1879-2189 |7 nnns |
773 | 1 | 8 | |g volume:219 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.38 |j Technische Thermodynamik |q VZ |
951 | |a AR | ||
952 | |d 219 |
author_variant |
j h jh d k dk e y ey |
---|---|
matchkey_str |
article:18792189:2023----::esrmnoipnignbiigrpetmeaueywclrwdeaeidcdloecne |
hierarchy_sort_str |
2023 |
bklnumber |
50.38 |
publishDate |
2023 |
allfields |
10.1016/j.ijheatmasstransfer.2023.124902 doi (DE-627)ELV065741501 (ELSEVIER)S0017-9310(23)01047-5 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Heo, JeongBeom verfasserin aut Measurement of impinging and boiling droplet temperature by two-color/two-dye laser-induced fluorescence technique using continuous-wave laser 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The 2-color/2-dye laser-induced fluorescence technique is a non-intrusive method for measuring temperature in millimeter-scale fluids. This study determines optimal conditions for fluorescein disodium (FL) and Sulforhodamine 640 (SRh640) with a low-cost continuous-wave laser to reduce dye saturation and morphology-dependent resonances. The signal images of both dyes, captured by two high-speed cameras, were clearly distinguishable from the background with high contrast under specific concentration conditions. As a result, three concentration combinations were selected based on preliminary experiments, and the fluorescence signal ratio was analyzed to establish a temperature relationship between 32 and 71 °C. The intensities of FL and SRh640 increases and decrease with the temperature, respectively. Errors resulting from laser light attenuation in single-signal images were reduced using the ratiometric method. Solution 1 (CFL = 1.55 × 10−4 / CSRh640 = 3.2 × 10−6 M) exhibited the highest sensitivity at 0.718 (%/ °C) and a strong linear relationship (r2 = 0.997), so it was determined to be suitable concentration for measuring the droplet temperature. The proposed method estimated the temporal temperature variations of ethanol droplets impinging on a heated surface at TW = 80, 150 and 200 °C. At TW = 80 °C, contact boiling initiated without a recoil process, and the heat transfer elevated the droplet's temperature near the surface, leading to bubble formation and growth. As surface temperature increases, the film boiling behavior can be observed. The temporal evolution of the average heat transfer rate was analyzed. Laser-induced fluorescence Thermometry Continuous-wave laser Droplet temperature Kwon, Daehee verfasserin aut Yeom, Eunseop verfasserin (orcid)0000-0002-9717-030X aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 219 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:219 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 219 |
spelling |
10.1016/j.ijheatmasstransfer.2023.124902 doi (DE-627)ELV065741501 (ELSEVIER)S0017-9310(23)01047-5 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Heo, JeongBeom verfasserin aut Measurement of impinging and boiling droplet temperature by two-color/two-dye laser-induced fluorescence technique using continuous-wave laser 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The 2-color/2-dye laser-induced fluorescence technique is a non-intrusive method for measuring temperature in millimeter-scale fluids. This study determines optimal conditions for fluorescein disodium (FL) and Sulforhodamine 640 (SRh640) with a low-cost continuous-wave laser to reduce dye saturation and morphology-dependent resonances. The signal images of both dyes, captured by two high-speed cameras, were clearly distinguishable from the background with high contrast under specific concentration conditions. As a result, three concentration combinations were selected based on preliminary experiments, and the fluorescence signal ratio was analyzed to establish a temperature relationship between 32 and 71 °C. The intensities of FL and SRh640 increases and decrease with the temperature, respectively. Errors resulting from laser light attenuation in single-signal images were reduced using the ratiometric method. Solution 1 (CFL = 1.55 × 10−4 / CSRh640 = 3.2 × 10−6 M) exhibited the highest sensitivity at 0.718 (%/ °C) and a strong linear relationship (r2 = 0.997), so it was determined to be suitable concentration for measuring the droplet temperature. The proposed method estimated the temporal temperature variations of ethanol droplets impinging on a heated surface at TW = 80, 150 and 200 °C. At TW = 80 °C, contact boiling initiated without a recoil process, and the heat transfer elevated the droplet's temperature near the surface, leading to bubble formation and growth. As surface temperature increases, the film boiling behavior can be observed. The temporal evolution of the average heat transfer rate was analyzed. Laser-induced fluorescence Thermometry Continuous-wave laser Droplet temperature Kwon, Daehee verfasserin aut Yeom, Eunseop verfasserin (orcid)0000-0002-9717-030X aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 219 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:219 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 219 |
allfields_unstemmed |
