Superhydrophilic fluorinated heterogeneous membranes with boosting antifouling property and high stable permeance for efficient emulsion separation
It is yet a query that whether chemically heterogeneous superwetting surface is able to enhance the permeability and anti-fouling capability of membrane contemporaneously, heretofore which is lacking and well worth creating. Here, we propose a bio-adhesion coupled with self-assembly strategy, to con...
Ausführliche Beschreibung
Autor*in: |
Wang, Lulu [verfasserIn] Liu, Jie [verfasserIn] Zhang, Ruilong [verfasserIn] Wu, Junda [verfasserIn] Tian, Xiaohua [verfasserIn] Chen, Li [verfasserIn] Dai, Xiaohui [verfasserIn] Yan, Yongsheng [verfasserIn] Pan, Jianming [verfasserIn] Dai, Jiangdong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of membrane science - New York, NY [u.a.] : Elsevier, 1976, 691 |
---|---|
Übergeordnetes Werk: |
volume:691 |
DOI / URN: |
10.1016/j.memsci.2023.122253 |
---|
Katalog-ID: |
ELV065830903 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV065830903 | ||
003 | DE-627 | ||
005 | 20240120093215.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231126s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.memsci.2023.122253 |2 doi | |
035 | |a (DE-627)ELV065830903 | ||
035 | |a (ELSEVIER)S0376-7388(23)00909-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |q VZ |
084 | |a 58.11 |2 bkl | ||
100 | 1 | |a Wang, Lulu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Superhydrophilic fluorinated heterogeneous membranes with boosting antifouling property and high stable permeance for efficient emulsion separation |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a It is yet a query that whether chemically heterogeneous superwetting surface is able to enhance the permeability and anti-fouling capability of membrane contemporaneously, heretofore which is lacking and well worth creating. Here, we propose a bio-adhesion coupled with self-assembly strategy, to construct superhydrophilic fluorinated heterogeneous membranes, through in-situ biomimetic adhesion of the hydrophilic polyphenol-silane coating (TAT) on the porous PVDF membrane, as a secondary reaction platform, and subsequently self-assembly of amphoteric fluorocarbon surfactant (FS-50). Unsurprisingly, we find that introducing FS-50 not only significantly strengthens the permeability, but also improves the anti-fouling self-cleaning, thanks to the formation of robust hydration layer and slippery micro-domains with low friction, to realize the dual anti-fouling effects of pollution resistance and release. The champion PVDF/TAT/FS-2.0 % composite membrane exhibits superhydrophilic and underwater superoleophobic (oil contact angle above 162.3°) property with very low oil-adhesion. This composite membrane possesses an ultrahigh water permeance of 29214.6 L m−2 h−1 bar−1, which is 2.8 times larger than that of pristine PVDF membrane. The PVDF/TAT/FS-2.0 % composite membrane presents the high separation efficiencies (above 99.5 %) for various surfactant-stabilized oil-in-water emulsions and high permeances of 3193.2–4212.3 L m−2 h−1 bar−1. Especially, the membrane at continuous operation for 1.0 h can reach a high stable permeance of 2505.1 L m−2 h−1 bar−1. Moreover, this composite membrane shows strong chemical stability and robustness. This research answers the initial question, and provides the insight for further design and production of chemically heterogeneous superwetting membranes with high permeability, selectivity and antifouling ability. | ||
650 | 4 | |a Chemically heterogeneous surface | |
650 | 4 | |a Superwetting membrane | |
650 | 4 | |a Improved permeance | |
650 | 4 | |a Anti-fouling self-cleaning | |
650 | 4 | |a Emulsion separation | |
700 | 1 | |a Liu, Jie |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Ruilong |e verfasserin |4 aut | |
700 | 1 | |a Wu, Junda |e verfasserin |4 aut | |
700 | 1 | |a Tian, Xiaohua |e verfasserin |4 aut | |
700 | 1 | |a Chen, Li |e verfasserin |4 aut | |
700 | 1 | |a Dai, Xiaohui |e verfasserin |4 aut | |
700 | 1 | |a Yan, Yongsheng |e verfasserin |4 aut | |
700 | 1 | |a Pan, Jianming |e verfasserin |4 aut | |
700 | 1 | |a Dai, Jiangdong |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of membrane science |d New York, NY [u.a.] : Elsevier, 1976 |g 691 |h Online-Ressource |w (DE-627)302468927 |w (DE-600)1491419-0 |w (DE-576)259483907 |x 0376-7388 |7 nnns |
773 | 1 | 8 | |g volume:691 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 58.11 |j Mechanische Verfahrenstechnik |q VZ |
951 | |a AR | ||
952 | |d 691 |
author_variant |
l w lw j l jl r z rz j w jw x t xt l c lc x d xd y y yy j p jp j d jd |
