Application of SWSRA-DS algorithm in improving the model transfer for near infrared analysis of pulpwood holocellulose
The SWSRA-DS combined algorithm is proposed with the goal of sharing the near infrared analysis model of the holocellulose content of pulpwood on three different types of spectroscopic instruments. That is, the screening wavelengths based on spectrum ratio analysis (SWSRA) algorithm is used to selec...
Ausführliche Beschreibung
Autor*in: |
Wang, Honghong [verfasserIn] Hu, Yunchao [verfasserIn] Liu, Zhijian [verfasserIn] Wang, Ying [verfasserIn] Huang, Haoran [verfasserIn] Xiong, Zhixin [verfasserIn] Liang, Long [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Infrared physics & technology - Amsterdam [u.a.] : Elsevier Science, 1994, 135 |
---|---|
Übergeordnetes Werk: |
volume:135 |
DOI / URN: |
10.1016/j.infrared.2023.104981 |
---|
Katalog-ID: |
ELV065884574 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV065884574 | ||
003 | DE-627 | ||
005 | 20231130093655.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231130s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.infrared.2023.104981 |2 doi | |
035 | |a (DE-627)ELV065884574 | ||
035 | |a (ELSEVIER)S1350-4495(23)00439-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 50.37 |2 bkl | ||
084 | |a 33.38 |2 bkl | ||
084 | |a 33.07 |2 bkl | ||
100 | 1 | |a Wang, Honghong |e verfasserin |0 (orcid)0000-0003-3319-2881 |4 aut | |
245 | 1 | 0 | |a Application of SWSRA-DS algorithm in improving the model transfer for near infrared analysis of pulpwood holocellulose |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The SWSRA-DS combined algorithm is proposed with the goal of sharing the near infrared analysis model of the holocellulose content of pulpwood on three different types of spectroscopic instruments. That is, the screening wavelengths based on spectrum ratio analysis (SWSRA) algorithm is used to select the wavelengths with good stability and consistency. These important wavelength variables, which are insensitive to the measured sample parameters, can reduce the differences in sample information response by different instruments or measurement conditions. Then the systematic errors that still existed after the SWSRA method calibration are further calibrated using the Direct Standardization (DS) method on the basis of these wavelengths. This combined algorithm can improve the generalizability of the master model, reduce the spectrum matrix dimension, and make the model transfer more stabilized and simple. The results show that the SWSRA-DS combined algorithm is able to reduce the RMSEP of the master model to predict the holocellulose content of samples measured on the target 1 and target 2 instruments from 2.01% and 9.45% to 0.96% and 1.08%, respectively. The SWSRA-DS algorithm result is compared with the calibration results of SWSRA and DS alone and the commonly used PDS and S/B model transfer algorithms to transfer performance is significantly improved, which provides a new idea for the sharing of NIR analysis models among different types of spectroscopic instruments. | ||
650 | 4 | |a Spectrum ratio analysis | |
650 | 4 | |a Direct Standardization optimization | |
650 | 4 | |a Holocellulose content | |
650 | 4 | |a Near infrared spectroscopy | |
650 | 4 | |a Model transfer | |
700 | 1 | |a Hu, Yunchao |e verfasserin |4 aut | |
700 | 1 | |a Liu, Zhijian |e verfasserin |4 aut | |
700 | 1 | |a Wang, Ying |e verfasserin |4 aut | |
700 | 1 | |a Huang, Haoran |e verfasserin |4 aut | |
700 | 1 | |a Xiong, Zhixin |e verfasserin |4 aut | |
700 | 1 | |a Liang, Long |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Infrared physics & technology |d Amsterdam [u.a.] : Elsevier Science, 1994 |g 135 |h Online-Ressource |w (DE-627)320592146 |w (DE-600)2019084-0 |w (DE-576)259271705 |7 nnns |
773 | 1 | 8 | |g volume:135 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-AST | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.37 |j Technische Optik |q VZ |
936 | b | k | |a 33.38 |j Quantenoptik |j nichtlineare Optik |q VZ |
936 | b | k | |a 33.07 |j Spektroskopie |q VZ |
951 | |a AR | ||
952 | |d 135 |
author_variant |
h w hw y h yh z l zl y w yw h h hh z x zx l l ll |
---|---|
matchkey_str |
wanghonghonghuyunchaoliuzhijianwangyingh:2023----:plctoossasloihiipoighmdlrnfronaifaeaa |
hierarchy_sort_str |
2023 |
bklnumber |
50.37 33.38 33.07 |
publishDate |
2023 |
allfields |
