CTIMD: Cyber threat intelligence enhanced malware detection using API call sequences with parameters
Dynamic malware analysis that monitors the sequences of API calls of the program in a sandbox has been proven to be effective against code obfuscation and unknown malware. However, most existing works ignore the run-time parameters by only considering the API names, or lack an effective way to captu...
Ausführliche Beschreibung
Autor*in: |
Chen, Tieming [verfasserIn] Zeng, Huan [verfasserIn] Lv, Mingqi [verfasserIn] Zhu, Tiantian [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Computers & security - Amsterdam [u.a.] : Elsevier Science, 1982, 136 |
---|---|
Übergeordnetes Werk: |
volume:136 |
DOI / URN: |
10.1016/j.cose.2023.103518 |
---|
Katalog-ID: |
ELV065765907 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV065765907 | ||
003 | DE-627 | ||
005 | 20240111093138.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231123s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cose.2023.103518 |2 doi | |
035 | |a (DE-627)ELV065765907 | ||
035 | |a (ELSEVIER)S0167-4048(23)00428-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 54.38 |2 bkl | ||
100 | 1 | |a Chen, Tieming |e verfasserin |4 aut | |
245 | 1 | 0 | |a CTIMD: Cyber threat intelligence enhanced malware detection using API call sequences with parameters |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Dynamic malware analysis that monitors the sequences of API calls of the program in a sandbox has been proven to be effective against code obfuscation and unknown malware. However, most existing works ignore the run-time parameters by only considering the API names, or lack an effective way to capture the correlations between parameter values and malicious activities. In this paper, we propose CTIMD, a deep learning based dynamic malware detection method, which integrates the threat knowledge from CTIs (Cyber Threat Intelligences) into the learning on API call sequences with run-time parameters. It first extracts IOCs (Indicators of Compromise) from CTIs and uses IOCs to assist the identification of the security-sensitive levels of API calls. Then, it embeds API calls and the associated security-sensitive levels into a unified feature space. Finally, it feeds the feature vector sequences into deep neural networks to train the malware detection model. We conducted experiments on two datasets. The experiment results show that CTIMD significantly outperforms existing methods depending on raw API call sequences (F1-score is improved by 4.0 %∼41.3 %), and also has advantage over existing state-of-the-art methods that consider both API calls and run-time parameters (F1-score is improved by 1.2 %∼6.5 %). | ||
650 | 4 | |a Malware detection | |
650 | 4 | |a API sequence | |
650 | 4 | |a Cyber threat intelligence | |
650 | 4 | |a Deep learning | |
700 | 1 | |a Zeng, Huan |e verfasserin |4 aut | |
700 | 1 | |a Lv, Mingqi |e verfasserin |0 (orcid)0000-0003-4810-7491 |4 aut | |
700 | 1 | |a Zhu, Tiantian |e verfasserin |0 (orcid)0000-0002-8657-662X |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computers & security |d Amsterdam [u.a.] : Elsevier Science, 1982 |g 136 |h Online-Ressource |w (DE-627)320415864 |w (DE-600)2001917-8 |w (DE-576)094531331 |7 nnns |
773 | 1 | 8 | |g volume:136 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 54.38 |j Computersicherheit |q VZ |
951 | |a AR | ||
952 | |d 136 |
author_variant |
t c tc h z hz m l ml t z tz |
---|---|
matchkey_str |
chentiemingzenghuanlvmingqizhutiantian:2023----:tmcbrhetnelgnenacdawrdtcinsnaia |
hierarchy_sort_str |
2023 |
bklnumber |
54.38 |
publishDate |
2023 |
allfields |
10.1016/j.cose.2023.103518 doi (DE-627)ELV065765907 (ELSEVIER)S0167-4048(23)00428-5 DE-627 ger DE-627 rda eng 004 VZ 54.38 bkl Chen, Tieming verfasserin aut CTIMD: Cyber threat intelligence enhanced malware detection using API call sequences with parameters 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dynamic malware analysis that monitors the sequences of API calls of the program in a sandbox has been proven to be effective against code obfuscation and unknown malware. However, most existing works ignore the run-time parameters by only considering the API names, or lack an effective way to capture the correlations between parameter values and malicious activities. In this paper, we propose CTIMD, a deep learning based dynamic malware detection method, which integrates the threat knowledge from CTIs (Cyber Threat Intelligences) into the learning on API call sequences with run-time parameters. It first extracts IOCs (Indicators of Compromise) from CTIs and uses IOCs to assist the identification of the security-sensitive levels of API calls. Then, it embeds API calls and the associated security-sensitive levels into a unified feature space. Finally, it feeds the feature vector sequences into deep neural networks to train the malware detection model. We conducted experiments on two datasets. The experiment results show that CTIMD significantly outperforms existing methods depending on raw API call sequences (F1-score is improved by 4.0 %∼41.3 %), and also has advantage over existing state-of-the-art methods that consider both API calls and run-time parameters (F1-score is improved by 1.2 %∼6.5 %). Malware detection API sequence Cyber threat intelligence Deep learning Zeng, Huan verfasserin aut Lv, Mingqi verfasserin (orcid)0000-0003-4810-7491 aut Zhu, Tiantian verfasserin (orcid)0000-0002-8657-662X aut Enthalten in Computers & security Amsterdam [u.a.] : Elsevier Science, 1982 136 Online-Ressource (DE-627)320415864 (DE-600)2001917-8 (DE-576)094531331 nnns volume:136 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.38 Computersicherheit VZ AR 136 |
