Numerical analysis of DPL bioheat transfer model with nonlocal impact on skin tissue during hyperthermia
This article discussed a numerical study of dual-phase-lag (DPL) bioheat transfer model with nonlocal impact on skin tissue during hyperthermia therapy when Gaussian type heat device is applied to the skin's outer surface. With the aid of a sufficient value of the parameters η...
Ausführliche Beschreibung
Autor*in: |
Chaudhary, Rajneesh Kumar [verfasserIn] Singh, Jitendra [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
Nonlocal dual-phase-lag (NLDPL) bioheat transfer model |
---|
Übergeordnetes Werk: |
Enthalten in: International communications in heat and mass transfer - Amsterdam [u.a.] : Elsevier Science, 1983, 149 |
---|---|
Übergeordnetes Werk: |
volume:149 |
DOI / URN: |
10.1016/j.icheatmasstransfer.2023.107094 |
---|
Katalog-ID: |
ELV066028949 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV066028949 | ||
003 | DE-627 | ||
005 | 20231207093026.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231207s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.icheatmasstransfer.2023.107094 |2 doi | |
035 | |a (DE-627)ELV066028949 | ||
035 | |a (ELSEVIER)S0735-1933(23)00483-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Chaudhary, Rajneesh Kumar |e verfasserin |4 aut | |
245 | 1 | 0 | |a Numerical analysis of DPL bioheat transfer model with nonlocal impact on skin tissue during hyperthermia |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This article discussed a numerical study of dual-phase-lag (DPL) bioheat transfer model with nonlocal impact on skin tissue during hyperthermia therapy when Gaussian type heat device is applied to the skin's outer surface. With the aid of a sufficient value of the parameters η , Q ro and r p for a heating device of the Gaussian type, the temperature distribution at the targeted location is controlled and maintained. These parameters are employed to destroy a significant number of cancer cells in the targeted location while protecting the surrounding healthy tissue. The temperature profile at the targeted location decreases as lagging time τ q and τ T increases, and increases as spatial lagging λ q increases. The blood perfusion effect can be shown when the value of α increases or when blood temperature decreases then it is seen that the temperature profile decreases. The numerical results obtained by the Finite element Legendre wavelet Galerkin (FELWG) approach are compared with the analytical results obtained in the specific situation to evaluate the precision. The obtained numerical results logically relate to the analytical results when we utilized the operational matrix of order M − 1 (where M = 100 ). All impacts of problem parameters are graphically represented during hyperthermia treatment. | ||
650 | 4 | |a Nonlocal dual-phase-lag (NLDPL) bioheat transfer model | |
650 | 4 | |a Gaussian distribution type heat device | |
650 | 4 | |a FELWG approach | |
650 | 4 | |a Hyperthermia therapy | |
700 | 1 | |a Singh, Jitendra |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International communications in heat and mass transfer |d Amsterdam [u.a.] : Elsevier Science, 1983 |g 149 |h Online-Ressource |w (DE-627)320604373 |w (DE-600)2020560-0 |w (DE-576)096806710 |7 nnns |
773 | 1 | 8 | |g volume:149 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.38 |j Technische Thermodynamik |q VZ |
951 | |a AR | ||
952 | |d 149 |
author_variant |
r k c rk rkc j s js |
---|---|
matchkey_str |
chaudharyrajneeshkumarsinghjitendra:2023----:ueiaaayiodlihatasemdliholclmatnkn |
hierarchy_sort_str |
2023 |
bklnumber |
50.38 |
publishDate |
2023 |
allfields |
10.1016/j.icheatmasstransfer.2023.107094 doi (DE-627)ELV066028949 (ELSEVIER)S0735-1933(23)00483-9 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Chaudhary, Rajneesh Kumar verfasserin aut Numerical analysis of DPL bioheat transfer model with nonlocal impact on skin tissue during hyperthermia 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article discussed a numerical study of dual-phase-lag (DPL) bioheat transfer model with nonlocal impact on skin tissue during hyperthermia therapy when Gaussian type heat device is applied to the skin's outer surface. With the aid of a sufficient value of the parameters η , Q ro and r p for a heating device of the Gaussian type, the temperature distribution at the targeted location is controlled and maintained. These parameters are employed to destroy a significant number of cancer cells in the targeted location while protecting the surrounding healthy tissue. The temperature profile at the targeted location decreases as lagging time τ q and τ T increases, and increases as spatial lagging λ q increases. The blood perfusion effect can be shown when the value of α increases or when blood temperature decreases then it is seen that the temperature profile decreases. The numerical results