---|---|
matchkey_str |
article:03767388:2023----::uehdohlcloiaehtrgnosebaewtbotnatfuigrprynhgsalpre |
hierarchy_sort_str |
2023 |
bklnumber |
58.11 |
publishDate |
2023 |
allfields |
10.1016/j.memsci.2023.122253 doi (DE-627)ELV065830903 (ELSEVIER)S0376-7388(23)00909-2 DE-627 ger DE-627 rda eng 570 VZ 58.11 bkl Wang, Lulu verfasserin aut Superhydrophilic fluorinated heterogeneous membranes with boosting antifouling property and high stable permeance for efficient emulsion separation 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is yet a query that whether chemically heterogeneous superwetting surface is able to enhance the permeability and anti-fouling capability of membrane contemporaneously, heretofore which is lacking and well worth creating. Here, we propose a bio-adhesion coupled with self-assembly strategy, to construct superhydrophilic fluorinated heterogeneous membranes, through in-situ biomimetic adhesion of the hydrophilic polyphenol-silane coating (TAT) on the porous PVDF membrane, as a secondary reaction platform, and subsequently self-assembly of amphoteric fluorocarbon surfactant (FS-50). Unsurprisingly, we find that introducing FS-50 not only significantly strengthens the permeability, but also improves the anti-fouling self-cleaning, thanks to the formation of robust hydration layer and slippery micro-domains with low friction, to realize the dual anti-fouling effects of pollution resistance and release. The champion PVDF/TAT/FS-2.0 % composite membrane exhibits superhydrophilic and underwater superoleophobic (oil contact angle above 162.3°) property with very low oil-adhesion. This composite membrane possesses an ultrahigh water permeance of 29214.6 L m−2 h−1 bar−1, which is 2.8 times larger than that of pristine PVDF membrane. The PVDF/TAT/FS-2.0 % composite membrane presents the high separation efficiencies (above 99.5 %) for various surfactant-stabilized oil-in-water emulsions and high permeances of 3193.2–4212.3 L m−2 h−1 bar−1. Especially, the membrane at continuous operation for 1.0 h can reach a high stable permeance of 2505.1 L m−2 h−1 bar−1. Moreover, this composite membrane shows strong chemical stability and robustness. This research answers the initial question, and provides the insight for further design and production of chemically heterogeneous superwetting membranes with high permeability, selectivity and antifouling ability. Chemically heterogeneous surface Superwetting membrane Improved permeance Anti-fouling self-cleaning Emulsion separation Liu, Jie verfasserin aut Zhang, Ruilong verfasserin aut Wu, Junda verfasserin aut Tian, Xiaohua verfasserin aut Chen, Li verfasserin aut Dai, Xiaohui verfasserin aut Yan, Yongsheng verfasserin aut Pan, Jianming verfasserin aut Dai, Jiangdong verfasserin aut Enthalten in Journal of membrane science New York, NY [u.a.] : Elsevier, 1976 691 Online-Ressource (DE-627)302468927 (DE-600)1491419-0 (DE-576)259483907 0376-7388 nnns volume:691 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.11 Mechanische Verfahrenstechnik VZ AR 691 |
spelling |
10.1016/j.memsci.2023.122253 doi (DE-627)ELV065830903 (ELSEVIER)S0376-7388(23)00909-2 DE-627 ger DE-627 rda eng 570 VZ 58.11 bkl Wang, Lulu verfasserin aut Superhydrophilic fluorinated heterogeneous membranes with boosting antifouling property and high stable permeance for efficient emulsion separation 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is yet a query that whether chemically heterogeneous superwetting surface is able to enhance the permeability and anti-fouling capability of membrane contemporaneously, heretofore which is lacking and well worth creating. Here, we propose a bio-adhesion coupled with self-assembly strategy, to construct superhydrophilic fluorinated heterogeneous membranes, through in-situ biomimetic adhesion of the hydrophilic polyphenol-silane coating (TAT) on the porous PVDF membrane, as a secondary reaction platform, and subsequently self-assembly of amphoteric fluorocarbon surfactant (FS-50). Unsurprisingly, we find that introducing FS-50 not only significantly strengthens the permeability, but also improves the anti-fouling self-cleaning, thanks to the formation of robust hydration layer and slippery micro-domains with low friction, to realize the dual anti-fouling effects of pollution resistance and release. The champion PVDF/TAT/FS-2.0 % composite membrane exhibits superhydrophilic and underwater superoleophobic (oil contact angle above 162.3°) property with very low oil-adhesion. This composite membrane possesses an ultrahigh water permeance of 29214.6 L m−2 h−1 bar−1, which is 2.8 times larger than