spelling |
10.1016/j.cose.2023.103518 doi (DE-627)ELV065765907 (ELSEVIER)S0167-4048(23)00428-5 DE-627 ger DE-627 rda eng 004 VZ 54.38 bkl Chen, Tieming verfasserin aut CTIMD: Cyber threat intelligence enhanced malware detection using API call sequences with parameters 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dynamic malware analysis that monitors the sequences of API calls of the program in a sandbox has been proven to be effective against code obfuscation and unknown malware. However, most existing works ignore the run-time parameters by only considering the API names, or lack an effective way to capture the correlations between parameter values and malicious activities. In this paper, we propose CTIMD, a deep learning based dynamic malware detection method, which integrates the threat knowledge from CTIs (Cyber Threat Intelligences) into the learning on API call sequences with run-time parameters. It first extracts IOCs (Indicators of Compromise) from CTIs and uses IOCs to assist the identification of the security-sensitive levels of API calls. Then, it embeds API calls and the associated security-sensitive levels into a unified feature space. Finally, it feeds the feature vector sequences into deep neural networks to train the malware detection model. We conducted experiments on two datasets. The experiment results show that CTIMD significantly outperforms existing methods depending on raw API call sequences (F1-score is improved by 4.0 %∼41.3 %), and also has advantage over existing state-of-the-art methods that consider both API calls and run-time parameters (F1-score is improved by 1.2 %∼6.5 %). Malware detection API sequence Cyber threat intelligence Deep learning Zeng, Huan verfasserin aut Lv, Mingqi verfasserin (orcid)0000-0003-4810-7491 aut Zhu, Tiantian verfasserin (orcid)0000-0002-8657-662X aut Enthalten in Computers & security Amsterdam [u.a.] : Elsevier Science, 1982 136 Online-Ressource (DE-627)320415864 (DE-600)2001917-8 (DE-576)094531331 nnns volume:136 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.38 Computersicherheit VZ AR 136 |
allfields_unstemmed |
10.1016/j.cose.2023.103518 doi (DE-627)ELV065765907 (ELSEVIER)S0167-4048(23)00428-5 DE-627 ger DE-627 rda eng 004 VZ 54.38 bkl Chen, Tieming verfasserin aut CTIMD: Cyber threat intelligence enhanced malware detection using API call sequences with parameters 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dynamic malware analysis that monitors the sequences of API calls of the program in a sandbox has been proven to be effective against code obfuscation and unknown malware. However, most existing works ignore the run-time parameters by only considering the API names, or lack an effective way to capture the correlations between parameter values and malicious activities. In this paper, we propose CTIMD, a deep learning based dynamic malware detection method, which integrates the threat knowledge from CTIs (Cyber Threat Intelligences) into the learning on API call sequences with run-time parameters. It first extracts IOCs (Indicators of Compromise) from CTIs and uses IOCs to assist the identification of the security-sensitive levels of API calls. Then, it embeds API calls and the associated security-sensitive levels into a unified feature space. Finally, it feeds the feature vector sequences into deep neural networks to train the malware detection model. We conducted experiments on two datasets. The experiment results show that CTIMD significantly outperforms existing methods depending on raw API call sequences (F1-score is improved by 4.0 %∼41.3 %), and also has advantage over existing state-of-the-art methods that consider both API calls and run-time parameters (F1-score is improved by 1.2 %∼6.5 %). Malware detection API sequence Cyber threat intelligence Deep learning Zeng, Huan verfasserin aut Lv, Mingqi verfasserin (orcid)0000-0003-4810-7491 aut Zhu, Tiantian verfasserin (orcid)0000-0002-8657-662X aut Enthalten in Computers & security Amsterdam [u.a.] : Elsevier Science, 1982 136 Online-Ressource (DE-627)320415864 (DE-600)2001917-8 (DE-576)094531331 nnns volume:136 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.38 Computersicherheit VZ AR 136 |
allfieldsGer |
10.1016/j.cose.2023.103518 doi (DE-627)ELV065765907 (ELSEVIER)S0167-4048(23)00428-5 DE-627 ger DE-627 rda eng 004 VZ 54.38 bkl Chen, Tieming verfasserin aut CTIMD: Cyber threat intelligence enhanced malware detection using API call sequences with parameters 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dynamic malware analysis that monitors the sequences of API calls of the program in a sandbox has been proven to be effective against code obfuscation and unknown malware. However, most existing works ignore the run-time parameters by only considering the API names, or lack an effective way to capture the correlations between parameter values and malicious activities. In this paper, we propose CTIMD, a deep learning based dynamic malware detection method, which integrates the threat knowledge from CTIs (Cyber Threat Intelligences) into the learning on API call sequences with run-time parameters. It first extracts IOCs (Indicators of Compromise) from CTIs and uses IOCs to assist the identification of the security-sensitive levels of API calls. Then, it embeds API calls and the associated