10.1016/j.infrared.2023.104981 doi (DE-627)ELV065884574 (ELSEVIER)S1350-4495(23)00439-5 DE-627 ger DE-627 rda eng 530 VZ 50.37 bkl 33.38 bkl 33.07 bkl Wang, Honghong verfasserin (orcid)0000-0003-3319-2881 aut Application of SWSRA-DS algorithm in improving the model transfer for near infrared analysis of pulpwood holocellulose 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The SWSRA-DS combined algorithm is proposed with the goal of sharing the near infrared analysis model of the holocellulose content of pulpwood on three different types of spectroscopic instruments. That is, the screening wavelengths based on spectrum ratio analysis (SWSRA) algorithm is used to select the wavelengths with good stability and consistency. These important wavelength variables, which are insensitive to the measured sample parameters, can reduce the differences in sample information response by different instruments or measurement conditions. Then the systematic errors that still existed after the SWSRA method calibration are further calibrated using the Direct Standardization (DS) method on the basis of these wavelengths. This combined algorithm can improve the generalizability of the master model, reduce the spectrum matrix dimension, and make the model transfer more stabilized and simple. The results show that the SWSRA-DS combined algorithm is able to reduce the RMSEP of the master model to predict the holocellulose content of samples measured on the target 1 and target 2 instruments from 2.01% and 9.45% to 0.96% and 1.08%, respectively. The SWSRA-DS algorithm result is compared with the calibration results of SWSRA and DS alone and the commonly used PDS and S/B model transfer algorithms to transfer performance is significantly improved, which provides a new idea for the sharing of NIR analysis models among different types of spectroscopic instruments. Spectrum ratio analysis Direct Standardization optimization Holocellulose content Near infrared spectroscopy Model transfer Hu, Yunchao verfasserin aut Liu, Zhijian verfasserin aut Wang, Ying verfasserin aut Huang, Haoran verfasserin aut Xiong, Zhixin verfasserin aut Liang, Long verfasserin aut Enthalten in Infrared physics & technology Amsterdam [u.a.] : Elsevier Science, 1994 135 Online-Ressource (DE-627)320592146 (DE-600)2019084-0 (DE-576)259271705 nnns volume:135 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-AST GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.37 Technische Optik VZ 33.38 Quantenoptik nichtlineare Optik VZ 33.07 Spektroskopie VZ AR 135 |
spelling |
10.1016/j.infrared.2023.104981 doi (DE-627)ELV065884574 (ELSEVIER)S1350-4495(23)00439-5 DE-627 ger DE-627 rda eng 530 VZ 50.37 bkl 33.38 bkl 33.07 bkl Wang, Honghong verfasserin (orcid)0000-0003-3319-2881 aut Application of SWSRA-DS algorithm in improving the model transfer for near infrared analysis of pulpwood holocellulose 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The SWSRA-DS combined algorithm is proposed with the goal of sharing the near infrared analysis model of the holocellulose content of pulpwood on three different types of spectroscopic instruments. That is, the screening wavelengths based on spectrum ratio analysis (SWSRA) algorithm is used to select the wavelengths with good stability and consistency. These important wavelength variables, which are insensitive to the measured sample parameters, can reduce the differences in sample information response by different instruments or measurement conditions. Then the systematic errors that still existed after the SWSRA method calibration are further calibrated using the Direct Standardization (DS) method on the basis of these wavelengths. This combined algorithm can improve the generalizability of the master model, reduce the spectrum matrix dimension, and make the model transfer more stabilized and simple. The results show that the SWSRA-DS combined algorithm is able to reduce the RMSEP of the master model to predict the holocellulose content of samples measured on the target 1 and target 2 instruments from 2.01% and 9.45% to 0.96% and 1.08%, respectively. The SWSRA-DS algorithm result is compared with the calibration results of SWSRA and DS alone and the commonly used PDS and S/B model transfer algorithms to transfer performance is significantly improved, which provides a new idea for the sharing of NIR analysis models among different types of spectroscopic instruments. Spectrum ratio analysis Direct Standardization optimization Holocellulose content Near infrared spectroscopy Model transfer Hu, Yunchao verfasserin aut Liu, Zhijian verfasserin aut Wang, Ying verfasserin aut Huang, Haoran verfasserin aut Xiong, Zhixin verfasserin aut Liang, Long verfasserin aut Enthalten in Infrared physics & technology Amsterdam [u.a.] : Elsevier Science, 1994 135 Online-Ressource (DE-627)320592146 (DE-600)2019084-0 (DE-576)259271705 nnns volume:135 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-AST GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.37 Technische Optik VZ 33.38 Quantenoptik nichtlineare Optik VZ 33.07 Spektroskopie VZ AR 135 |
allfields_unstemmed |