obtained by the Finite element Legendre wavelet Galerkin (FELWG) approach are compared with the analytical results obtained in the specific situation to evaluate the precision. The obtained numerical results logically relate to the analytical results when we utilized the operational matrix of order M − 1 (where M = 100 ). All impacts of problem parameters are graphically represented during hyperthermia treatment. Nonlocal dual-phase-lag (NLDPL) bioheat transfer model Gaussian distribution type heat device FELWG approach Hyperthermia therapy Singh, Jitendra verfasserin aut Enthalten in International communications in heat and mass transfer Amsterdam [u.a.] : Elsevier Science, 1983 149 Online-Ressource (DE-627)320604373 (DE-600)2020560-0 (DE-576)096806710 nnns volume:149 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 149 |
spelling |
10.1016/j.icheatmasstransfer.2023.107094 doi (DE-627)ELV066028949 (ELSEVIER)S0735-1933(23)00483-9 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Chaudhary, Rajneesh Kumar verfasserin aut Numerical analysis of DPL bioheat transfer model with nonlocal impact on skin tissue during hyperthermia 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article discussed a numerical study of dual-phase-lag (DPL) bioheat transfer model with nonlocal impact on skin tissue during hyperthermia therapy when Gaussian type heat device is applied to the skin's outer surface. With the aid of a sufficient value of the parameters η , Q ro and r p for a heating device of the Gaussian type, the temperature distribution at the targeted location is controlled and maintained. These parameters are employed to destroy a significant number of cancer cells in the targeted location while protecting the surrounding healthy tissue. The temperature profile at the targeted location decreases as lagging time τ q and τ T increases, and increases as spatial lagging λ q increases. The blood perfusion effect can be shown when the value of α increases or when blood temperature decreases then it is seen that the temperature profile decreases. The numerical results obtained by the Finite element Legendre wavelet Galerkin (FELWG) approach are compared with the analytical results obtained in the specific situation to evaluate the precision. The obtained numerical results logically relate to the analytical results when we utilized the operational matrix of order M − 1 (where M = 100 ). All impacts of problem parameters are graphically represented during hyperthermia treatment. Nonlocal dual-phase-lag (NLDPL) bioheat transfer model Gaussian distribution type heat device FELWG approach Hyperthermia therapy Singh, Jitendra verfasserin aut Enthalten in International communications in heat and mass transfer Amsterdam [u.a.] : Elsevier Science, 1983 149 Online-Ressource (DE-627)320604373 (DE-600)2020560-0 (DE-576)096806710 nnns volume:149 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 149 |
allfields_unstemmed |
10.1016/j.icheatmasstransfer.2023.107094 doi (DE-627)ELV066028949 (ELSEVIER)S0735-1933(23)00483-9 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Chaudhary, Rajneesh Kumar verfasserin aut Numerical analysis of DPL bioheat transfer model with nonlocal impact on skin tissue during hyperthermia 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article discussed a numerical study of dual-phase-lag (DPL) bioheat transfer model with nonlocal impact on skin tissue during hyperthermia therapy when Gaussian type heat device is applied to the skin's outer surface. With the aid of a sufficient value of the parameters η , Q ro and r p for a heating device of the Gaussian type, the temperature distribution at the targeted location is controlled and maintained. These parameters are employed to destroy a significant number of cancer cells in the targeted location while protecting the surrounding healthy tissue. The temperature profile at the targeted location decreases as lagging time τ q and τ T increases, and increases as spatial lagging λ q increases. The blood perfusion effect can be shown when the value of α increases or when blood temperature decreases then it is seen that the temperature profile decreases. The numerical results obtained by the Finite element Legendre wavelet Galerkin (FELWG) approach are compared with the analytical results obtained in the specific situation to evaluate the precision. The obtained numerical results logically relate to the analytical results when we utilized the operational matrix of order M − 1 (where M = 100 ). All impacts of problem parameters are graphically represented during hyperthermia treatment. Nonlocal dual-phase-lag (NLDPL) bioheat transfer model Gaussian distribution type heat device FELWG approach Hyperthermia therapy Singh, Jitendra verfasserin aut Enthalten in International communications in heat and mass transfer Amsterdam [u.a.] : Elsevier Science, 1983 149 Online-Ressource (DE-627)320604373 (DE-600)2020560-0 (DE-576)096806710 nnns volume:149 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 149 |