security-sensitive levels into a unified feature space. Finally, it feeds the feature vector sequences into deep neural networks to train the malware detection model. We conducted experiments on two datasets. The experiment results show that CTIMD significantly outperforms existing methods depending on raw API call sequences (F1-score is improved by 4.0 %∼41.3 %), and also has advantage over existing state-of-the-art methods that consider both API calls and run-time parameters (F1-score is improved by 1.2 %∼6.5 %). Malware detection API sequence Cyber threat intelligence Deep learning Zeng, Huan verfasserin aut Lv, Mingqi verfasserin (orcid)0000-0003-4810-7491 aut Zhu, Tiantian verfasserin (orcid)0000-0002-8657-662X aut Enthalten in Computers & security Amsterdam [u.a.] : Elsevier Science, 1982 136 Online-Ressource (DE-627)320415864 (DE-600)2001917-8 (DE-576)094531331 nnns volume:136 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.38 Computersicherheit VZ AR 136 |
allfieldsSound |
10.1016/j.cose.2023.103518 doi (DE-627)ELV065765907 (ELSEVIER)S0167-4048(23)00428-5 DE-627 ger DE-627 rda eng 004 VZ 54.38 bkl Chen, Tieming verfasserin aut CTIMD: Cyber threat intelligence enhanced malware detection using API call sequences with parameters 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dynamic malware analysis that monitors the sequences of API calls of the program in a sandbox has been proven to be effective against code obfuscation and unknown malware. However, most existing works ignore the run-time parameters by only considering the API names, or lack an effective way to capture the correlations between parameter values and malicious activities. In this paper, we propose CTIMD, a deep learning based dynamic malware detection method, which integrates the threat knowledge from CTIs (Cyber Threat Intelligences) into the learning on API call sequences with run-time parameters. It first extracts IOCs (Indicators of Compromise) from CTIs and uses IOCs to assist the identification of the security-sensitive levels of API calls. Then, it embeds API calls and the associated security-sensitive levels into a unified feature space. Finally, it feeds the feature vector sequences into deep neural networks to train the malware detection model. We conducted experiments on two datasets. The experiment results show that CTIMD significantly outperforms existing methods depending on raw API call sequences (F1-score is improved by 4.0 %∼41.3 %), and also has advantage over existing state-of-the-art methods that consider both API calls and run-time parameters (F1-score is improved by 1.2 %∼6.5 %). Malware detection API sequence Cyber threat intelligence Deep learning Zeng, Huan verfasserin aut Lv, Mingqi verfasserin (orcid)0000-0003-4810-7491 aut Zhu, Tiantian verfasserin (orcid)0000-0002-8657-662X aut Enthalten in Computers & security Amsterdam [u.a.] : Elsevier Science, 1982 136 Online-Ressource (DE-627)320415864 (DE-600)2001917-8 (DE-576)094531331 nnns volume:136 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.38 Computersicherheit VZ AR 136 |
language |
English |
source |
Enthalten in Computers & security 136 volume:136 |
sourceStr |
Enthalten in Computers & security 136 volume:136 |
format_phy_str_mv |
Article |
bklname |
Computersicherheit |
institution |
findex.gbv.de |
topic_facet |
Malware detection API sequence Cyber threat intelligence Deep learning |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Computers & security |
authorswithroles_txt_mv |
Chen, Tieming @@aut@@ Zeng, Huan @@aut@@ Lv, Mingqi @@aut@@ Zhu, Tiantian @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320415864 |
dewey-sort |
14 |
id |
ELV065765907 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065765907</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240111093138.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231123s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cose.2023.103518</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065765907</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-4048(23)00428-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Tieming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CTIMD: Cyber threat intelligence enhanced malware detection using API call sequences with parameters</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Dynamic malware analysis that monitors the sequences of API calls of the program in a sandbox has been proven to be effective against code obfuscation and unknown malware. However, most existing works ignore the run-time parameters by only considering the API names, or lack an effective way to capture the correlations between parameter values and malicious activities. In this paper, we propose CTIMD, a deep learning based dynamic malware detection method, which integrates the threat knowledge from CTIs (Cyber Threat Intelligences) into the learning on API call sequences with run-time parameters. It first extracts IOCs (Indicators of Compromise) from CTIs and uses IOCs to assist the identification of the security-sensitive levels of API calls. Then, it embeds API calls and the associated security-sensitive levels into a unified feature space. Finally, it feeds the feature vector sequences into deep neural networks to train the malware detection model. We conducted experiments on two datasets. The experiment results show that CTIMD significantly outperforms existing methods depending on raw API call sequences (F1-score is improved by 4.0 %∼41.3 %), and also has advantage over existing state-of-the-art methods that consider both API calls and run-time parameters (F1-score is improved by 1.2 %∼6.5 %).