Predictions of multi-scale vortex-induced vibrations based on a multi-fidelity data assimilation method
This paper presents a data assimilation method based on the POD-DeepONet structure to fuse two types of fidelity data from vortex-induced vibration (VIV) problems. The data is mainly focused on amplitude response in different oncoming flow cases from cross-flow (CF) and inline (IL) directions for ne...
Ausführliche Beschreibung
Autor*in: |
Xu, Lihua [verfasserIn] Wang, Jiasong [verfasserIn] Triantafyllou, Michael S. [verfasserIn] Fan, Dixia [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Marine structures - Amsterdam [u.a.] : Elsevier Science, 1988, 93 |
---|---|
Übergeordnetes Werk: |
volume:93 |
DOI / URN: |
10.1016/j.marstruc.2023.103539 |
---|
Katalog-ID: |
ELV065991230 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV065991230 | ||
003 | DE-627 | ||
005 | 20231205093003.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231205s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.marstruc.2023.103539 |2 doi | |
035 | |a (DE-627)ELV065991230 | ||
035 | |a (ELSEVIER)S0951-8339(23)00172-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 380 |q VZ |
084 | |a 50.92 |2 bkl | ||
084 | |a 56.30 |2 bkl | ||
100 | 1 | |a Xu, Lihua |e verfasserin |4 aut | |
245 | 1 | 0 | |a Predictions of multi-scale vortex-induced vibrations based on a multi-fidelity data assimilation method |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper presents a data assimilation method based on the POD-DeepONet structure to fuse two types of fidelity data from vortex-induced vibration (VIV) problems. The data is mainly focused on amplitude response in different oncoming flow cases from cross-flow (CF) and inline (IL) directions for new flow speed predictions. The low-fidelity data in this paper is calculated from a semi-empirical code called DAVIV, while the high-fidelity data is measured from laboratory experiments. For a complex nonlinear correlation in amplitude and phase error between low and high-fidelity data, the POD-DeepONet structure receives better accuracy and more stable predictions than Neural Network with few training cases. It can successfully reconstruct the amplitude response along the marine riser and capture the changing trend with the oncoming flow speed. The POD-DeepONet is then applied to predict the VIV cross-flow and inline responses with different datasets. The prediction of mean square error (MSE) shows an exponential decline trend with the increasing case number for training. With the exponentially fitted MSE formula, the required case number under the expected error can be quickly obtained, which may provide a reference for efficient and high-fidelity VIV response prediction in engineering. | ||
650 | 4 | |a Vortex-induced vibrations | |
650 | 4 | |a POD-DeepONet | |
650 | 4 | |a Data assimilation | |
650 | 4 | |a Multi-fidelity prediction | |
700 | 1 | |a Wang, Jiasong |e verfasserin |0 (orcid)0000-0001-7854-7821 |4 aut | |
700 | 1 | |a Triantafyllou, Michael S. |e verfasserin |4 aut | |
700 | 1 | |a Fan, Dixia |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Marine structures |d Amsterdam [u.a.] : Elsevier Science, 1988 |g 93 |h Online-Ressource |w (DE-627)308449363 |w (DE-600)1502454-4 |w (DE-576)259484296 |7 nnns |
773 | 1 | 8 | |g volume:93 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.92 |j Meerestechnik |q VZ |
936 | b | k | |a 56.30 |j Wasserbau |q VZ |
951 | |a AR | ||
952 | |d 93 |
author_variant |
l x lx j w jw m s t ms mst d f df |
---|---|
matchkey_str |
xulihuawangjiasongtriantafylloumichaelsf:2023----:rdcinomliclvreidcdirtosaeoautfdlt |
hierarchy_sort_str |
2023 |
bklnumber |
50.92 56.30 |
publishDate |
2023 |
allfields |
10.1016/j.marstruc.2023.103539 doi (DE-627)ELV065991230 (ELSEVIER)S0951-8339(23)00172-7 DE-627 ger DE-627 rda eng 380 VZ 50.92 bkl 56.30 bkl Xu, Lihua verfasserin aut Predictions of multi-scale vortex-induced vibrations based on a multi-fidelity data assimilation method 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents a data assimilation method based on the POD-DeepONet structure to fuse two types of fidelity data from vortex-induced vibration (VIV) problems. The data is mainly focused on amplitude response in different oncoming flow cases from cross-flow (CF) and inline (IL) directions for new flow speed predictions. The low-fidelity data in this paper is calculated from a semi-empirical code called DAVIV, while the high-fidelity data is measured from laboratory experiments. For a complex nonlinear correlation in amplitude and phase error between low and high-fidelity data, the POD-DeepONet structure receives better accuracy