allfieldsGer |
10.1016/j.icheatmasstransfer.2023.107094 doi (DE-627)ELV066028949 (ELSEVIER)S0735-1933(23)00483-9 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Chaudhary, Rajneesh Kumar verfasserin aut Numerical analysis of DPL bioheat transfer model with nonlocal impact on skin tissue during hyperthermia 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article discussed a numerical study of dual-phase-lag (DPL) bioheat transfer model with nonlocal impact on skin tissue during hyperthermia therapy when Gaussian type heat device is applied to the skin's outer surface. With the aid of a sufficient value of the parameters η , Q ro and r p for a heating device of the Gaussian type, the temperature distribution at the targeted location is controlled and maintained. These parameters are employed to destroy a significant number of cancer cells in the targeted location while protecting the surrounding healthy tissue. The temperature profile at the targeted location decreases as lagging time τ q and τ T increases, and increases as spatial lagging λ q increases. The blood perfusion effect can be shown when the value of α increases or when blood temperature decreases then it is seen that the temperature profile decreases. The numerical results obtained by the Finite element Legendre wavelet Galerkin (FELWG) approach are compared with the analytical results obtained in the specific situation to evaluate the precision. The obtained numerical results logically relate to the analytical results when we utilized the operational matrix of order M − 1 (where M = 100 ). All impacts of problem parameters are graphically represented during hyperthermia treatment. Nonlocal dual-phase-lag (NLDPL) bioheat transfer model Gaussian distribution type heat device FELWG approach Hyperthermia therapy Singh, Jitendra verfasserin aut Enthalten in International communications in heat and mass transfer Amsterdam [u.a.] : Elsevier Science, 1983 149 Online-Ressource (DE-627)320604373 (DE-600)2020560-0 (DE-576)096806710 nnns volume:149 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 149 |
allfieldsSound |
10.1016/j.icheatmasstransfer.2023.107094 doi (DE-627)ELV066028949 (ELSEVIER)S0735-1933(23)00483-9 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Chaudhary, Rajneesh Kumar verfasserin aut Numerical analysis of DPL bioheat transfer model with nonlocal impact on skin tissue during hyperthermia 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article discussed a numerical study of dual-phase-lag (DPL) bioheat transfer model with nonlocal impact on skin tissue during hyperthermia therapy when Gaussian type heat device is applied to the skin's outer surface. With the aid of a sufficient value of the parameters η , Q ro and r p for a heating device of the Gaussian type, the temperature distribution at the targeted location is controlled and maintained. These parameters are employed to destroy a significant number of cancer cells in the targeted location while protecting the surrounding healthy tissue. The temperature profile at the targeted location decreases as lagging time τ q and τ T increases, and increases as spatial lagging λ q increases. The blood perfusion effect can be shown when the value of α increases or when blood temperature decreases then it is seen that the temperature profile decreases. The numerical results obtained by the Finite element Legendre wavelet Galerkin (FELWG) approach are compared with the analytical results obtained in the specific situation to evaluate the precision. The obtained numerical results logically relate to the analytical results when we utilized the operational matrix of order M − 1 (where M = 100 ). All impacts of problem parameters are graphically represented during hyperthermia treatment. Nonlocal dual-phase-lag (NLDPL) bioheat transfer model Gaussian distribution type heat device FELWG approach Hyperthermia therapy Singh, Jitendra verfasserin aut Enthalten in International communications in heat and mass transfer Amsterdam [u.a.] : Elsevier Science, 1983 149 Online-Ressource (DE-627)320604373 (DE-600)2020560-0 (DE-576)096806710 nnns volume:149 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 149 |
language |
English |
source |
Enthalten in International communications in heat and mass transfer 149 volume:149 |
sourceStr |
Enthalten in International communications in heat and mass transfer 149 volume:149 |
format_phy_str_mv |
Article |
bklname |
Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Nonlocal dual-phase-lag (NLDPL) bioheat transfer model Gaussian distribution type heat device FELWG approach Hyperthermia therapy |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
International communications in heat and mass transfer |
authorswithroles_txt_mv |