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Malware detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">API sequence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyber threat intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeng, Huan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lv, Mingqi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4810-7491</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Tiantian</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-8657-662X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers & security</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1982</subfield><subfield code="g">136</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320415864</subfield><subfield code="w">(DE-600)2001917-8</subfield><subfield code="w">(DE-576)094531331</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:136</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.38</subfield><subfield code="j">Computersicherheit</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">136</subfield></datafield></record></collection>
|
author |
Chen, Tieming |
spellingShingle |
Chen, Tieming ddc 004 bkl 54.38 misc Malware detection misc API sequence misc Cyber threat intelligence misc Deep learning CTIMD: Cyber threat intelligence enhanced malware detection using API call sequences with parameters |
authorStr |
Chen, Tieming |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320415864 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 VZ 54.38 bkl CTIMD: Cyber threat intelligence enhanced malware detection using API call sequences with parameters Malware detection API sequence Cyber threat intelligence Deep learning |
topic |
ddc 004 bkl 54.38 misc Malware detection misc API sequence misc Cyber threat intelligence misc Deep learning |
topic_unstemmed |
ddc 004 bkl 54.38 misc Malware detection misc API sequence misc Cyber threat intelligence misc Deep learning |
topic_browse |
ddc 004 bkl 54.38 misc Malware detection misc API sequence misc Cyber threat intelligence misc Deep learning |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Computers & security |
hierarchy_parent_id |
320415864 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Computers & security |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320415864 (DE-600)2001917-8 (DE-576)094531331 |
title |
CTIMD: Cyber threat intelligence enhanced malware detection using API call sequences with parameters |
ctrlnum |
(DE-627)ELV065765907 (ELSEVIER)S0167-4048(23)00428-5 |
title_full |
CTIMD: Cyber threat intelligence enhanced malware detection using API call sequences with parameters |
author_sort |
Chen, Tieming |
journal |
Computers & security |
journalStr |
Computers & security |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Chen, Tieming Zeng, Huan Lv, Mingqi Zhu, Tiantian |
container_volume |
136 |
class |
004 VZ 54.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Chen, Tieming |
doi_str_mv |
10.1016/j.cose.2023.103518 |
normlink |
(ORCID)0000-0003-4810-7491 (ORCID)0000-0002-8657-662X |
normlink_prefix_str_mv |
(orcid)0000-0003-4810-7491 (orcid)0000-0002-8657-662X |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
ctimd: cyber threat intelligence enhanced malware detection using api call sequences with parameters |
title_auth |
CTIMD: Cyber threat intelligence enhanced malware detection using API call sequences with parameters |
abstract |
Dynamic malware analysis that monitors the sequences of API calls of the program in a sandbox has been proven to be effective against code obfuscation and unknown malware. However, most existing works ignore the run-time parameters by only considering the API names, or lack an effective way to capture the correlations between parameter values and malicious activities. In this paper, we propose CTIMD, a deep learning based dynamic malware detection method, which integrates the threat knowledge from CTIs (Cyber Threat Intelligences) into the learning on API call sequences with run-time parameters. It first extracts IOCs (Indicators of Compromise) from CTIs and uses IOCs to assist the identification of the security-sensitive levels of API calls. Then, it embeds API calls and the associated security-sensitive levels into a unified feature space. Finally, it feeds the feature vector sequences into deep neural networks to train the malware detection model. We conducted experiments on two datasets. The experiment results show that CTIMD significantly outperforms existing methods depending on raw API call sequences (F1-score is improved by 4.0 %∼41.3 %), and also has advantage over existing state-of-the-art methods that consider both API calls and run-time parameters (F1-score is improved by 1.2 %∼6.5 %). |
abstractGer |