that of pristine PVDF membrane. The PVDF/TAT/FS-2.0 % composite membrane presents the high separation efficiencies (above 99.5 %) for various surfactant-stabilized oil-in-water emulsions and high permeances of 3193.2–4212.3 L m−2 h−1 bar−1. Especially, the membrane at continuous operation for 1.0 h can reach a high stable permeance of 2505.1 L m−2 h−1 bar−1. Moreover, this composite membrane shows strong chemical stability and robustness. This research answers the initial question, and provides the insight for further design and production of chemically heterogeneous superwetting membranes with high permeability, selectivity and antifouling ability. Chemically heterogeneous surface Superwetting membrane Improved permeance Anti-fouling self-cleaning Emulsion separation Liu, Jie verfasserin aut Zhang, Ruilong verfasserin aut Wu, Junda verfasserin aut Tian, Xiaohua verfasserin aut Chen, Li verfasserin aut Dai, Xiaohui verfasserin aut Yan, Yongsheng verfasserin aut Pan, Jianming verfasserin aut Dai, Jiangdong verfasserin aut Enthalten in Journal of membrane science New York, NY [u.a.] : Elsevier, 1976 691 Online-Ressource (DE-627)302468927 (DE-600)1491419-0 (DE-576)259483907 0376-7388 nnns volume:691 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.11 Mechanische Verfahrenstechnik VZ AR 691 |
allfields_unstemmed |
10.1016/j.memsci.2023.122253 doi (DE-627)ELV065830903 (ELSEVIER)S0376-7388(23)00909-2 DE-627 ger DE-627 rda eng 570 VZ 58.11 bkl Wang, Lulu verfasserin aut Superhydrophilic fluorinated heterogeneous membranes with boosting antifouling property and high stable permeance for efficient emulsion separation 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is yet a query that whether chemically heterogeneous superwetting surface is able to enhance the permeability and anti-fouling capability of membrane contemporaneously, heretofore which is lacking and well worth creating. Here, we propose a bio-adhesion coupled with self-assembly strategy, to construct superhydrophilic fluorinated heterogeneous membranes, through in-situ biomimetic adhesion of the hydrophilic polyphenol-silane coating (TAT) on the porous PVDF membrane, as a secondary reaction platform, and subsequently self-assembly of amphoteric fluorocarbon surfactant (FS-50). Unsurprisingly, we find that introducing FS-50 not only significantly strengthens the permeability, but also improves the anti-fouling self-cleaning, thanks to the formation of robust hydration layer and slippery micro-domains with low friction, to realize the dual anti-fouling effects of pollution resistance and release. The champion PVDF/TAT/FS-2.0 % composite membrane exhibits superhydrophilic and underwater superoleophobic (oil contact angle above 162.3°) property with very low oil-adhesion. This composite membrane possesses an ultrahigh water permeance of 29214.6 L m−2 h−1 bar−1, which is 2.8 times larger than that of pristine PVDF membrane. The PVDF/TAT/FS-2.0 % composite membrane presents the high separation efficiencies (above 99.5 %) for various surfactant-stabilized oil-in-water emulsions and high permeances of 3193.2–4212.3 L m−2 h−1 bar−1. Especially, the membrane at continuous operation for 1.0 h can reach a high stable permeance of 2505.1 L m−2 h−1 bar−1. Moreover, this composite membrane shows strong chemical stability and robustness. This research answers the initial question, and provides the insight for further design and production of chemically heterogeneous superwetting membranes with high permeability, selectivity and antifouling ability. Chemically heterogeneous surface Superwetting membrane Improved permeance Anti-fouling self-cleaning Emulsion separation Liu, Jie verfasserin aut Zhang, Ruilong verfasserin aut Wu, Junda verfasserin aut Tian, Xiaohua verfasserin aut Chen, Li verfasserin aut Dai, Xiaohui verfasserin aut Yan, Yongsheng verfasserin aut Pan, Jianming verfasserin aut Dai, Jiangdong verfasserin aut Enthalten in Journal of membrane science New York, NY [u.a.] : Elsevier, 1976 691 Online-Ressource (DE-627)302468927 (DE-600)1491419-0 (DE-576)259483907 0376-7388 nnns volume:691 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.11 Mechanische Verfahrenstechnik VZ AR 691 |
allfieldsGer |
