Estimation of ecosystem respiration and photosynthesis in supersaturated stream water downstream of a hydropower plant
The estimation of whole stream metabolism, as determined by photosynthesis and respiration, is critical to our understanding of carbon cycling and carbon subsidies to aquatic food-webs. The mass development of aquatic plants is a worldwide problem for human activities and often occurs in regulated r...
Ausführliche Beschreibung
Autor*in: |
Demars, Benoît O.L. [verfasserIn] Dörsch, Peter [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Water research - Amsterdam [u.a.] : Elsevier Science, 1967, 247 |
---|---|
Übergeordnetes Werk: |
volume:247 |
DOI / URN: |
10.1016/j.watres.2023.120842 |
---|
Katalog-ID: |
ELV065805771 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV065805771 | ||
003 | DE-627 | ||
005 | 20240131093046.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231125s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.watres.2023.120842 |2 doi | |
035 | |a (DE-627)ELV065805771 | ||
035 | |a (ELSEVIER)S0043-1354(23)01282-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 38.85 |2 bkl | ||
084 | |a 43.50 |2 bkl | ||
084 | |a 58.51 |2 bkl | ||
100 | 1 | |a Demars, Benoît O.L. |e verfasserin |0 (orcid)0000-0001-9936-934X |4 aut | |
245 | 1 | 0 | |a Estimation of ecosystem respiration and photosynthesis in supersaturated stream water downstream of a hydropower plant |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The estimation of whole stream metabolism, as determined by photosynthesis and respiration, is critical to our understanding of carbon cycling and carbon subsidies to aquatic food-webs. The mass development of aquatic plants is a worldwide problem for human activities and often occurs in regulated rivers, altering biodiversity and ecosystem functions. Hydropower plants supersaturate water with gases and prevent the use of common whole stream metabolism models to estimate ecosystem respiration. Here we used the inert noble gas argon to parse out biological from physical processes in stream metabolism calculations. We coupled the O2:Ar ratio determined by gas chromatography in grab samples with in-situ oxygen concentrations measured by an optode to estimate aquatic plant photosynthesis and ecosystem respiration during supersaturation events through a parsimonious approach. The results compared well with a more complicated two-station model based on O2 mass balances in non-supersatured water, and with associated changes in dissolved CO2 (or dissolved inorganic carbon). This new method provides an independent approach to evaluate alternative corrections of dissolved oxygen data (e.g. through the use of total dissolved gases) in long term studies. The use of photosynthesis-irradiance models allows the determination of light parameters such as the onset of light saturation or low light use efficiency, which could be used for inverse modelling. The use of the O2:Ar approach to correct for oversaturation may become more applicable with the emergence of portable mass inlet mass spectrometers (MIMS). Photosynthesis was modest (2.9-5.8 g O2 m2 day−1) compared to other rivers with submerged vegetation, likely indicating nutrient co-limitations (CO2, inorganic N and P). Respiration was very low (-2.1 to -3.9 g O2 m2 day−1) likely due to a lack of allochthonous carbon supply and sandy sediment. | ||
650 | 4 | |a Whole stream metabolism | |
650 | 4 | |a Noble gas | |
650 | 4 | |a Argon | |
650 | 4 | |a Gas exchange | |
650 | 4 | |a Aquatic plant | |
650 | 4 | |a Light use efficiency | |
700 | 1 | |a Dörsch, Peter |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Water research |d Amsterdam [u.a.] : Elsevier Science, 1967 |g 247 |h Online-Ressource |w (DE-627)306713780 |w (DE-600)1501098-3 |w (DE-576)098330284 |x 1879-2448 |7 nnns |
773 | 1 | 8 | |g volume:247 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 38.85 |j Hydrologie: Allgemeines |q VZ |
936 | b | k | |a 43.50 |j Umweltbelastungen |q VZ |
936 | b | k | |a 58.51 |j Abwassertechnik |j Wasseraufbereitung |q VZ |
951 | |a AR | ||
952 | |d 247 |
author_variant |
b o d bo bod p d pd |
---|---|
matchkey_str |
article:18792448:2023----::siainfcssersiainnpooyteiisprauaesrawtro |
hierarchy_sort_str |
2023 |
bklnumber |
38.85 43.50 58.51 |
publishDate |
2023 |
allfields |