10.1016/j.infrared.2023.104981 doi (DE-627)ELV065884574 (ELSEVIER)S1350-4495(23)00439-5 DE-627 ger DE-627 rda eng 530 VZ 50.37 bkl 33.38 bkl 33.07 bkl Wang, Honghong verfasserin (orcid)0000-0003-3319-2881 aut Application of SWSRA-DS algorithm in improving the model transfer for near infrared analysis of pulpwood holocellulose 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The SWSRA-DS combined algorithm is proposed with the goal of sharing the near infrared analysis model of the holocellulose content of pulpwood on three different types of spectroscopic instruments. That is, the screening wavelengths based on spectrum ratio analysis (SWSRA) algorithm is used to select the wavelengths with good stability and consistency. These important wavelength variables, which are insensitive to the measured sample parameters, can reduce the differences in sample information response by different instruments or measurement conditions. Then the systematic errors that still existed after the SWSRA method calibration are further calibrated using the Direct Standardization (DS) method on the basis of these wavelengths. This combined algorithm can improve the generalizability of the master model, reduce the spectrum matrix dimension, and make the model transfer more stabilized and simple. The results show that the SWSRA-DS combined algorithm is able to reduce the RMSEP of the master model to predict the holocellulose content of samples measured on the target 1 and target 2 instruments from 2.01% and 9.45% to 0.96% and 1.08%, respectively. The SWSRA-DS algorithm result is compared with the calibration results of SWSRA and DS alone and the commonly used PDS and S/B model transfer algorithms to transfer performance is significantly improved, which provides a new idea for the sharing of NIR analysis models among different types of spectroscopic instruments. Spectrum ratio analysis Direct Standardization optimization Holocellulose content Near infrared spectroscopy Model transfer Hu, Yunchao verfasserin aut Liu, Zhijian verfasserin aut Wang, Ying verfasserin aut Huang, Haoran verfasserin aut Xiong, Zhixin verfasserin aut Liang, Long verfasserin aut Enthalten in Infrared physics & technology Amsterdam [u.a.] : Elsevier Science, 1994 135 Online-Ressource (DE-627)320592146 (DE-600)2019084-0 (DE-576)259271705 nnns volume:135 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-AST GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.37 Technische Optik VZ 33.38 Quantenoptik nichtlineare Optik VZ 33.07 Spektroskopie VZ AR 135 |
allfieldsGer |
10.1016/j.infrared.2023.104981 doi (DE-627)ELV065884574 (ELSEVIER)S1350-4495(23)00439-5 DE-627 ger DE-627 rda eng 530 VZ 50.37 bkl 33.38 bkl 33.07 bkl Wang, Honghong verfasserin (orcid)0000-0003-3319-2881 aut Application of SWSRA-DS algorithm in improving the model transfer for near infrared analysis of pulpwood holocellulose 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The SWSRA-DS combined algorithm is proposed with the goal of sharing the near infrared analysis model of the holocellulose content of pulpwood on three different types of spectroscopic instruments. That is, the screening wavelengths based on spectrum ratio analysis (SWSRA) algorithm is used to select the wavelengths with good stability and consistency. These important wavelength variables, which are insensitive to the measured sample parameters, can reduce the differences in sample information response by different instruments or measurement conditions. Then the systematic errors that still existed after the SWSRA method calibration are further calibrated using the Direct Standardization (DS) method on the basis of these wavelengths. This combined algorithm can improve the generalizability of the master model, reduce the spectrum matrix dimension, and make the model transfer more stabilized and simple. The results show that the SWSRA-DS combined algorithm is able to reduce the RMSEP of the master model to predict the holocellulose content of samples measured on the target 1 and target 2 instruments from 2.01% and 9.45% to 0.96% and 1.08%, respectively. The SWSRA-DS algorithm result is compared with the calibration results of SWSRA and DS alone and the commonly used PDS and S/B model transfer algorithms to transfer performance is significantly improved, which provides a new idea for the sharing of NIR analysis models among different types of spectroscopic instruments. Spectrum ratio analysis Direct Standardization optimization Holocellulose content Near infrared spectroscopy Model transfer Hu, Yunchao verfasserin aut Liu, Zhijian verfasserin aut Wang, Ying verfasserin aut Huang, Haoran verfasserin aut Xiong, Zhixin verfasserin aut Liang, Long verfasserin aut Enthalten in Infrared physics & technology Amsterdam [u.a.] : Elsevier Science, 1994 135 Online-Ressource (DE-627)320592146 (DE-600)2019084-0 (DE-576)259271705 nnns volume:135 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-AST GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.37 Technische Optik VZ 33.38 Quantenoptik nichtlineare Optik VZ 33.07 Spektroskopie VZ AR 135 |