and more stable predictions than Neural Network with few training cases. It can successfully reconstruct the amplitude response along the marine riser and capture the changing trend with the oncoming flow speed. The POD-DeepONet is then applied to predict the VIV cross-flow and inline responses with different datasets. The prediction of mean square error (MSE) shows an exponential decline trend with the increasing case number for training. With the exponentially fitted MSE formula, the required case number under the expected error can be quickly obtained, which may provide a reference for efficient and high-fidelity VIV response prediction in engineering. Vortex-induced vibrations POD-DeepONet Data assimilation Multi-fidelity prediction Wang, Jiasong verfasserin (orcid)0000-0001-7854-7821 aut Triantafyllou, Michael S. verfasserin aut Fan, Dixia verfasserin aut Enthalten in Marine structures Amsterdam [u.a.] : Elsevier Science, 1988 93 Online-Ressource (DE-627)308449363 (DE-600)1502454-4 (DE-576)259484296 nnns volume:93 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.92 Meerestechnik VZ 56.30 Wasserbau VZ AR 93 |
spelling |
10.1016/j.marstruc.2023.103539 doi (DE-627)ELV065991230 (ELSEVIER)S0951-8339(23)00172-7 DE-627 ger DE-627 rda eng 380 VZ 50.92 bkl 56.30 bkl Xu, Lihua verfasserin aut Predictions of multi-scale vortex-induced vibrations based on a multi-fidelity data assimilation method 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents a data assimilation method based on the POD-DeepONet structure to fuse two types of fidelity data from vortex-induced vibration (VIV) problems. The data is mainly focused on amplitude response in different oncoming flow cases from cross-flow (CF) and inline (IL) directions for new flow speed predictions. The low-fidelity data in this paper is calculated from a semi-empirical code called DAVIV, while the high-fidelity data is measured from laboratory experiments. For a complex nonlinear correlation in amplitude and phase error between low and high-fidelity data, the POD-DeepONet structure receives better accuracy and more stable predictions than Neural Network with few training cases. It can successfully reconstruct the amplitude response along the marine riser and capture the changing trend with the oncoming flow speed. The POD-DeepONet is then applied to predict the VIV cross-flow and inline responses with different datasets. The prediction of mean square error (MSE) shows an exponential decline trend with the increasing case number for training. With the exponentially fitted MSE formula, the required case number under the expected error can be quickly obtained, which may provide a reference for efficient and high-fidelity VIV response prediction in engineering. Vortex-induced vibrations POD-DeepONet Data assimilation Multi-fidelity prediction Wang, Jiasong verfasserin (orcid)0000-0001-7854-7821 aut Triantafyllou, Michael S. verfasserin aut Fan, Dixia verfasserin aut Enthalten in Marine structures Amsterdam [u.a.] : Elsevier Science, 1988 93 Online-Ressource (DE-627)308449363 (DE-600)1502454-4 (DE-576)259484296 nnns volume:93 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.92 Meerestechnik VZ 56.30 Wasserbau VZ AR 93 |
allfields_unstemmed |
10.1016/j.marstruc.2023.103539 doi (DE-627)ELV065991230 (ELSEVIER)S0951-8339(23)00172-7 DE-627 ger DE-627 rda eng 380 VZ 50.92 bkl 56.30 bkl Xu, Lihua verfasserin aut Predictions of multi-scale vortex-induced vibrations based on a multi-fidelity data assimilation method 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents a data assimilation method based on the POD-DeepONet structure to fuse two types of fidelity data from vortex-induced vibration (VIV) problems. The data is mainly focused on amplitude response in different oncoming flow cases from cross-flow (CF) and inline (IL) directions for new flow speed predictions. The low-fidelity data in this paper is calculated from a semi-empirical code called DAVIV, while the high-fidelity data is measured from laboratory experiments. For a complex nonlinear correlation in amplitude and phase error between low and high-fidelity data, the POD-DeepONet structure receives better accuracy and more stable predictions than Neural Network with few training cases. It can successfully reconstruct the amplitude response along the marine riser and capture the changing trend with the oncoming flow speed. The POD-DeepONet is then applied to predict the VIV cross-flow and inline responses with different datasets. The prediction of mean square error (MSE) shows an exponential decline trend with the increasing case number for training. With the exponentially fitted MSE formula, the required case number under the expected error can be quickly obtained, which may provide a reference for efficient and high-fidelity VIV response prediction in engineering. Vortex-induced vibrations POD-DeepONet Data assimilation Multi-fidelity prediction Wang, Jiasong verfasserin (orcid)0000-0001-7854-7821 aut Triantafyllou, Michael S. verfasserin aut Fan, Dixia verfasserin aut Enthalten in Marine structures Amsterdam [u.a.] : Elsevier Science, 1988 93 Online-Ressource (DE-627)308449363 (DE-600)1502454-4 (DE-576)259484296 nnns volume:93 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.92 Meerestechnik VZ 56.30 Wasserbau VZ AR 93 |