10.1016/j.watres.2023.120842 doi (DE-627)ELV065805771 (ELSEVIER)S0043-1354(23)01282-4 DE-627 ger DE-627 rda eng 550 VZ 38.85 bkl 43.50 bkl 58.51 bkl Demars, Benoît O.L. verfasserin (orcid)0000-0001-9936-934X aut Estimation of ecosystem respiration and photosynthesis in supersaturated stream water downstream of a hydropower plant 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The estimation of whole stream metabolism, as determined by photosynthesis and respiration, is critical to our understanding of carbon cycling and carbon subsidies to aquatic food-webs. The mass development of aquatic plants is a worldwide problem for human activities and often occurs in regulated rivers, altering biodiversity and ecosystem functions. Hydropower plants supersaturate water with gases and prevent the use of common whole stream metabolism models to estimate ecosystem respiration. Here we used the inert noble gas argon to parse out biological from physical processes in stream metabolism calculations. We coupled the O2:Ar ratio determined by gas chromatography in grab samples with in-situ oxygen concentrations measured by an optode to estimate aquatic plant photosynthesis and ecosystem respiration during supersaturation events through a parsimonious approach. The results compared well with a more complicated two-station model based on O2 mass balances in non-supersatured water, and with associated changes in dissolved CO2 (or dissolved inorganic carbon). This new method provides an independent approach to evaluate alternative corrections of dissolved oxygen data (e.g. through the use of total dissolved gases) in long term studies. The use of photosynthesis-irradiance models allows the determination of light parameters such as the onset of light saturation or low light use efficiency, which could be used for inverse modelling. The use of the O2:Ar approach to correct for oversaturation may become more applicable with the emergence of portable mass inlet mass spectrometers (MIMS). Photosynthesis was modest (2.9-5.8 g O2 m2 day−1) compared to other rivers with submerged vegetation, likely indicating nutrient co-limitations (CO2, inorganic N and P). Respiration was very low (-2.1 to -3.9 g O2 m2 day−1) likely due to a lack of allochthonous carbon supply and sandy sediment. Whole stream metabolism Noble gas Argon Gas exchange Aquatic plant Light use efficiency Dörsch, Peter verfasserin aut Enthalten in Water research Amsterdam [u.a.] : Elsevier Science, 1967 247 Online-Ressource (DE-627)306713780 (DE-600)1501098-3 (DE-576)098330284 1879-2448 nnns volume:247 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.85 Hydrologie: Allgemeines VZ 43.50 Umweltbelastungen VZ 58.51 Abwassertechnik Wasseraufbereitung VZ AR 247 |
spelling |
10.1016/j.watres.2023.120842 doi (DE-627)ELV065805771 (ELSEVIER)S0043-1354(23)01282-4 DE-627 ger DE-627 rda eng 550 VZ 38.85 bkl 43.50 bkl 58.51 bkl Demars, Benoît O.L. verfasserin (orcid)0000-0001-9936-934X aut Estimation of ecosystem respiration and photosynthesis in supersaturated stream water downstream of a hydropower plant 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The estimation of whole stream metabolism, as determined by photosynthesis and respiration, is critical to our understanding of carbon cycling and carbon subsidies to aquatic food-webs. The mass development of aquatic plants is a worldwide problem for human activities and often occurs in regulated rivers, altering biodiversity and ecosystem functions. Hydropower plants supersaturate water with gases and prevent the use of common whole stream metabolism models to estimate ecosystem respiration. Here we used the inert noble gas argon to parse out biological from physical processes in stream metabolism calculations. We coupled the O2:Ar ratio determined by gas chromatography in grab samples with in-situ oxygen concentrations measured by an optode to estimate aquatic plant photosynthesis and ecosystem respiration during supersaturation events through a parsimonious approach. The results compared well with a more complicated two-station model based on O2 mass balances in non-supersatured water, and with associated changes in dissolved CO2 (or dissolved inorganic carbon). This new method provides an independent approach to evaluate alternative corrections of dissolved oxygen data (e.g. through the use of total dissolved gases) in long term studies. The use of photosynthesis-irradiance models allows the determination of light parameters such as the onset of light saturation or low light use efficiency, which could be used for inverse modelling. The use of the O2:Ar approach to correct for oversaturation may become more applicable with the emergence of portable mass inlet mass spectrometers (MIMS). Photosynthesis was modest (2.9-5.8 g O2 m2 day−1) compared to other rivers with submerged vegetation, likely indicating nutrient co-limitations (CO2, inorganic N and P). Respiration was very low (-2.1 to -3.9 g O2 m2 day−1) likely due to a lack of allochthonous carbon supply and sandy sediment. Whole stream metabolism Noble gas Argon Gas exchange Aquatic plant Light use efficiency Dörsch, Peter verfasserin aut Enthalten in Water research Amsterdam [u.a.] : Elsevier Science, 1967 247 Online-Ressource (DE-627)306713780 (DE-600)1501098-3 (DE-576)098330284 1879-2448 nnns volume:247 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.85 Hydrologie: Allgemeines VZ 43.50 Umweltbelastungen VZ 58.51 Abwassertechnik Wasseraufbereitung VZ AR 247 |
allfields_unstemmed |