10.1016/j.memsci.2023.122253 doi (DE-627)ELV065830903 (ELSEVIER)S0376-7388(23)00909-2 DE-627 ger DE-627 rda eng 570 VZ 58.11 bkl Wang, Lulu verfasserin aut Superhydrophilic fluorinated heterogeneous membranes with boosting antifouling property and high stable permeance for efficient emulsion separation 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is yet a query that whether chemically heterogeneous superwetting surface is able to enhance the permeability and anti-fouling capability of membrane contemporaneously, heretofore which is lacking and well worth creating. Here, we propose a bio-adhesion coupled with self-assembly strategy, to construct superhydrophilic fluorinated heterogeneous membranes, through in-situ biomimetic adhesion of the hydrophilic polyphenol-silane coating (TAT) on the porous PVDF membrane, as a secondary reaction platform, and subsequently self-assembly of amphoteric fluorocarbon surfactant (FS-50). Unsurprisingly, we find that introducing FS-50 not only significantly strengthens the permeability, but also improves the anti-fouling self-cleaning, thanks to the formation of robust hydration layer and slippery micro-domains with low friction, to realize the dual anti-fouling effects of pollution resistance and release. The champion PVDF/TAT/FS-2.0 % composite membrane exhibits superhydrophilic and underwater superoleophobic (oil contact angle above 162.3°) property with very low oil-adhesion. This composite membrane possesses an ultrahigh water permeance of 29214.6 L m−2 h−1 bar−1, which is 2.8 times larger than that of pristine PVDF membrane. The PVDF/TAT/FS-2.0 % composite membrane presents the high separation efficiencies (above 99.5 %) for various surfactant-stabilized oil-in-water emulsions and high permeances of 3193.2–4212.3 L m−2 h−1 bar−1. Especially, the membrane at continuous operation for 1.0 h can reach a high stable permeance of 2505.1 L m−2 h−1 bar−1. Moreover, this composite membrane shows strong chemical stability and robustness. This research answers the initial question, and provides the insight for further design and production of chemically heterogeneous superwetting membranes with high permeability, selectivity and antifouling ability. Chemically heterogeneous surface Superwetting membrane Improved permeance Anti-fouling self-cleaning Emulsion separation Liu, Jie verfasserin aut Zhang, Ruilong verfasserin aut Wu, Junda verfasserin aut Tian, Xiaohua verfasserin aut Chen, Li verfasserin aut Dai, Xiaohui verfasserin aut Yan, Yongsheng verfasserin aut Pan, Jianming verfasserin aut Dai, Jiangdong verfasserin aut Enthalten in Journal of membrane science New York, NY [u.a.] : Elsevier, 1976 691 Online-Ressource (DE-627)302468927 (DE-600)1491419-0 (DE-576)259483907 0376-7388 nnns volume:691 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.11 Mechanische Verfahrenstechnik VZ AR 691 |
allfieldsSound |
10.1016/j.memsci.2023.122253 doi (DE-627)ELV065830903 (ELSEVIER)S0376-7388(23)00909-2 DE-627 ger DE-627 rda eng 570 VZ 58.11 bkl Wang, Lulu verfasserin aut Superhydrophilic fluorinated heterogeneous membranes with boosting antifouling property and high stable permeance for efficient emulsion separation 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is yet a query that whether chemically heterogeneous superwetting surface is able to enhance the permeability and anti-fouling capability of membrane contemporaneously, heretofore which is lacking and well worth creating. Here, we propose a bio-adhesion coupled with self-assembly strategy, to construct superhydrophilic fluorinated heterogeneous membranes, through in-situ biomimetic adhesion of the hydrophilic polyphenol-silane coating (TAT) on the porous PVDF membrane, as a secondary reaction platform, and subsequently self-assembly of amphoteric fluorocarbon surfactant (FS-50). Unsurprisingly, we find that introducing FS-50 not only significantly strengthens the permeability, but also improves the anti-fouling self-cleaning, thanks to the formation of robust hydration layer and slippery micro-domains with low friction, to realize the dual anti-fouling effects of pollution resistance and release. The champion PVDF/TAT/FS-2.0 % composite membrane exhibits superhydrophilic and underwater superoleophobic (oil contact angle above 162.3°) property with very low oil-adhesion. This composite membrane possesses an ultrahigh water permeance of 29214.6 L m−2 h−1 bar−1, which is 2.8 times larger than that of pristine PVDF membrane. The PVDF/TAT/FS-2.0 % composite membrane presents the high separation efficiencies (above 99.5 %) for various surfactant-stabilized oil-in-water emulsions and high permeances of 3193.2–4212.3 L m−2 h−1 bar−1. Especially, the membrane at continuous operation for 1.0 h can reach a high stable permeance of 2505.1 L m−2 h−1 bar−1. Moreover, this composite membrane shows strong chemical stability and robustness. This research answers the initial question, and provides the insight for further design and production of chemically heterogeneous superwetting membranes with high permeability, selectivity and antifouling ability. Chemically heterogeneous surface Superwetting membrane Improved permeance Anti-fouling self-cleaning Emulsion separation Liu, Jie verfasserin aut Zhang, Ruilong verfasserin aut Wu, Junda verfasserin aut Tian, Xiaohua verfasserin aut Chen, Li verfasserin aut Dai, Xiaohui verfasserin aut Yan, Yongsheng verfasserin aut Pan, Jianming verfasserin aut Dai, Jiangdong verfasserin aut Enthalten in Journal of membrane science New York, NY [u.a.] : Elsevier, 1976 691 Online-Ressource (DE-627)302468927 (DE-600)1491419-0 (DE-576)259483907 0376-7388 nnns volume:691 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.11 Mechanische Verfahrenstechnik VZ AR 691 |