allfieldsSound |
10.1016/j.infrared.2023.104981 doi (DE-627)ELV065884574 (ELSEVIER)S1350-4495(23)00439-5 DE-627 ger DE-627 rda eng 530 VZ 50.37 bkl 33.38 bkl 33.07 bkl Wang, Honghong verfasserin (orcid)0000-0003-3319-2881 aut Application of SWSRA-DS algorithm in improving the model transfer for near infrared analysis of pulpwood holocellulose 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The SWSRA-DS combined algorithm is proposed with the goal of sharing the near infrared analysis model of the holocellulose content of pulpwood on three different types of spectroscopic instruments. That is, the screening wavelengths based on spectrum ratio analysis (SWSRA) algorithm is used to select the wavelengths with good stability and consistency. These important wavelength variables, which are insensitive to the measured sample parameters, can reduce the differences in sample information response by different instruments or measurement conditions. Then the systematic errors that still existed after the SWSRA method calibration are further calibrated using the Direct Standardization (DS) method on the basis of these wavelengths. This combined algorithm can improve the generalizability of the master model, reduce the spectrum matrix dimension, and make the model transfer more stabilized and simple. The results show that the SWSRA-DS combined algorithm is able to reduce the RMSEP of the master model to predict the holocellulose content of samples measured on the target 1 and target 2 instruments from 2.01% and 9.45% to 0.96% and 1.08%, respectively. The SWSRA-DS algorithm result is compared with the calibration results of SWSRA and DS alone and the commonly used PDS and S/B model transfer algorithms to transfer performance is significantly improved, which provides a new idea for the sharing of NIR analysis models among different types of spectroscopic instruments. Spectrum ratio analysis Direct Standardization optimization Holocellulose content Near infrared spectroscopy Model transfer Hu, Yunchao verfasserin aut Liu, Zhijian verfasserin aut Wang, Ying verfasserin aut Huang, Haoran verfasserin aut Xiong, Zhixin verfasserin aut Liang, Long verfasserin aut Enthalten in Infrared physics & technology Amsterdam [u.a.] : Elsevier Science, 1994 135 Online-Ressource (DE-627)320592146 (DE-600)2019084-0 (DE-576)259271705 nnns volume:135 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-AST GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.37 Technische Optik VZ 33.38 Quantenoptik nichtlineare Optik VZ 33.07 Spektroskopie VZ AR 135 |
language |
English |
source |
Enthalten in Infrared physics & technology 135 volume:135 |
sourceStr |
Enthalten in Infrared physics & technology 135 volume:135 |
format_phy_str_mv |
Article |
bklname |
Technische Optik Quantenoptik nichtlineare Optik Spektroskopie |
institution |
findex.gbv.de |
topic_facet |
Spectrum ratio analysis Direct Standardization optimization Holocellulose content Near infrared spectroscopy Model transfer |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Infrared physics & technology |
authorswithroles_txt_mv |
Wang, Honghong @@aut@@ Hu, Yunchao @@aut@@ Liu, Zhijian @@aut@@ Wang, Ying @@aut@@ Huang, Haoran @@aut@@ Xiong, Zhixin @@aut@@ Liang, Long @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320592146 |
dewey-sort |
3530 |
id |
ELV065884574 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065884574</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231130093655.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231130s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.infrared.2023.104981</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065884574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1350-4495(23)00439-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.37</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.07</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Honghong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3319-2881</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Application of SWSRA-DS algorithm in improving the model transfer for near infrared analysis of pulpwood holocellulose</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The SWSRA-DS combined algorithm is proposed with the goal of sharing the near infrared analysis model of the holocellulose content of pulpwood on three different types of spectroscopic instruments. That is, the screening wavelengths based on spectrum ratio analysis (SWSRA) algorithm is used to select the wavelengths with good stability and consistency. These important wavelength variables, which are insensitive to the measured