10.1016/j.watres.2023.120842 doi (DE-627)ELV065805771 (ELSEVIER)S0043-1354(23)01282-4 DE-627 ger DE-627 rda eng 550 VZ 38.85 bkl 43.50 bkl 58.51 bkl Demars, Benoît O.L. verfasserin (orcid)0000-0001-9936-934X aut Estimation of ecosystem respiration and photosynthesis in supersaturated stream water downstream of a hydropower plant 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The estimation of whole stream metabolism, as determined by photosynthesis and respiration, is critical to our understanding of carbon cycling and carbon subsidies to aquatic food-webs. The mass development of aquatic plants is a worldwide problem for human activities and often occurs in regulated rivers, altering biodiversity and ecosystem functions. Hydropower plants supersaturate water with gases and prevent the use of common whole stream metabolism models to estimate ecosystem respiration. Here we used the inert noble gas argon to parse out biological from physical processes in stream metabolism calculations. We coupled the O2:Ar ratio determined by gas chromatography in grab samples with in-situ oxygen concentrations measured by an optode to estimate aquatic plant photosynthesis and ecosystem respiration during supersaturation events through a parsimonious approach. The results compared well with a more complicated two-station model based on O2 mass balances in non-supersatured water, and with associated changes in dissolved CO2 (or dissolved inorganic carbon). This new method provides an independent approach to evaluate alternative corrections of dissolved oxygen data (e.g. through the use of total dissolved gases) in long term studies. The use of photosynthesis-irradiance models allows the determination of light parameters such as the onset of light saturation or low light use efficiency, which could be used for inverse modelling. The use of the O2:Ar approach to correct for oversaturation may become more applicable with the emergence of portable mass inlet mass spectrometers (MIMS). Photosynthesis was modest (2.9-5.8 g O2 m2 day−1) compared to other rivers with submerged vegetation, likely indicating nutrient co-limitations (CO2, inorganic N and P). Respiration was very low (-2.1 to -3.9 g O2 m2 day−1) likely due to a lack of allochthonous carbon supply and sandy sediment. Whole stream metabolism Noble gas Argon Gas exchange Aquatic plant Light use efficiency Dörsch, Peter verfasserin aut Enthalten in Water research Amsterdam [u.a.] : Elsevier Science, 1967 247 Online-Ressource (DE-627)306713780 (DE-600)1501098-3 (DE-576)098330284 1879-2448 nnns volume:247 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.85 Hydrologie: Allgemeines VZ 43.50 Umweltbelastungen VZ 58.51 Abwassertechnik Wasseraufbereitung VZ AR 247 |
allfieldsGer |
10.1016/j.watres.2023.120842 doi (DE-627)ELV065805771 (ELSEVIER)S0043-1354(23)01282-4 DE-627 ger DE-627 rda eng 550 VZ 38.85 bkl 43.50 bkl 58.51 bkl Demars, Benoît O.L. verfasserin (orcid)0000-0001-9936-934X aut Estimation of ecosystem respiration and photosynthesis in supersaturated stream water downstream of a hydropower plant 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The estimation of whole stream metabolism, as determined by photosynthesis and respiration, is critical to our understanding of carbon cycling and carbon subsidies to aquatic food-webs. The mass development of aquatic plants is a worldwide problem for human activities and often occurs in regulated rivers, altering biodiversity and ecosystem functions. Hydropower plants supersaturate water with gases and prevent the use of common whole stream metabolism models to estimate ecosystem respiration. Here we used the inert noble gas argon to parse out biological from physical processes in stream metabolism calculations. We coupled the O2:Ar ratio determined by gas chromatography in grab samples with in-situ oxygen concentrations measured by an optode to estimate aquatic plant photosynthesis and ecosystem respiration during supersaturation events through a parsimonious approach. The results compared well with a more complicated two-station model based on O2 mass balances in non-supersatured water, and with associated changes in dissolved CO2 (or dissolved inorganic carbon). This new method provides an independent approach to evaluate alternative corrections of dissolved oxygen data (e.g. through the use of total dissolved gases) in long term studies. The use of photosynthesis-irradiance models allows the determination of light parameters such as the onset of light saturation or low light use efficiency, which could be used for inverse modelling. The use of the O2:Ar approach to correct for oversaturation may become more applicable with the emergence of portable mass inlet mass spectrometers (MIMS). Photosynthesis was modest (2.9-5.8 g O2 m2 day−1) compared to other rivers with submerged vegetation, likely indicating nutrient co-limitations (CO2, inorganic N and P). Respiration was very low (-2.1 to -3.9 g O2 m2 day−1) likely due to a lack of allochthonous carbon supply and sandy sediment. Whole stream metabolism Noble gas Argon Gas exchange Aquatic plant Light use efficiency Dörsch, Peter verfasserin aut Enthalten in Water research Amsterdam [u.a.] : Elsevier Science, 1967 247 Online-Ressource (DE-627)306713780 (DE-600)1501098-3 (DE-576)098330284 1879-2448 nnns volume:247 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.85 Hydrologie: Allgemeines VZ 43.50 Umweltbelastungen VZ 58.51 Abwassertechnik Wasseraufbereitung VZ AR 247 |