allfieldsGer |
10.1016/j.marstruc.2023.103539 doi (DE-627)ELV065991230 (ELSEVIER)S0951-8339(23)00172-7 DE-627 ger DE-627 rda eng 380 VZ 50.92 bkl 56.30 bkl Xu, Lihua verfasserin aut Predictions of multi-scale vortex-induced vibrations based on a multi-fidelity data assimilation method 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents a data assimilation method based on the POD-DeepONet structure to fuse two types of fidelity data from vortex-induced vibration (VIV) problems. The data is mainly focused on amplitude response in different oncoming flow cases from cross-flow (CF) and inline (IL) directions for new flow speed predictions. The low-fidelity data in this paper is calculated from a semi-empirical code called DAVIV, while the high-fidelity data is measured from laboratory experiments. For a complex nonlinear correlation in amplitude and phase error between low and high-fidelity data, the POD-DeepONet structure receives better accuracy and more stable predictions than Neural Network with few training cases. It can successfully reconstruct the amplitude response along the marine riser and capture the changing trend with the oncoming flow speed. The POD-DeepONet is then applied to predict the VIV cross-flow and inline responses with different datasets. The prediction of mean square error (MSE) shows an exponential decline trend with the increasing case number for training. With the exponentially fitted MSE formula, the required case number under the expected error can be quickly obtained, which may provide a reference for efficient and high-fidelity VIV response prediction in engineering. Vortex-induced vibrations POD-DeepONet Data assimilation Multi-fidelity prediction Wang, Jiasong verfasserin (orcid)0000-0001-7854-7821 aut Triantafyllou, Michael S. verfasserin aut Fan, Dixia verfasserin aut Enthalten in Marine structures Amsterdam [u.a.] : Elsevier Science, 1988 93 Online-Ressource (DE-627)308449363 (DE-600)1502454-4 (DE-576)259484296 nnns volume:93 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.92 Meerestechnik VZ 56.30 Wasserbau VZ AR 93 |
allfieldsSound |
10.1016/j.marstruc.2023.103539 doi (DE-627)ELV065991230 (ELSEVIER)S0951-8339(23)00172-7 DE-627 ger DE-627 rda eng 380 VZ 50.92 bkl 56.30 bkl Xu, Lihua verfasserin aut Predictions of multi-scale vortex-induced vibrations based on a multi-fidelity data assimilation method 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents a data assimilation method based on the POD-DeepONet structure to fuse two types of fidelity data from vortex-induced vibration (VIV) problems. The data is mainly focused on amplitude response in different oncoming flow cases from cross-flow (CF) and inline (IL) directions for new flow speed predictions. The low-fidelity data in this paper is calculated from a semi-empirical code called DAVIV, while the high-fidelity data is measured from laboratory experiments. For a complex nonlinear correlation in amplitude and phase error between low and high-fidelity data, the POD-DeepONet structure receives better accuracy and more stable predictions than Neural Network with few training cases. It can successfully reconstruct the amplitude response along the marine riser and capture the changing trend with the oncoming flow speed. The POD-DeepONet is then applied to predict the VIV cross-flow and inline responses with different datasets. The prediction of mean square error (MSE) shows an exponential decline trend with the increasing case number for training. With the exponentially fitted MSE formula, the required case number under the expected error can be quickly obtained, which may provide a reference for efficient and high-fidelity VIV response prediction in engineering. Vortex-induced vibrations POD-DeepONet Data assimilation Multi-fidelity prediction Wang, Jiasong verfasserin (orcid)0000-0001-7854-7821 aut Triantafyllou, Michael S. verfasserin aut Fan, Dixia verfasserin aut Enthalten in Marine structures Amsterdam [u.a.] : Elsevier Science, 1988 93 Online-Ressource (DE-627)308449363 (DE-600)1502454-4 (DE-576)259484296 nnns volume:93 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.92 Meerestechnik VZ 56.30 Wasserbau VZ AR 93 |