language |
English |
source |
Enthalten in Journal of membrane science 691 volume:691 |
sourceStr |
Enthalten in Journal of membrane science 691 volume:691 |
format_phy_str_mv |
Article |
bklname |
Mechanische Verfahrenstechnik |
institution |
findex.gbv.de |
topic_facet |
Chemically heterogeneous surface Superwetting membrane Improved permeance Anti-fouling self-cleaning Emulsion separation |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Journal of membrane science |
authorswithroles_txt_mv |
Wang, Lulu @@aut@@ Liu, Jie @@aut@@ Zhang, Ruilong @@aut@@ Wu, Junda @@aut@@ Tian, Xiaohua @@aut@@ Chen, Li @@aut@@ Dai, Xiaohui @@aut@@ Yan, Yongsheng @@aut@@ Pan, Jianming @@aut@@ Dai, Jiangdong @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
302468927 |
dewey-sort |
3570 |
id |
ELV065830903 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065830903</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240120093215.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231126s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.memsci.2023.122253</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065830903</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0376-7388(23)00909-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Lulu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Superhydrophilic fluorinated heterogeneous membranes with boosting antifouling property and high stable permeance for efficient emulsion separation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">It is yet a query that whether chemically heterogeneous superwetting surface is able to enhance the permeability and anti-fouling capability of membrane contemporaneously, heretofore which is lacking and well worth creating. Here, we propose a bio-adhesion coupled with self-assembly strategy, to construct superhydrophilic fluorinated heterogeneous membranes, through in-situ biomimetic adhesion of the hydrophilic polyphenol-silane coating (TAT) on the porous PVDF membrane, as a secondary reaction platform, and subsequently self-assembly of amphoteric fluorocarbon surfactant (FS-50). Unsurprisingly, we find that introducing FS-50 not only significantly strengthens the permeability, but also improves the anti-fouling self-cleaning, thanks to the formation of robust hydration layer and slippery micro-domains with low friction, to realize the dual anti-fouling effects of pollution resistance and release. The champion PVDF/TAT/FS-2.0 % composite membrane exhibits superhydrophilic and underwater superoleophobic (oil contact angle above 162.3°) property with very low oil-adhesion. This composite membrane possesses an ultrahigh water permeance of 29214.6 L m−2 h−1 bar−1, which is 2.8 times larger than that of pristine PVDF membrane. The PVDF/TAT/FS-2.0 % composite membrane presents the high separation efficiencies (above 99.5 %) for various surfactant-stabilized oil-in-water emulsions and high permeances of 3193.2–4212.3 L m−2 h−1 bar−1. Especially, the membrane at continuous operation for 1.0 h can reach a high stable permeance of 2505.1 L m−2 h−1 bar−1. Moreover, this composite membrane shows strong chemical stability and robustness. This research answers the initial question, and provides the insight for further design and production of chemically heterogeneous superwetting membranes with high permeability, selectivity and antifouling ability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemically heterogeneous surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superwetting membrane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Improved permeance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anti-fouling self-cleaning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Emulsion