Dynamic malware analysis that monitors the sequences of API calls of the program in a sandbox has been proven to be effective against code obfuscation and unknown malware. However, most existing works ignore the run-time parameters by only considering the API names, or lack an effective way to capture the correlations between parameter values and malicious activities. In this paper, we propose CTIMD, a deep learning based dynamic malware detection method, which integrates the threat knowledge from CTIs (Cyber Threat Intelligences) into the learning on API call sequences with run-time parameters. It first extracts IOCs (Indicators of Compromise) from CTIs and uses IOCs to assist the identification of the security-sensitive levels of API calls. Then, it embeds API calls and the associated security-sensitive levels into a unified feature space. Finally, it feeds the feature vector sequences into deep neural networks to train the malware detection model. We conducted experiments on two datasets. The experiment results show that CTIMD significantly outperforms existing methods depending on raw API call sequences (F1-score is improved by 4.0 %∼41.3 %), and also has advantage over existing state-of-the-art methods that consider both API calls and run-time parameters (F1-score is improved by 1.2 %∼6.5 %). |
abstract_unstemmed |
Dynamic malware analysis that monitors the sequences of API calls of the program in a sandbox has been proven to be effective against code obfuscation and unknown malware. However, most existing works ignore the run-time parameters by only considering the API names, or lack an effective way to capture the correlations between parameter values and malicious activities. In this paper, we propose CTIMD, a deep learning based dynamic malware detection method, which integrates the threat knowledge from CTIs (Cyber Threat Intelligences) into the learning on API call sequences with run-time parameters. It first extracts IOCs (Indicators of Compromise) from CTIs and uses IOCs to assist the identification of the security-sensitive levels of API calls. Then, it embeds API calls and the associated security-sensitive levels into a unified feature space. Finally, it feeds the feature vector sequences into deep neural networks to train the malware detection model. We conducted experiments on two datasets. The experiment results show that CTIMD significantly outperforms existing methods depending on raw API call sequences (F1-score is improved by 4.0 %∼41.3 %), and also has advantage over existing state-of-the-art methods that consider both API calls and run-time parameters (F1-score is improved by 1.2 %∼6.5 %). |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
CTIMD: Cyber threat intelligence enhanced malware detection using API call sequences with parameters |
remote_bool |
true |
author2 |
Zeng, Huan Lv, Mingqi Zhu, Tiantian |
author2Str |
Zeng, Huan Lv, Mingqi Zhu, Tiantian |
ppnlink |
320415864 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cose.2023.103518 |
up_date |
2024-07-07T00:10:39.090Z |
_version_ |
1803876868126932992 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065765907</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240111093138.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231123s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cose.2023.103518</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065765907</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-4048(23)00428-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Tieming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CTIMD: Cyber threat intelligence enhanced malware detection using API call sequences with parameters</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Dynamic malware analysis that monitors the sequences of API calls of the program in a sandbox has been proven to be effective against code obfuscation and unknown malware. However, most existing works ignore the run-time parameters by only considering the API names, or lack an effective way to capture the correlations between parameter values and malicious activities. In this paper, we propose CTIMD, a deep learning based dynamic malware detection method, which integrates the threat knowledge from CTIs (Cyber Threat Intelligences) into the learning on API call sequences with run-time parameters. It first extracts IOCs (Indicators of Compromise) from CTIs and uses IOCs to assist the identification of the security-sensitive levels of API calls. Then, it embeds API calls and the associated security-sensitive levels into a unified feature space. Finally, it feeds the feature vector sequences into deep neural networks to train the malware detection model. We conducted experiments on two datasets. The experiment results show that CTIMD significantly outperforms existing methods depending on raw API call sequences (F1-score is improved by 4.0 %∼41.3 %), and also has advantage over existing state-of-the-art methods that consider both API calls and run-time parameters (F1-score is improved by 1.2 %∼6.5 %).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Malware detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">API sequence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyber threat intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeng, Huan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lv, Mingqi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4810-7491</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Tiantian</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-8657-662X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers & security</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1982</subfield><subfield code="g">136</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320415864</subfield><subfield code="w">(DE-600)2001917-8</subfield><subfield code="w">(DE-576)094531331</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:136</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.38</subfield><subfield code="j">Computersicherheit</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">136</subfield></datafield></record></collection>
|
score |
7.400923 |