language |
English |
source |
Enthalten in Marine structures 93 volume:93 |
sourceStr |
Enthalten in Marine structures 93 volume:93 |
format_phy_str_mv |
Article |
bklname |
Meerestechnik Wasserbau |
institution |
findex.gbv.de |
topic_facet |
Vortex-induced vibrations POD-DeepONet Data assimilation Multi-fidelity prediction |
dewey-raw |
380 |
isfreeaccess_bool |
false |
container_title |
Marine structures |
authorswithroles_txt_mv |
Xu, Lihua @@aut@@ Wang, Jiasong @@aut@@ Triantafyllou, Michael S. @@aut@@ Fan, Dixia @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
308449363 |
dewey-sort |
3380 |
id |
ELV065991230 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065991230</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205093003.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231205s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.marstruc.2023.103539</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065991230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0951-8339(23)00172-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">380</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xu, Lihua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predictions of multi-scale vortex-induced vibrations based on a multi-fidelity data assimilation method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents a data assimilation method based on the POD-DeepONet structure to fuse two types of fidelity data from vortex-induced vibration (VIV) problems. The data is mainly focused on amplitude response in different oncoming flow cases from cross-flow (CF) and inline (IL) directions for new flow speed predictions. The low-fidelity data in this paper is calculated from a semi-empirical code called DAVIV, while the high-fidelity data is measured from laboratory experiments. For a complex nonlinear correlation in amplitude and phase error between low and high-fidelity data, the POD-DeepONet structure receives better accuracy and more stable predictions than Neural Network with few training cases. It can successfully reconstruct the amplitude response along the marine riser and capture the changing trend with the oncoming flow speed. The POD-DeepONet is then applied to predict the VIV cross-flow and inline responses with different datasets. The prediction of mean square error (MSE) shows an exponential decline trend with the increasing case number for training. With the exponentially fitted MSE formula, the required case number under the expected error can be quickly obtained, which may provide a reference for efficient and high-fidelity VIV response prediction in engineering.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vortex-induced vibrations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">POD-DeepONet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data assimilation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-fidelity prediction</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jiasong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7854-7821</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Triantafyllou, Michael S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Dixia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Marine structures</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1988</subfield><subfield code="g">93</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)308449363</subfield><subfield code="w">(DE-600)1502454-4</subfield><subfield code="w">(DE-576)259484296</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:93</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.30</subfield><subfield code="j">Wasserbau</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">93</subfield></datafield></record></collection>
|
author |
Xu, Lihua |
spellingShingle |
Xu, Lihua ddc 380 bkl 50.92 bkl 56.30 misc Vortex-induced vibrations misc POD-DeepONet misc Data assimilation misc Multi-fidelity prediction Predictions of multi-scale vortex-induced vibrations based on a multi-fidelity data assimilation method |
authorStr |
Xu, Lihua |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)308449363 |
format |
electronic Article |
dewey-ones |
380 - Commerce, communications & transportation |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
380 VZ 50.92 bkl 56.30 bkl Predictions of multi-scale vortex-induced vibrations based on a multi-fidelity data assimilation method Vortex-induced vibrations POD-DeepONet Data assimilation Multi-fidelity prediction |
topic |