separation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Ruilong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Junda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Xiaohua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Xiaohui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Yongsheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pan, Jianming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Jiangdong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of membrane science</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">691</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302468927</subfield><subfield code="w">(DE-600)1491419-0</subfield><subfield code="w">(DE-576)259483907</subfield><subfield code="x">0376-7388</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:691</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.11</subfield><subfield code="j">Mechanische Verfahrenstechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">691</subfield></datafield></record></collection>
|
author |
Wang, Lulu |
spellingShingle |
Wang, Lulu ddc 570 bkl 58.11 misc Chemically heterogeneous surface misc Superwetting membrane misc Improved permeance misc Anti-fouling self-cleaning misc Emulsion separation Superhydrophilic fluorinated heterogeneous membranes with boosting antifouling property and high stable permeance for efficient emulsion separation |
authorStr |
Wang, Lulu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)302468927 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0376-7388 |
topic_title |
570 VZ 58.11 bkl Superhydrophilic fluorinated heterogeneous membranes with boosting antifouling property and high stable permeance for efficient emulsion separation Chemically heterogeneous surface Superwetting membrane Improved permeance Anti-fouling self-cleaning Emulsion separation |
topic |
ddc 570 bkl 58.11 misc Chemically heterogeneous surface misc Superwetting membrane misc Improved permeance misc Anti-fouling self-cleaning misc Emulsion separation |
topic_unstemmed |
ddc 570 bkl 58.11 misc Chemically heterogeneous surface misc Superwetting membrane misc Improved permeance misc Anti-fouling self-cleaning misc Emulsion separation |
topic_browse |
ddc 570 bkl 58.11 misc Chemically heterogeneous surface misc Superwetting membrane misc Improved permeance misc Anti-fouling self-cleaning misc Emulsion separation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of membrane science |
hierarchy_parent_id |
302468927 |
dewey-tens |
570 - Life sciences; biology |
hierarchy_top_title |
Journal of membrane science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)302468927 (DE-600)1491419-0 (DE-576)259483907 |
title |
Superhydrophilic fluorinated heterogeneous membranes with boosting antifouling property and high stable permeance for efficient emulsion separation |
ctrlnum |
(DE-627)ELV065830903 (ELSEVIER)S0376-7388(23)00909-2 |
title_full |
Superhydrophilic fluorinated heterogeneous membranes with boosting antifouling property and high stable permeance for efficient emulsion separation |
author_sort |
Wang, Lulu |
journal |
Journal of membrane science |
journalStr |
Journal of membrane science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Wang, Lulu Liu, Jie Zhang, Ruilong Wu, Junda Tian, Xiaohua Chen, Li Dai, Xiaohui Yan, Yongsheng Pan, Jianming Dai, Jiangdong |
container_volume |
691 |
class |
570 VZ 58.11 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Lulu |
doi_str_mv |
10.1016/j.memsci.2023.122253 |
dewey-full |
570 |
author2-role |
verfasserin |
title_sort |
superhydrophilic fluorinated heterogeneous membranes with boosting antifouling property and high stable permeance for efficient emulsion separation |
title_auth |
Superhydrophilic fluorinated heterogeneous membranes with boosting antifouling property and high stable permeance for efficient emulsion separation |
abstract |
It is yet a query that whether chemically heterogeneous superwetting surface is able to enhance the permeability and anti-fouling capability of membrane contemporaneously, heretofore which is lacking and well worth creating. Here, we propose a bio-adhesion coupled with self-assembly strategy, to construct superhydrophilic fluorinated heterogeneous membranes, through in-situ biomimetic adhesion of the hydrophilic polyphenol-silane coating (TAT) on the porous PVDF membrane, as a secondary reaction platform, and subsequently self-assembly of amphoteric fluorocarbon surfactant (FS-50). Unsurprisingly, we find that introducing FS-50 not only significantly strengthens the permeability, but also improves the anti-fouling self-cleaning, thanks to the formation of robust hydration layer and slippery micro-domains with low friction, to realize the dual anti-fouling effects of pollution resistance and release. The champion PVDF/TAT/FS-2.0 % composite membrane exhibits