sample parameters, can reduce the differences in sample information response by different instruments or measurement conditions. Then the systematic errors that still existed after the SWSRA method calibration are further calibrated using the Direct Standardization (DS) method on the basis of these wavelengths. This combined algorithm can improve the generalizability of the master model, reduce the spectrum matrix dimension, and make the model transfer more stabilized and simple. The results show that the SWSRA-DS combined algorithm is able to reduce the RMSEP of the master model to predict the holocellulose content of samples measured on the target 1 and target 2 instruments from 2.01% and 9.45% to 0.96% and 1.08%, respectively. The SWSRA-DS algorithm result is compared with the calibration results of SWSRA and DS alone and the commonly used PDS and S/B model transfer algorithms to transfer performance is significantly improved, which provides a new idea for the sharing of NIR analysis models among different types of spectroscopic instruments.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectrum ratio analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Direct Standardization optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Holocellulose content</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Near infrared spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Model transfer</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Yunchao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Zhijian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Ying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Haoran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiong, Zhixin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Long</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Infrared physics & technology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1994</subfield><subfield code="g">135</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320592146</subfield><subfield code="w">(DE-600)2019084-0</subfield><subfield code="w">(DE-576)259271705</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:135</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.37</subfield><subfield code="j">Technische Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.38</subfield><subfield code="j">Quantenoptik</subfield><subfield code="j">nichtlineare Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.07</subfield><subfield code="j">Spektroskopie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">135</subfield></datafield></record></collection>
|
author |
Wang, Honghong |
spellingShingle |
Wang, Honghong ddc 530 bkl 50.37 bkl 33.38 bkl 33.07 misc Spectrum ratio analysis misc Direct Standardization optimization misc Holocellulose content misc Near infrared spectroscopy misc Model transfer Application of SWSRA-DS algorithm in improving the model transfer for near infrared analysis of pulpwood holocellulose |
authorStr |
Wang, Honghong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320592146 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 VZ 50.37 bkl 33.38 bkl 33.07 bkl Application of SWSRA-DS algorithm in improving the model transfer for near infrared analysis of pulpwood holocellulose Spectrum ratio analysis Direct Standardization optimization Holocellulose content Near infrared spectroscopy Model transfer |
topic |
ddc 530 bkl 50.37 bkl 33.38 bkl 33.07 misc Spectrum ratio analysis misc Direct Standardization optimization misc Holocellulose content misc Near infrared spectroscopy misc Model transfer |
topic_unstemmed |
ddc 530 bkl 50.37 bkl 33.38 bkl 33.07 misc Spectrum ratio analysis misc Direct Standardization optimization misc Holocellulose content misc Near infrared spectroscopy misc Model transfer |
topic_browse |
ddc 530 bkl 50.37 bkl 33.38 bkl 33.07 misc Spectrum ratio analysis misc Direct Standardization optimization misc Holocellulose content misc Near infrared spectroscopy misc Model transfer |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Infrared physics & technology |
hierarchy_parent_id |
320592146 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Infrared physics & technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320592146 (DE-600)2019084-0 (DE-576)259271705 |
title |
Application of SWSRA-DS algorithm in improving the model transfer for near infrared analysis of pulpwood holocellulose |
ctrlnum |
(DE-627)ELV065884574 (ELSEVIER)S1350-4495(23)00439-5 |
title_full |
Application of SWSRA-DS algorithm in improving the model transfer for near infrared analysis of pulpwood holocellulose |
author_sort |
Wang, Honghong |
journal |
Infrared physics & technology |
journalStr |
Infrared physics & technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Wang, Honghong Hu, Yunchao Liu, Zhijian Wang, Ying Huang, Haoran Xiong, Zhixin Liang, Long |