ddc 380 bkl 50.92 bkl 56.30 misc Vortex-induced vibrations misc POD-DeepONet misc Data assimilation misc Multi-fidelity prediction |
topic_unstemmed |
ddc 380 bkl 50.92 bkl 56.30 misc Vortex-induced vibrations misc POD-DeepONet misc Data assimilation misc Multi-fidelity prediction |
topic_browse |
ddc 380 bkl 50.92 bkl 56.30 misc Vortex-induced vibrations misc POD-DeepONet misc Data assimilation misc Multi-fidelity prediction |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Marine structures |
hierarchy_parent_id |
308449363 |
dewey-tens |
380 - Commerce, communications & transportation |
hierarchy_top_title |
Marine structures |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)308449363 (DE-600)1502454-4 (DE-576)259484296 |
title |
Predictions of multi-scale vortex-induced vibrations based on a multi-fidelity data assimilation method |
ctrlnum |
(DE-627)ELV065991230 (ELSEVIER)S0951-8339(23)00172-7 |
title_full |
Predictions of multi-scale vortex-induced vibrations based on a multi-fidelity data assimilation method |
author_sort |
Xu, Lihua |
journal |
Marine structures |
journalStr |
Marine structures |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Xu, Lihua Wang, Jiasong Triantafyllou, Michael S. Fan, Dixia |
container_volume |
93 |
class |
380 VZ 50.92 bkl 56.30 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Xu, Lihua |
doi_str_mv |
10.1016/j.marstruc.2023.103539 |
normlink |
(ORCID)0000-0001-7854-7821 |
normlink_prefix_str_mv |
(orcid)0000-0001-7854-7821 |
dewey-full |
380 |
author2-role |
verfasserin |
title_sort |
predictions of multi-scale vortex-induced vibrations based on a multi-fidelity data assimilation method |
title_auth |
Predictions of multi-scale vortex-induced vibrations based on a multi-fidelity data assimilation method |
abstract |
This paper presents a data assimilation method based on the POD-DeepONet structure to fuse two types of fidelity data from vortex-induced vibration (VIV) problems. The data is mainly focused on amplitude response in different oncoming flow cases from cross-flow (CF) and inline (IL) directions for new flow speed predictions. The low-fidelity data in this paper is calculated from a semi-empirical code called DAVIV, while the high-fidelity data is measured from laboratory experiments. For a complex nonlinear correlation in amplitude and phase error between low and high-fidelity data, the POD-DeepONet structure receives better accuracy and more stable predictions than Neural Network with few training cases. It can successfully reconstruct the amplitude response along the marine riser and capture the changing trend with the oncoming flow speed. The POD-DeepONet is then applied to predict the VIV cross-flow and inline responses with different datasets. The prediction of mean square error (MSE) shows an exponential decline trend with the increasing case number for training. With the exponentially fitted MSE formula, the required case number under the expected error can be quickly obtained, which may provide a reference for efficient and high-fidelity VIV response prediction in engineering. |
abstractGer |
This paper presents a data assimilation method based on the POD-DeepONet structure to fuse two types of fidelity data from vortex-induced vibration (VIV) problems. The data is mainly focused on amplitude response in different oncoming flow cases from cross-flow (CF) and inline (IL) directions for new flow speed predictions. The low-fidelity data in this paper is calculated from a semi-empirical code called DAVIV, while the high-fidelity data is measured from laboratory experiments. For a complex nonlinear correlation in amplitude and phase error between low and high-fidelity data, the POD-DeepONet structure receives better accuracy and more stable predictions than Neural Network with few training cases. It can successfully reconstruct the amplitude response along the marine riser and capture the changing trend with the oncoming flow speed. The POD-DeepONet is then applied to predict the VIV cross-flow and inline responses with different datasets. The prediction of mean square error (MSE) shows an exponential decline trend with the increasing case number for training. With the exponentially fitted MSE formula, the required case number under the expected error can be quickly obtained, which may provide a reference for efficient and high-fidelity VIV response prediction in engineering. |
abstract_unstemmed |