10.1016/j.ijheatmasstransfer.2023.124902 doi (DE-627)ELV065741501 (ELSEVIER)S0017-9310(23)01047-5 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Heo, JeongBeom verfasserin aut Measurement of impinging and boiling droplet temperature by two-color/two-dye laser-induced fluorescence technique using continuous-wave laser 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The 2-color/2-dye laser-induced fluorescence technique is a non-intrusive method for measuring temperature in millimeter-scale fluids. This study determines optimal conditions for fluorescein disodium (FL) and Sulforhodamine 640 (SRh640) with a low-cost continuous-wave laser to reduce dye saturation and morphology-dependent resonances. The signal images of both dyes, captured by two high-speed cameras, were clearly distinguishable from the background with high contrast under specific concentration conditions. As a result, three concentration combinations were selected based on preliminary experiments, and the fluorescence signal ratio was analyzed to establish a temperature relationship between 32 and 71 °C. The intensities of FL and SRh640 increases and decrease with the temperature, respectively. Errors resulting from laser light attenuation in single-signal images were reduced using the ratiometric method. Solution 1 (CFL = 1.55 × 10−4 / CSRh640 = 3.2 × 10−6 M) exhibited the highest sensitivity at 0.718 (%/ °C) and a strong linear relationship (r2 = 0.997), so it was determined to be suitable concentration for measuring the droplet temperature. The proposed method estimated the temporal temperature variations of ethanol droplets impinging on a heated surface at TW = 80, 150 and 200 °C. At TW = 80 °C, contact boiling initiated without a recoil process, and the heat transfer elevated the droplet's temperature near the surface, leading to bubble formation and growth. As surface temperature increases, the film boiling behavior can be observed. The temporal evolution of the average heat transfer rate was analyzed. Laser-induced fluorescence Thermometry Continuous-wave laser Droplet temperature Kwon, Daehee verfasserin aut Yeom, Eunseop verfasserin (orcid)0000-0002-9717-030X aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 219 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:219 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 219 |
allfieldsGer |
10.1016/j.ijheatmasstransfer.2023.124902 doi (DE-627)ELV065741501 (ELSEVIER)S0017-9310(23)01047-5 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Heo, JeongBeom verfasserin aut Measurement of impinging and boiling droplet temperature by two-color/two-dye laser-induced fluorescence technique using continuous-wave laser 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The 2-color/2-dye laser-induced fluorescence technique is a non-intrusive method for measuring temperature in millimeter-scale fluids. This study determines optimal conditions for fluorescein disodium (FL) and Sulforhodamine 640 (SRh640) with a low-cost continuous-wave laser to reduce dye saturation and morphology-dependent resonances. The signal images of both dyes, captured by two high-speed cameras, were clearly distinguishable from the background with high contrast under specific concentration conditions. As a result, three concentration combinations were selected based on preliminary experiments, and the fluorescence signal ratio was analyzed to establish a temperature relationship between 32 and 71 °C. The intensities of FL and SRh640 increases and decrease with the temperature, respectively. Errors resulting from laser light attenuation in single-signal images were reduced using the ratiometric method. Solution 1 (CFL = 1.55 × 10−4 / CSRh640 = 3.2 × 10−6 M) exhibited the highest sensitivity at 0.718 (%/ °C) and a strong linear relationship (r2 = 0.997), so it was determined to be suitable concentration for measuring the droplet temperature. The proposed method estimated the temporal temperature variations of ethanol droplets impinging on a heated surface at TW = 80, 150 and 200 °C. At TW = 80 °C, contact boiling initiated without a recoil process, and the heat transfer elevated the droplet's temperature near the surface, leading to bubble formation and growth. As surface temperature increases, the film boiling behavior can be observed. The temporal evolution of the average heat transfer rate was analyzed. Laser-induced fluorescence Thermometry Continuous-wave laser Droplet temperature Kwon, Daehee verfasserin aut Yeom, Eunseop verfasserin (orcid)0000-0002-9717-030X aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 219 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:219 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 219 |
allfieldsSound |
10.1016/j.ijheatmasstransfer.2023.124902 doi (DE-627)ELV065741501 (ELSEVIER)S0017-9310(23)01047-5 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Heo, JeongBeom verfasserin aut Measurement of impinging and boiling droplet temperature by two-color/two-dye laser-induced fluorescence technique using continuous-wave laser 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The 2-color/2-dye laser-induced fluorescence technique is a non-intrusive method for measuring temperature in millimeter-scale fluids. This study determines optimal conditions for fluorescein disodium (FL) and Sulforhodamine 640 (SRh640) with a low-cost continuous-wave laser to reduce dye saturation and morphology-dependent resonances. The signal images of both dyes, captured by two high-speed cameras, were clearly distinguishable from the background with high contrast under specific concentration conditions. As a result, three concentration combinations were selected based on preliminary experiments, and the fluorescence signal ratio was analyzed to establish a temperature relationship between 32 and 71 °C. The intensities of FL and SRh640 