allfieldsSound |
10.1016/j.watres.2023.120842 doi (DE-627)ELV065805771 (ELSEVIER)S0043-1354(23)01282-4 DE-627 ger DE-627 rda eng 550 VZ 38.85 bkl 43.50 bkl 58.51 bkl Demars, Benoît O.L. verfasserin (orcid)0000-0001-9936-934X aut Estimation of ecosystem respiration and photosynthesis in supersaturated stream water downstream of a hydropower plant 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The estimation of whole stream metabolism, as determined by photosynthesis and respiration, is critical to our understanding of carbon cycling and carbon subsidies to aquatic food-webs. The mass development of aquatic plants is a worldwide problem for human activities and often occurs in regulated rivers, altering biodiversity and ecosystem functions. Hydropower plants supersaturate water with gases and prevent the use of common whole stream metabolism models to estimate ecosystem respiration. Here we used the inert noble gas argon to parse out biological from physical processes in stream metabolism calculations. We coupled the O2:Ar ratio determined by gas chromatography in grab samples with in-situ oxygen concentrations measured by an optode to estimate aquatic plant photosynthesis and ecosystem respiration during supersaturation events through a parsimonious approach. The results compared well with a more complicated two-station model based on O2 mass balances in non-supersatured water, and with associated changes in dissolved CO2 (or dissolved inorganic carbon). This new method provides an independent approach to evaluate alternative corrections of dissolved oxygen data (e.g. through the use of total dissolved gases) in long term studies. The use of photosynthesis-irradiance models allows the determination of light parameters such as the onset of light saturation or low light use efficiency, which could be used for inverse modelling. The use of the O2:Ar approach to correct for oversaturation may become more applicable with the emergence of portable mass inlet mass spectrometers (MIMS). Photosynthesis was modest (2.9-5.8 g O2 m2 day−1) compared to other rivers with submerged vegetation, likely indicating nutrient co-limitations (CO2, inorganic N and P). Respiration was very low (-2.1 to -3.9 g O2 m2 day−1) likely due to a lack of allochthonous carbon supply and sandy sediment. Whole stream metabolism Noble gas Argon Gas exchange Aquatic plant Light use efficiency Dörsch, Peter verfasserin aut Enthalten in Water research Amsterdam [u.a.] : Elsevier Science, 1967 247 Online-Ressource (DE-627)306713780 (DE-600)1501098-3 (DE-576)098330284 1879-2448 nnns volume:247 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.85 Hydrologie: Allgemeines VZ 43.50 Umweltbelastungen VZ 58.51 Abwassertechnik Wasseraufbereitung VZ AR 247 |
language |
English |
source |
Enthalten in Water research 247 volume:247 |
sourceStr |
Enthalten in Water research 247 volume:247 |
format_phy_str_mv |
Article |
bklname |
Hydrologie: Allgemeines Umweltbelastungen Abwassertechnik Wasseraufbereitung |
institution |
findex.gbv.de |
topic_facet |
Whole stream metabolism Noble gas Argon Gas exchange Aquatic plant Light use efficiency |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Water research |
authorswithroles_txt_mv |
Demars, Benoît O.L. @@aut@@ Dörsch, Peter @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
306713780 |
dewey-sort |
3550 |
id |
ELV065805771 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065805771</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240131093046.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231125s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.watres.2023.120842</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065805771</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0043-1354(23)01282-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.51</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Demars, Benoît O.L.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9936-934X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimation of ecosystem respiration and photosynthesis in supersaturated stream water downstream of a hydropower plant</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The estimation of whole stream metabolism, as determined by photosynthesis and respiration, is critical to our understanding of carbon cycling and carbon subsidies to aquatic food-webs. The mass development of aquatic plants is a worldwide problem for human activities and often occurs in regulated rivers, altering biodiversity and ecosystem functions. Hydropower plants supersaturate water with gases and prevent the use of common whole stream metabolism models to estimate ecosystem respiration. Here we used the inert noble gas argon to parse out biological from physical processes in stream metabolism calculations. We coupled the O2:Ar ratio determined by gas chromatography in grab samples with in-situ oxygen concentrations measured by an optode to estimate aquatic plant photosynthesis and ecosystem respiration during