This paper presents a data assimilation method based on the POD-DeepONet structure to fuse two types of fidelity data from vortex-induced vibration (VIV) problems. The data is mainly focused on amplitude response in different oncoming flow cases from cross-flow (CF) and inline (IL) directions for new flow speed predictions. The low-fidelity data in this paper is calculated from a semi-empirical code called DAVIV, while the high-fidelity data is measured from laboratory experiments. For a complex nonlinear correlation in amplitude and phase error between low and high-fidelity data, the POD-DeepONet structure receives better accuracy and more stable predictions than Neural Network with few training cases. It can successfully reconstruct the amplitude response along the marine riser and capture the changing trend with the oncoming flow speed. The POD-DeepONet is then applied to predict the VIV cross-flow and inline responses with different datasets. The prediction of mean square error (MSE) shows an exponential decline trend with the increasing case number for training. With the exponentially fitted MSE formula, the required case number under the expected error can be quickly obtained, which may provide a reference for efficient and high-fidelity VIV response prediction in engineering. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Predictions of multi-scale vortex-induced vibrations based on a multi-fidelity data assimilation method |
remote_bool |
true |
author2 |
Wang, Jiasong Triantafyllou, Michael S. Fan, Dixia |
author2Str |
Wang, Jiasong Triantafyllou, Michael S. Fan, Dixia |
ppnlink |
308449363 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.marstruc.2023.103539 |
up_date |
2024-07-07T00:57:16.479Z |
_version_ |
1803879801402949632 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065991230</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205093003.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231205s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.marstruc.2023.103539</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065991230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0951-8339(23)00172-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">380</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xu, Lihua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predictions of multi-scale vortex-induced vibrations based on a multi-fidelity data assimilation method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents a data assimilation method based on the POD-DeepONet structure to fuse two types of fidelity data from vortex-induced vibration (VIV) problems. The data is mainly focused on amplitude response in different oncoming flow cases from cross-flow (CF) and inline (IL) directions for new flow speed predictions. The low-fidelity data in this paper is calculated from a semi-empirical code called DAVIV, while the high-fidelity data is measured from laboratory experiments. For a complex nonlinear correlation in amplitude and phase error between low and high-fidelity data, the POD-DeepONet structure receives better accuracy and more stable predictions than Neural Network with few training cases. It can successfully reconstruct the amplitude response along the marine riser and capture the changing trend with the oncoming flow speed. The POD-DeepONet is then applied to predict the VIV cross-flow and inline responses with different datasets. The prediction of mean square error (MSE) shows an exponential decline trend with the increasing case number for training. With the exponentially fitted MSE formula, the required case number under the expected error can be quickly obtained, which may provide a reference for efficient and high-fidelity VIV response prediction in engineering.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vortex-induced vibrations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">POD-DeepONet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data assimilation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-fidelity prediction</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jiasong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7854-7821</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Triantafyllou, Michael S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Dixia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Marine structures</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1988</subfield><subfield code="g">93</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)308449363</subfield><subfield code="w">(DE-600)1502454-4</subfield><subfield code="w">(DE-576)259484296</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:93</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.30</subfield><subfield code="j">Wasserbau</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">93</subfield></datafield></record></collection>
|
score |
7.401019 |