increases and decrease with the temperature, respectively. Errors resulting from laser light attenuation in single-signal images were reduced using the ratiometric method. Solution 1 (CFL = 1.55 × 10−4 / CSRh640 = 3.2 × 10−6 M) exhibited the highest sensitivity at 0.718 (%/ °C) and a strong linear relationship (r2 = 0.997), so it was determined to be suitable concentration for measuring the droplet temperature. The proposed method estimated the temporal temperature variations of ethanol droplets impinging on a heated surface at TW = 80, 150 and 200 °C. At TW = 80 °C, contact boiling initiated without a recoil process, and the heat transfer elevated the droplet's temperature near the surface, leading to bubble formation and growth. As surface temperature increases, the film boiling behavior can be observed. The temporal evolution of the average heat transfer rate was analyzed. Laser-induced fluorescence Thermometry Continuous-wave laser Droplet temperature Kwon, Daehee verfasserin aut Yeom, Eunseop verfasserin (orcid)0000-0002-9717-030X aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 219 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:219 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 219 |
language |
English |
source |
Enthalten in International journal of heat and mass transfer 219 volume:219 |
sourceStr |
Enthalten in International journal of heat and mass transfer 219 volume:219 |
format_phy_str_mv |
Article |
bklname |
Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Laser-induced fluorescence Thermometry Continuous-wave laser Droplet temperature |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
International journal of heat and mass transfer |
authorswithroles_txt_mv |
Heo, JeongBeom @@aut@@ Kwon, Daehee @@aut@@ Yeom, Eunseop @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320505081 |
dewey-sort |
3620 |
id |
ELV065741501 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065741501</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231126093059.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231122s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijheatmasstransfer.2023.124902</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065741501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0017-9310(23)01047-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Heo, JeongBeom</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Measurement of impinging and boiling droplet temperature by two-color/two-dye laser-induced fluorescence technique using continuous-wave laser</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The 2-color/2-dye laser-induced fluorescence technique is a non-intrusive method for measuring temperature in millimeter-scale fluids. This study determines optimal conditions for fluorescein disodium (FL) and Sulforhodamine 640 (SRh640) with a low-cost continuous-wave laser to reduce dye saturation and morphology-dependent resonances. The signal images of both dyes, captured by two high-speed cameras, were clearly distinguishable from the background with high contrast under specific concentration conditions. As a result, three concentration combinations were selected based on preliminary experiments, and the fluorescence signal ratio was analyzed to establish a temperature relationship between 32 and 71 °C. The intensities of FL and SRh640 increases and decrease with the temperature, respectively. Errors resulting from laser light attenuation in single-signal images were reduced using the ratiometric method. Solution 1 (CFL = 1.55 × 10−4 / CSRh640 = 3.2 × 10−6 M) exhibited the highest sensitivity at 0.718 (%/ °C) and a strong linear relationship (r2 = 0.997), so it was determined to be suitable concentration for measuring the droplet temperature. The proposed method estimated the temporal temperature variations of ethanol droplets impinging on a heated surface at TW = 80, 150 and 200 °C. At TW = 80 °C, contact boiling initiated without a recoil process, and the heat transfer elevated the droplet's temperature near the surface, leading to bubble formation and growth. As surface temperature increases, the film boiling behavior can be observed. The temporal evolution of the average heat transfer rate was analyzed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laser-induced fluorescence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuous-wave laser</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Droplet temperature</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kwon, Daehee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yeom, Eunseop</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9717-030X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of heat and mass transfer</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1960</subfield><subfield code="g">219</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320505081</subfield><subfield code="w">(DE-600)2012726-1</subfield><subfield code="w">(DE-576)096806575</subfield><subfield code="x">1879-2189</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">219</subfield></datafield></record></collection>
|
author |
Heo, JeongBeom |
spellingShingle |
Heo, JeongBeom ddc 620 bkl 50.38 misc Laser-induced fluorescence misc Thermometry misc Continuous-wave laser misc Droplet temperature Measurement of impinging and boiling droplet temperature by two-color/two-dye laser-induced fluorescence technique using continuous-wave laser |
authorStr |