Chaudhary, Rajneesh Kumar @@aut@@ Singh, Jitendra @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320604373 |
dewey-sort |
3620 |
id |
ELV066028949 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066028949</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231207093026.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231207s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.icheatmasstransfer.2023.107094</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066028949</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0735-1933(23)00483-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chaudhary, Rajneesh Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical analysis of DPL bioheat transfer model with nonlocal impact on skin tissue during hyperthermia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This article discussed a numerical study of dual-phase-lag (DPL) bioheat transfer model with nonlocal impact on skin tissue during hyperthermia therapy when Gaussian type heat device is applied to the skin's outer surface. With the aid of a sufficient value of the parameters η , Q ro and r p for a heating device of the Gaussian type, the temperature distribution at the targeted location is controlled and maintained. These parameters are employed to destroy a significant number of cancer cells in the targeted location while protecting the surrounding healthy tissue. The temperature profile at the targeted location decreases as lagging time τ q and τ T increases, and increases as spatial lagging λ q increases. The blood perfusion effect can be shown when the value of α increases or when blood temperature decreases then it is seen that the temperature profile decreases. The numerical results obtained by the Finite element Legendre wavelet Galerkin (FELWG) approach are compared with the analytical results obtained in the specific situation to evaluate the precision. The obtained numerical results logically relate to the analytical results when we utilized the operational matrix of order M − 1 (where M = 100 ). All impacts of problem parameters are graphically represented during hyperthermia treatment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlocal dual-phase-lag (NLDPL) bioheat transfer model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gaussian distribution type heat device</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FELWG approach</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperthermia therapy</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, Jitendra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International communications in heat and mass transfer</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1983</subfield><subfield code="g">149</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320604373</subfield><subfield code="w">(DE-600)2020560-0</subfield><subfield code="w">(DE-576)096806710</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:149</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">149</subfield></datafield></record></collection>
|
author |
Chaudhary, Rajneesh Kumar |
spellingShingle |
Chaudhary, Rajneesh Kumar ddc 620 bkl 50.38 misc Nonlocal dual-phase-lag (NLDPL) bioheat transfer model misc Gaussian distribution type heat device misc FELWG approach misc Hyperthermia therapy Numerical analysis of DPL bioheat transfer model with nonlocal impact on skin tissue during hyperthermia |
authorStr |
Chaudhary, Rajneesh Kumar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320604373 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
620 VZ 50.38 bkl Numerical analysis of DPL bioheat transfer model with nonlocal impact on skin tissue during hyperthermia Nonlocal dual-phase-lag (NLDPL) bioheat transfer model Gaussian distribution type heat device FELWG approach Hyperthermia therapy |
topic |
ddc 620 bkl 50.38 misc Nonlocal dual-phase-lag (NLDPL) bioheat transfer model misc Gaussian distribution type heat device misc FELWG approach misc Hyperthermia therapy |
topic_unstemmed |
ddc 620 bkl 50.38 misc Nonlocal dual-phase-lag (NLDPL) bioheat transfer model misc Gaussian distribution type heat device misc FELWG approach misc Hyperthermia therapy |
topic_browse |
ddc 620 bkl 50.38 misc Nonlocal dual-phase-lag (NLDPL) bioheat transfer model misc Gaussian distribution type heat device misc FELWG approach misc Hyperthermia therapy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International communications in heat and mass transfer |
hierarchy_parent_id |
320604373 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
International communications in heat and mass transfer |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320604373 (DE-600)2020560-0 (DE-576)096806710 |
title |
Numerical analysis of DPL bioheat transfer model with nonlocal impact on skin tissue during hyperthermia |
ctrlnum |
(DE-627)ELV066028949 (ELSEVIER)S0735-1933(23)00483-9 |
title_full |