supersaturation events through a parsimonious approach. The results compared well with a more complicated two-station model based on O2 mass balances in non-supersatured water, and with associated changes in dissolved CO2 (or dissolved inorganic carbon). This new method provides an independent approach to evaluate alternative corrections of dissolved oxygen data (e.g. through the use of total dissolved gases) in long term studies. The use of photosynthesis-irradiance models allows the determination of light parameters such as the onset of light saturation or low light use efficiency, which could be used for inverse modelling. The use of the O2:Ar approach to correct for oversaturation may become more applicable with the emergence of portable mass inlet mass spectrometers (MIMS). Photosynthesis was modest (2.9-5.8 g O2 m2 day−1) compared to other rivers with submerged vegetation, likely indicating nutrient co-limitations (CO2, inorganic N and P). Respiration was very low (-2.1 to -3.9 g O2 m2 day−1) likely due to a lack of allochthonous carbon supply and sandy sediment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Whole stream metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noble gas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Argon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gas exchange</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aquatic plant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Light use efficiency</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dörsch, Peter</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Water research</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1967</subfield><subfield code="g">247</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306713780</subfield><subfield code="w">(DE-600)1501098-3</subfield><subfield code="w">(DE-576)098330284</subfield><subfield code="x">1879-2448</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:247</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.85</subfield><subfield code="j">Hydrologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.50</subfield><subfield code="j">Umweltbelastungen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.51</subfield><subfield code="j">Abwassertechnik</subfield><subfield code="j">Wasseraufbereitung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">247</subfield></datafield></record></collection>
|
author |
Demars, Benoît O.L. |
spellingShingle |
Demars, Benoît O.L. ddc 550 bkl 38.85 bkl 43.50 bkl 58.51 misc Whole stream metabolism misc Noble gas misc Argon misc Gas exchange misc Aquatic plant misc Light use efficiency Estimation of ecosystem respiration and photosynthesis in supersaturated stream water downstream of a hydropower plant |
authorStr |
Demars, Benoît O.L. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306713780 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-2448 |
topic_title |
550 VZ 38.85 bkl 43.50 bkl 58.51 bkl Estimation of ecosystem respiration and photosynthesis in supersaturated stream water downstream of a hydropower plant Whole stream metabolism Noble gas Argon Gas exchange Aquatic plant Light use efficiency |
topic |
ddc 550 bkl 38.85 bkl 43.50 bkl 58.51 misc Whole stream metabolism misc Noble gas misc Argon misc Gas exchange misc Aquatic plant misc Light use efficiency |
topic_unstemmed |
ddc 550 bkl 38.85 bkl 43.50 bkl 58.51 misc Whole stream metabolism misc Noble gas misc Argon misc Gas exchange misc Aquatic plant misc Light use efficiency |
topic_browse |
ddc 550 bkl 38.85 bkl 43.50 bkl 58.51 misc Whole stream metabolism misc Noble gas misc Argon misc Gas exchange misc Aquatic plant misc Light use efficiency |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Water research |
hierarchy_parent_id |
306713780 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Water research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306713780 (DE-600)1501098-3 (DE-576)098330284 |
title |
Estimation of ecosystem respiration and photosynthesis in supersaturated stream water downstream of a hydropower plant |
ctrlnum |
(DE-627)ELV065805771 (ELSEVIER)S0043-1354(23)01282-4 |
title_full |
Estimation of ecosystem respiration and photosynthesis in supersaturated stream water downstream of a hydropower plant |
author_sort |
Demars, Benoît O.L. |
journal |
Water research |
journalStr |
Water research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Demars, Benoît O.L. Dörsch, Peter |
container_volume |
247 |
class |
550 VZ 38.85 bkl 43.50 bkl 58.51 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Demars, Benoît O.L. |
doi_str_mv |
10.1016/j.watres.2023.120842 |
normlink |
(ORCID)0000-0001-9936-934X |
normlink_prefix_str_mv |
(orcid)0000-0001-9936-934X |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
estimation of ecosystem respiration and photosynthesis in supersaturated stream water downstream of a hydropower plant |
title_auth |
Estimation of ecosystem respiration and photosynthesis in supersaturated stream water downstream of a hydropower plant |
abstract |