container_volume |
135 |
class |
530 VZ 50.37 bkl 33.38 bkl 33.07 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Honghong |
doi_str_mv |
10.1016/j.infrared.2023.104981 |
normlink |
(ORCID)0000-0003-3319-2881 |
normlink_prefix_str_mv |
(orcid)0000-0003-3319-2881 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
application of swsra-ds algorithm in improving the model transfer for near infrared analysis of pulpwood holocellulose |
title_auth |
Application of SWSRA-DS algorithm in improving the model transfer for near infrared analysis of pulpwood holocellulose |
abstract |
The SWSRA-DS combined algorithm is proposed with the goal of sharing the near infrared analysis model of the holocellulose content of pulpwood on three different types of spectroscopic instruments. That is, the screening wavelengths based on spectrum ratio analysis (SWSRA) algorithm is used to select the wavelengths with good stability and consistency. These important wavelength variables, which are insensitive to the measured sample parameters, can reduce the differences in sample information response by different instruments or measurement conditions. Then the systematic errors that still existed after the SWSRA method calibration are further calibrated using the Direct Standardization (DS) method on the basis of these wavelengths. This combined algorithm can improve the generalizability of the master model, reduce the spectrum matrix dimension, and make the model transfer more stabilized and simple. The results show that the SWSRA-DS combined algorithm is able to reduce the RMSEP of the master model to predict the holocellulose content of samples measured on the target 1 and target 2 instruments from 2.01% and 9.45% to 0.96% and 1.08%, respectively. The SWSRA-DS algorithm result is compared with the calibration results of SWSRA and DS alone and the commonly used PDS and S/B model transfer algorithms to transfer performance is significantly improved, which provides a new idea for the sharing of NIR analysis models among different types of spectroscopic instruments. |
abstractGer |
The SWSRA-DS combined algorithm is proposed with the goal of sharing the near infrared analysis model of the holocellulose content of pulpwood on three different types of spectroscopic instruments. That is, the screening wavelengths based on spectrum ratio analysis (SWSRA) algorithm is used to select the wavelengths with good stability and consistency. These important wavelength variables, which are insensitive to the measured sample parameters, can reduce the differences in sample information response by different instruments or measurement conditions. Then the systematic errors that still existed after the SWSRA method calibration are further calibrated using the Direct Standardization (DS) method on the basis of these wavelengths. This combined algorithm can improve the generalizability of the master model, reduce the spectrum matrix dimension, and make the model transfer more stabilized and simple. The results show that the SWSRA-DS combined algorithm is able to reduce the RMSEP of the master model to predict the holocellulose content of samples measured on the target 1 and target 2 instruments from 2.01% and 9.45% to 0.96% and 1.08%, respectively. The SWSRA-DS algorithm result is compared with the calibration results of SWSRA and DS alone and the commonly used PDS and S/B model transfer algorithms to transfer performance is significantly improved, which provides a new idea for the sharing of NIR analysis models among different types of spectroscopic instruments. |
abstract_unstemmed |
The SWSRA-DS combined algorithm is proposed with the goal of sharing the near infrared analysis model of the holocellulose content of pulpwood on three different types of spectroscopic instruments. That is, the screening wavelengths based on spectrum ratio analysis (SWSRA) algorithm is used to select the wavelengths with good stability and consistency. These important wavelength variables, which are insensitive to the measured sample parameters, can reduce the differences in sample information response by different instruments or measurement conditions. Then the systematic errors that still existed after the SWSRA method calibration are further calibrated using the Direct Standardization (DS) method on the basis of these wavelengths. This combined algorithm can improve the generalizability of the master model, reduce the spectrum matrix dimension, and make the model transfer more stabilized and simple. The results show that the SWSRA-DS combined algorithm is able to reduce the RMSEP of the master model to predict the holocellulose content of samples measured on the target 1 and target 2 instruments from 2.01% and 9.45% to 0.96% and 1.08%, respectively. The SWSRA-DS algorithm result is compared with the calibration results of SWSRA and DS alone and the commonly used PDS and S/B model transfer algorithms to transfer performance is significantly improved, which provides a new idea for the sharing of NIR analysis models among different types of spectroscopic instruments. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-AST GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Application of SWSRA-DS algorithm in improving the model transfer for near infrared analysis of pulpwood holocellulose |