Heo, JeongBeom |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320505081 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-2189 |
topic_title |
620 VZ 50.38 bkl Measurement of impinging and boiling droplet temperature by two-color/two-dye laser-induced fluorescence technique using continuous-wave laser Laser-induced fluorescence Thermometry Continuous-wave laser Droplet temperature |
topic |
ddc 620 bkl 50.38 misc Laser-induced fluorescence misc Thermometry misc Continuous-wave laser misc Droplet temperature |
topic_unstemmed |
ddc 620 bkl 50.38 misc Laser-induced fluorescence misc Thermometry misc Continuous-wave laser misc Droplet temperature |
topic_browse |
ddc 620 bkl 50.38 misc Laser-induced fluorescence misc Thermometry misc Continuous-wave laser misc Droplet temperature |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of heat and mass transfer |
hierarchy_parent_id |
320505081 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
International journal of heat and mass transfer |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 |
title |
Measurement of impinging and boiling droplet temperature by two-color/two-dye laser-induced fluorescence technique using continuous-wave laser |
ctrlnum |
(DE-627)ELV065741501 (ELSEVIER)S0017-9310(23)01047-5 |
title_full |
Measurement of impinging and boiling droplet temperature by two-color/two-dye laser-induced fluorescence technique using continuous-wave laser |
author_sort |
Heo, JeongBeom |
journal |
International journal of heat and mass transfer |
journalStr |
International journal of heat and mass transfer |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Heo, JeongBeom Kwon, Daehee Yeom, Eunseop |
container_volume |
219 |
class |
620 VZ 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Heo, JeongBeom |
doi_str_mv |
10.1016/j.ijheatmasstransfer.2023.124902 |
normlink |
(ORCID)0000-0002-9717-030X |
normlink_prefix_str_mv |
(orcid)0000-0002-9717-030X |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
measurement of impinging and boiling droplet temperature by two-color/two-dye laser-induced fluorescence technique using continuous-wave laser |
title_auth |
Measurement of impinging and boiling droplet temperature by two-color/two-dye laser-induced fluorescence technique using continuous-wave laser |
abstract |
The 2-color/2-dye laser-induced fluorescence technique is a non-intrusive method for measuring temperature in millimeter-scale fluids. This study determines optimal conditions for fluorescein disodium (FL) and Sulforhodamine 640 (SRh640) with a low-cost continuous-wave laser to reduce dye saturation and morphology-dependent resonances. The signal images of both dyes, captured by two high-speed cameras, were clearly distinguishable from the background with high contrast under specific concentration conditions. As a result, three concentration combinations were selected based on preliminary experiments, and the fluorescence signal ratio was analyzed to establish a temperature relationship between 32 and 71 °C. The intensities of FL and SRh640 increases and decrease with the temperature, respectively. Errors resulting from laser light attenuation in single-signal images were reduced using the ratiometric method. Solution 1 (CFL = 1.55 × 10−4 / CSRh640 = 3.2 × 10−6 M) exhibited the highest sensitivity at 0.718 (%/ °C) and a strong linear relationship (r2 = 0.997), so it was determined to be suitable concentration for measuring the droplet temperature. The proposed method estimated the temporal temperature variations of ethanol droplets impinging on a heated surface at TW = 80, 150 and 200 °C. At TW = 80 °C, contact boiling initiated without a recoil process, and the heat transfer elevated the droplet's temperature near the surface, leading to bubble formation and growth. As surface temperature increases, the film boiling behavior can be observed. The temporal evolution of the average heat transfer rate was analyzed. |
abstractGer |
The 2-color/2-dye laser-induced fluorescence technique is a non-intrusive method for measuring temperature in millimeter-scale fluids. This study determines optimal conditions for fluorescein disodium (FL) and Sulforhodamine 640 (SRh640) with a low-cost continuous-wave laser to reduce dye saturation and morphology-dependent resonances. The signal images of both dyes, captured by two high-speed cameras, were clearly distinguishable from the background with high contrast under specific concentration conditions. As a result, three concentration combinations were selected based on preliminary experiments, and the fluorescence signal ratio was analyzed to establish a temperature relationship between 32 and 71 °C. The intensities of FL and SRh640 increases and decrease with the temperature, respectively. Errors resulting from laser light attenuation in single-signal images were reduced using the ratiometric method. Solution 1 (CFL = 1.55 × 10−4 / CSRh640 = 3.2 × 10−6 M) exhibited the highest sensitivity at 0.718 (%/ °C) and a strong linear relationship (r2 = 0.997), so it was determined to be suitable concentration for measuring the droplet temperature. The proposed method estimated the temporal temperature variations of ethanol droplets impinging on a heated surface at TW = 80, 150 and 200 °C. At TW = 80 °C, contact boiling initiated without a recoil process, and the heat transfer elevated the droplet's temperature near the surface, leading to bubble formation and growth. As surface temperature increases, the film boiling behavior can be observed. The temporal evolution of the average heat transfer rate was analyzed. |