superhydrophilic and underwater superoleophobic (oil contact angle above 162.3°) property with very low oil-adhesion. This composite membrane possesses an ultrahigh water permeance of 29214.6 L m−2 h−1 bar−1, which is 2.8 times larger than that of pristine PVDF membrane. The PVDF/TAT/FS-2.0 % composite membrane presents the high separation efficiencies (above 99.5 %) for various surfactant-stabilized oil-in-water emulsions and high permeances of 3193.2–4212.3 L m−2 h−1 bar−1. Especially, the membrane at continuous operation for 1.0 h can reach a high stable permeance of 2505.1 L m−2 h−1 bar−1. Moreover, this composite membrane shows strong chemical stability and robustness. This research answers the initial question, and provides the insight for further design and production of chemically heterogeneous superwetting membranes with high permeability, selectivity and antifouling ability. |
abstractGer |
It is yet a query that whether chemically heterogeneous superwetting surface is able to enhance the permeability and anti-fouling capability of membrane contemporaneously, heretofore which is lacking and well worth creating. Here, we propose a bio-adhesion coupled with self-assembly strategy, to construct superhydrophilic fluorinated heterogeneous membranes, through in-situ biomimetic adhesion of the hydrophilic polyphenol-silane coating (TAT) on the porous PVDF membrane, as a secondary reaction platform, and subsequently self-assembly of amphoteric fluorocarbon surfactant (FS-50). Unsurprisingly, we find that introducing FS-50 not only significantly strengthens the permeability, but also improves the anti-fouling self-cleaning, thanks to the formation of robust hydration layer and slippery micro-domains with low friction, to realize the dual anti-fouling effects of pollution resistance and release. The champion PVDF/TAT/FS-2.0 % composite membrane exhibits superhydrophilic and underwater superoleophobic (oil contact angle above 162.3°) property with very low oil-adhesion. This composite membrane possesses an ultrahigh water permeance of 29214.6 L m−2 h−1 bar−1, which is 2.8 times larger than that of pristine PVDF membrane. The PVDF/TAT/FS-2.0 % composite membrane presents the high separation efficiencies (above 99.5 %) for various surfactant-stabilized oil-in-water emulsions and high permeances of 3193.2–4212.3 L m−2 h−1 bar−1. Especially, the membrane at continuous operation for 1.0 h can reach a high stable permeance of 2505.1 L m−2 h−1 bar−1. Moreover, this composite membrane shows strong chemical stability and robustness. This research answers the initial question, and provides the insight for further design and production of chemically heterogeneous superwetting membranes with high permeability, selectivity and antifouling ability. |
abstract_unstemmed |
It is yet a query that whether chemically heterogeneous superwetting surface is able to enhance the permeability and anti-fouling capability of membrane contemporaneously, heretofore which is lacking and well worth creating. Here, we propose a bio-adhesion coupled with self-assembly strategy, to construct superhydrophilic fluorinated heterogeneous membranes, through in-situ biomimetic adhesion of the hydrophilic polyphenol-silane coating (TAT) on the porous PVDF membrane, as a secondary reaction platform, and subsequently self-assembly of amphoteric fluorocarbon surfactant (FS-50). Unsurprisingly, we find that introducing FS-50 not only significantly strengthens the permeability, but also improves the anti-fouling self-cleaning, thanks to the formation of robust hydration layer and slippery micro-domains with low friction, to realize the dual anti-fouling effects of pollution resistance and release. The champion PVDF/TAT/FS-2.0 % composite membrane exhibits superhydrophilic and underwater superoleophobic (oil contact angle above 162.3°) property with very low oil-adhesion. This composite membrane possesses an ultrahigh water permeance of 29214.6 L m−2 h−1 bar−1, which is 2.8 times larger than that of pristine PVDF membrane. The PVDF/TAT/FS-2.0 % composite membrane presents the high separation efficiencies (above 99.5 %) for various surfactant-stabilized oil-in-water emulsions and high permeances of 3193.2–4212.3 L m−2 h−1 bar−1. Especially, the membrane at continuous operation for 1.0 h can reach a high stable permeance of 2505.1 L m−2 h−1 bar−1. Moreover, this composite membrane shows strong chemical stability and robustness. This research answers the initial question, and provides the insight for further design and production of chemically heterogeneous superwetting membranes with high permeability, selectivity and antifouling ability. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Superhydrophilic fluorinated heterogeneous membranes with boosting antifouling property and high stable permeance for efficient emulsion separation |