remote_bool |
true |
author2 |
Hu, Yunchao Liu, Zhijian Wang, Ying Huang, Haoran Xiong, Zhixin Liang, Long |
author2Str |
Hu, Yunchao Liu, Zhijian Wang, Ying Huang, Haoran Xiong, Zhixin Liang, Long |
ppnlink |
320592146 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.infrared.2023.104981 |
up_date |
2024-07-07T00:35:07.670Z |
_version_ |
1803878408045723648 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065884574</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231130093655.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231130s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.infrared.2023.104981</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065884574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1350-4495(23)00439-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.37</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.07</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Honghong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3319-2881</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Application of SWSRA-DS algorithm in improving the model transfer for near infrared analysis of pulpwood holocellulose</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The SWSRA-DS combined algorithm is proposed with the goal of sharing the near infrared analysis model of the holocellulose content of pulpwood on three different types of spectroscopic instruments. That is, the screening wavelengths based on spectrum ratio analysis (SWSRA) algorithm is used to select the wavelengths with good stability and consistency. These important wavelength variables, which are insensitive to the measured sample parameters, can reduce the differences in sample information response by different instruments or measurement conditions. Then the systematic errors that still existed after the SWSRA method calibration are further calibrated using the Direct Standardization (DS) method on the basis of these wavelengths. This combined algorithm can improve the generalizability of the master model, reduce the spectrum matrix dimension, and make the model transfer more stabilized and simple. The results show that the SWSRA-DS combined algorithm is able to reduce the RMSEP of the master model to predict the holocellulose content of samples measured on the target 1 and target 2 instruments from 2.01% and 9.45% to 0.96% and 1.08%, respectively. The SWSRA-DS algorithm result is compared with the calibration results of SWSRA and DS alone and the commonly used PDS and S/B model transfer algorithms to transfer performance is significantly improved, which provides a new idea for the sharing of NIR analysis models among different types of spectroscopic instruments.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectrum ratio analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Direct Standardization optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Holocellulose content</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Near infrared spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Model transfer</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Yunchao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Zhijian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Ying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Haoran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiong, Zhixin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Long</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Infrared physics & technology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1994</subfield><subfield code="g">135</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320592146</subfield><subfield code="w">(DE-600)2019084-0</subfield><subfield code="w">(DE-576)259271705</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:135</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.37</subfield><subfield code="j">Technische Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.38</subfield><subfield code="j">Quantenoptik</subfield><subfield code="j">nichtlineare Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.07</subfield><subfield code="j">Spektroskopie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">135</subfield></datafield></record></collection>
|
score |
7.402297 |