abstract_unstemmed |
The 2-color/2-dye laser-induced fluorescence technique is a non-intrusive method for measuring temperature in millimeter-scale fluids. This study determines optimal conditions for fluorescein disodium (FL) and Sulforhodamine 640 (SRh640) with a low-cost continuous-wave laser to reduce dye saturation and morphology-dependent resonances. The signal images of both dyes, captured by two high-speed cameras, were clearly distinguishable from the background with high contrast under specific concentration conditions. As a result, three concentration combinations were selected based on preliminary experiments, and the fluorescence signal ratio was analyzed to establish a temperature relationship between 32 and 71 °C. The intensities of FL and SRh640 increases and decrease with the temperature, respectively. Errors resulting from laser light attenuation in single-signal images were reduced using the ratiometric method. Solution 1 (CFL = 1.55 × 10−4 / CSRh640 = 3.2 × 10−6 M) exhibited the highest sensitivity at 0.718 (%/ °C) and a strong linear relationship (r2 = 0.997), so it was determined to be suitable concentration for measuring the droplet temperature. The proposed method estimated the temporal temperature variations of ethanol droplets impinging on a heated surface at TW = 80, 150 and 200 °C. At TW = 80 °C, contact boiling initiated without a recoil process, and the heat transfer elevated the droplet's temperature near the surface, leading to bubble formation and growth. As surface temperature increases, the film boiling behavior can be observed. The temporal evolution of the average heat transfer rate was analyzed. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Measurement of impinging and boiling droplet temperature by two-color/two-dye laser-induced fluorescence technique using continuous-wave laser |
remote_bool |
true |
author2 |
Kwon, Daehee Yeom, Eunseop |
author2Str |
Kwon, Daehee Yeom, Eunseop |
ppnlink |
320505081 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijheatmasstransfer.2023.124902 |
up_date |
2024-07-07T00:05:23.386Z |
_version_ |
1803876537087295488 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065741501</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231126093059.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231122s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijheatmasstransfer.2023.124902</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065741501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0017-9310(23)01047-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Heo, JeongBeom</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Measurement of impinging and boiling droplet temperature by two-color/two-dye laser-induced fluorescence technique using continuous-wave laser</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The 2-color/2-dye laser-induced fluorescence technique is a non-intrusive method for measuring temperature in millimeter-scale fluids. This study determines optimal conditions for fluorescein disodium (FL) and Sulforhodamine 640 (SRh640) with a low-cost continuous-wave laser to reduce dye saturation and morphology-dependent resonances. The signal images of both dyes, captured by two high-speed cameras, were clearly distinguishable from the background with high contrast under specific concentration conditions. As a result, three concentration combinations were selected based on preliminary experiments, and the fluorescence signal ratio was analyzed to establish a temperature relationship between 32 and 71 °C. The intensities of FL and SRh640 increases and decrease with the temperature, respectively. Errors resulting from laser light attenuation in single-signal images were reduced using the ratiometric method. Solution 1 (CFL = 1.55 × 10−4 / CSRh640 = 3.2 × 10−6 M) exhibited the highest sensitivity at 0.718 (%/ °C) and a strong linear relationship (r2 = 0.997), so it was determined to be suitable concentration for measuring the droplet temperature. The proposed method estimated the temporal temperature variations of ethanol droplets impinging on a heated surface at TW = 80, 150 and 200 °C. At TW = 80 °C, contact boiling initiated without a recoil process, and the heat transfer elevated the droplet's temperature near the surface, leading to bubble formation and growth. As surface temperature increases, the film boiling behavior can be observed. The temporal evolution of the average heat transfer rate was analyzed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laser-induced fluorescence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuous-wave laser</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Droplet temperature</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kwon, Daehee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yeom, Eunseop</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9717-030X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of heat and mass transfer</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1960</subfield><subfield code="g">219</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320505081</subfield><subfield code="w">(DE-600)2012726-1</subfield><subfield code="w">(DE-576)096806575</subfield><subfield code="x">1879-2189</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">219</subfield></datafield></record></collection>
|
score |
7.399987 |