remote_bool |
true |
author2 |
Liu, Jie Zhang, Ruilong Wu, Junda Tian, Xiaohua Chen, Li Dai, Xiaohui Yan, Yongsheng Pan, Jianming Dai, Jiangdong |
author2Str |
Liu, Jie Zhang, Ruilong Wu, Junda Tian, Xiaohua Chen, Li Dai, Xiaohui Yan, Yongsheng Pan, Jianming Dai, Jiangdong |
ppnlink |
302468927 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.memsci.2023.122253 |
up_date |
2024-07-07T00:24:04.203Z |
_version_ |
1803877712348053504 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065830903</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240120093215.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231126s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.memsci.2023.122253</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065830903</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0376-7388(23)00909-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Lulu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Superhydrophilic fluorinated heterogeneous membranes with boosting antifouling property and high stable permeance for efficient emulsion separation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">It is yet a query that whether chemically heterogeneous superwetting surface is able to enhance the permeability and anti-fouling capability of membrane contemporaneously, heretofore which is lacking and well worth creating. Here, we propose a bio-adhesion coupled with self-assembly strategy, to construct superhydrophilic fluorinated heterogeneous membranes, through in-situ biomimetic adhesion of the hydrophilic polyphenol-silane coating (TAT) on the porous PVDF membrane, as a secondary reaction platform, and subsequently self-assembly of amphoteric fluorocarbon surfactant (FS-50). Unsurprisingly, we find that introducing FS-50 not only significantly strengthens the permeability, but also improves the anti-fouling self-cleaning, thanks to the formation of robust hydration layer and slippery micro-domains with low friction, to realize the dual anti-fouling effects of pollution resistance and release. The champion PVDF/TAT/FS-2.0 % composite membrane exhibits superhydrophilic and underwater superoleophobic (oil contact angle above 162.3°) property with very low oil-adhesion. This composite membrane possesses an ultrahigh water permeance of 29214.6 L m−2 h−1 bar−1, which is 2.8 times larger than that of pristine PVDF membrane. The PVDF/TAT/FS-2.0 % composite membrane presents the high separation efficiencies (above 99.5 %) for various surfactant-stabilized oil-in-water emulsions and high permeances of 3193.2–4212.3 L m−2 h−1 bar−1. Especially, the membrane at continuous operation for 1.0 h can reach a high stable permeance of 2505.1 L m−2 h−1 bar−1. Moreover, this composite membrane shows strong chemical stability and robustness. This research answers the initial question, and provides the insight for further design and production of chemically heterogeneous superwetting membranes with high permeability, selectivity and antifouling ability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemically heterogeneous surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superwetting membrane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Improved permeance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anti-fouling self-cleaning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Emulsion separation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Ruilong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Junda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Xiaohua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Xiaohui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Yongsheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pan, Jianming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Jiangdong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of membrane science</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">691</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302468927</subfield><subfield code="w">(DE-600)1491419-0</subfield><subfield code="w">(DE-576)259483907</subfield><subfield code="x">0376-7388</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:691</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.11</subfield><subfield code="j">Mechanische Verfahrenstechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">691</subfield></datafield></record></collection>
|
score |
7.399577 |