The estimation of whole stream metabolism, as determined by photosynthesis and respiration, is critical to our understanding of carbon cycling and carbon subsidies to aquatic food-webs. The mass development of aquatic plants is a worldwide problem for human activities and often occurs in regulated rivers, altering biodiversity and ecosystem functions. Hydropower plants supersaturate water with gases and prevent the use of common whole stream metabolism models to estimate ecosystem respiration. Here we used the inert noble gas argon to parse out biological from physical processes in stream metabolism calculations. We coupled the O2:Ar ratio determined by gas chromatography in grab samples with in-situ oxygen concentrations measured by an optode to estimate aquatic plant photosynthesis and ecosystem respiration during supersaturation events through a parsimonious approach. The results compared well with a more complicated two-station model based on O2 mass balances in non-supersatured water, and with associated changes in dissolved CO2 (or dissolved inorganic carbon). This new method provides an independent approach to evaluate alternative corrections of dissolved oxygen data (e.g. through the use of total dissolved gases) in long term studies. The use of photosynthesis-irradiance models allows the determination of light parameters such as the onset of light saturation or low light use efficiency, which could be used for inverse modelling. The use of the O2:Ar approach to correct for oversaturation may become more applicable with the emergence of portable mass inlet mass spectrometers (MIMS). Photosynthesis was modest (2.9-5.8 g O2 m2 day−1) compared to other rivers with submerged vegetation, likely indicating nutrient co-limitations (CO2, inorganic N and P). Respiration was very low (-2.1 to -3.9 g O2 m2 day−1) likely due to a lack of allochthonous carbon supply and sandy sediment. |
abstractGer |
The estimation of whole stream metabolism, as determined by photosynthesis and respiration, is critical to our understanding of carbon cycling and carbon subsidies to aquatic food-webs. The mass development of aquatic plants is a worldwide problem for human activities and often occurs in regulated rivers, altering biodiversity and ecosystem functions. Hydropower plants supersaturate water with gases and prevent the use of common whole stream metabolism models to estimate ecosystem respiration. Here we used the inert noble gas argon to parse out biological from physical processes in stream metabolism calculations. We coupled the O2:Ar ratio determined by gas chromatography in grab samples with in-situ oxygen concentrations measured by an optode to estimate aquatic plant photosynthesis and ecosystem respiration during supersaturation events through a parsimonious approach. The results compared well with a more complicated two-station model based on O2 mass balances in non-supersatured water, and with associated changes in dissolved CO2 (or dissolved inorganic carbon). This new method provides an independent approach to evaluate alternative corrections of dissolved oxygen data (e.g. through the use of total dissolved gases) in long term studies. The use of photosynthesis-irradiance models allows the determination of light parameters such as the onset of light saturation or low light use efficiency, which could be used for inverse modelling. The use of the O2:Ar approach to correct for oversaturation may become more applicable with the emergence of portable mass inlet mass spectrometers (MIMS). Photosynthesis was modest (2.9-5.8 g O2 m2 day−1) compared to other rivers with submerged vegetation, likely indicating nutrient co-limitations (CO2, inorganic N and P). Respiration was very low (-2.1 to -3.9 g O2 m2 day−1) likely due to a lack of allochthonous carbon supply and sandy sediment. |
abstract_unstemmed |
The estimation of whole stream metabolism, as determined by photosynthesis and respiration, is critical to our understanding of carbon cycling and carbon subsidies to aquatic food-webs. The mass development of aquatic plants is a worldwide problem for human activities and often occurs in regulated rivers, altering biodiversity and ecosystem functions. Hydropower plants supersaturate water with gases and prevent the use of common whole stream metabolism models to estimate ecosystem respiration. Here we used the inert noble gas argon to parse out biological from physical processes in stream metabolism calculations. We coupled the O2:Ar ratio determined by gas chromatography in grab samples with in-situ oxygen concentrations measured by an optode to estimate aquatic plant photosynthesis and ecosystem respiration during supersaturation events through a parsimonious approach. The results compared well with a more complicated two-station model based on O2 mass balances in non-supersatured water, and with associated changes in dissolved CO2 (or dissolved inorganic carbon). This new method provides an independent approach to evaluate alternative corrections of dissolved oxygen data (e.g. through the use of total dissolved gases) in long term studies. The use of photosynthesis-irradiance models allows the determination of light parameters such as the onset of light saturation or low light use efficiency, which could be used for inverse modelling. The use of the O2:Ar approach to correct for oversaturation may become more applicable with the emergence of portable mass inlet mass spectrometers (MIMS). Photosynthesis was modest (2.9-5.8 g O2 m2 day−1) compared to other rivers with submerged vegetation, likely indicating nutrient co-limitations (CO2, inorganic N and P). Respiration was very low (-2.1 to -3.9 g O2 m2 day−1) likely due to a lack of allochthonous carbon supply and sandy sediment. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Estimation of ecosystem respiration and photosynthesis in supersaturated stream water downstream of a hydropower plant |
remote_bool |
true |
author2 |
Dörsch, Peter |
author2Str |
Dörsch, Peter |
ppnlink |
306713780 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.watres.2023.120842 |
up_date |
2024-07-07T00:18:53.453Z |
_version_ |
1803877386503061504 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065805771</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240131093046.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231125s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.watres.2023.120842</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065805771</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0043-1354(23)01282-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.51</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Demars, Benoît O.L.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9936-934X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimation of ecosystem respiration and photosynthesis in supersaturated stream water downstream of a hydropower plant</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The estimation of whole stream metabolism, as determined by photosynthesis and respiration, is critical to our understanding of carbon cycling and carbon subsidies to aquatic food-webs. The mass development of aquatic plants is a worldwide problem for human activities and often occurs in regulated rivers, altering biodiversity and ecosystem functions. Hydropower plants supersaturate water with gases and prevent the use of common whole stream metabolism models to estimate ecosystem respiration. Here we used the inert noble gas argon to parse out biological from physical processes in stream metabolism calculations. We coupled the O2:Ar ratio determined by gas chromatography in grab samples with in-situ oxygen concentrations measured by an optode to estimate aquatic plant photosynthesis and ecosystem respiration during supersaturation events through a parsimonious approach. The results compared well with a more complicated two-station model based on O2 mass balances in non-supersatured water, and with associated changes in dissolved CO2 (or dissolved inorganic carbon). This new method provides an independent approach to evaluate alternative corrections of dissolved oxygen data (e.g. through the use of total dissolved gases) in long term studies. The use of photosynthesis-irradiance models allows the determination of light parameters such as the onset of light saturation or low light use efficiency, which could be used for inverse modelling. The use of the O2:Ar approach to correct for oversaturation may become more applicable with the emergence of portable mass inlet mass spectrometers (MIMS). Photosynthesis was modest (2.9-5.8 g O2 m2 day−1) compared to other rivers with submerged vegetation, likely indicating nutrient co-limitations (CO2, inorganic N and P). Respiration was very low (-2.1 to -3.9 g O2 m2 day−1) likely due to a lack of allochthonous carbon supply and sandy sediment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Whole stream metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noble gas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Argon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gas exchange</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aquatic plant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Light use efficiency</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dörsch, Peter</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Water research</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1967</subfield><subfield code="g">247</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306713780</subfield><subfield code="w">(DE-600)1501098-3</subfield><subfield code="w">(DE-576)098330284</subfield><subfield code="x">1879-2448</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:247</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.85</subfield><subfield code="j">Hydrologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.50</subfield><subfield code="j">Umweltbelastungen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.51</subfield><subfield code="j">Abwassertechnik</subfield><subfield code="j">Wasseraufbereitung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">247</subfield></datafield></record></collection>
|
score |
7.400633 |