Numerical analysis of DPL bioheat transfer model with nonlocal impact on skin tissue during hyperthermia |
author_sort |
Chaudhary, Rajneesh Kumar |
journal |
International communications in heat and mass transfer |
journalStr |
International communications in heat and mass transfer |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Chaudhary, Rajneesh Kumar Singh, Jitendra |
container_volume |
149 |
class |
620 VZ 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Chaudhary, Rajneesh Kumar |
doi_str_mv |
10.1016/j.icheatmasstransfer.2023.107094 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
numerical analysis of dpl bioheat transfer model with nonlocal impact on skin tissue during hyperthermia |
title_auth |
Numerical analysis of DPL bioheat transfer model with nonlocal impact on skin tissue during hyperthermia |
abstract |
This article discussed a numerical study of dual-phase-lag (DPL) bioheat transfer model with nonlocal impact on skin tissue during hyperthermia therapy when Gaussian type heat device is applied to the skin's outer surface. With the aid of a sufficient value of the parameters η , Q ro and r p for a heating device of the Gaussian type, the temperature distribution at the targeted location is controlled and maintained. These parameters are employed to destroy a significant number of cancer cells in the targeted location while protecting the surrounding healthy tissue. The temperature profile at the targeted location decreases as lagging time τ q and τ T increases, and increases as spatial lagging λ q increases. The blood perfusion effect can be shown when the value of α increases or when blood temperature decreases then it is seen that the temperature profile decreases. The numerical results obtained by the Finite element Legendre wavelet Galerkin (FELWG) approach are compared with the analytical results obtained in the specific situation to evaluate the precision. The obtained numerical results logically relate to the analytical results when we utilized the operational matrix of order M − 1 (where M = 100 ). All impacts of problem parameters are graphically represented during hyperthermia treatment. |
abstractGer |
This article discussed a numerical study of dual-phase-lag (DPL) bioheat transfer model with nonlocal impact on skin tissue during hyperthermia therapy when Gaussian type heat device is applied to the skin's outer surface. With the aid of a sufficient value of the parameters η , Q ro and r p for a heating device of the Gaussian type, the temperature distribution at the targeted location is controlled and maintained. These parameters are employed to destroy a significant number of cancer cells in the targeted location while protecting the surrounding healthy tissue. The temperature profile at the targeted location decreases as lagging time τ q and τ T increases, and increases as spatial lagging λ q increases. The blood perfusion effect can be shown when the value of α increases or when blood temperature decreases then it is seen that the temperature profile decreases. The numerical results obtained by the Finite element Legendre wavelet Galerkin (FELWG) approach are compared with the analytical results obtained in the specific situation to evaluate the precision. The obtained numerical results logically relate to the analytical results when we utilized the operational matrix of order M − 1 (where M = 100 ). All impacts of problem parameters are graphically represented during hyperthermia treatment. |
abstract_unstemmed |
This article discussed a numerical study of dual-phase-lag (DPL) bioheat transfer model with nonlocal impact on skin tissue during hyperthermia therapy when Gaussian type heat device is applied to the skin's outer surface. With the aid of a sufficient value of the parameters η , Q ro and r p for a heating device of the Gaussian type, the temperature distribution at the targeted location is controlled and maintained. These parameters are employed to destroy a significant number of cancer cells in the targeted location while protecting the surrounding healthy tissue. The temperature profile at the targeted location decreases as lagging time τ q and τ T increases, and increases as spatial lagging λ q increases. The blood perfusion effect can be shown when the value of α increases or when blood temperature decreases then it is seen that the temperature profile decreases. The numerical results obtained by the Finite element Legendre wavelet Galerkin (FELWG) approach are compared with the analytical results obtained in the specific situation to evaluate the precision. The obtained numerical results logically relate to the analytical results when we utilized the operational matrix of order M − 1 (where M = 100 ). All impacts of problem parameters are graphically represented during hyperthermia treatment. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Numerical analysis of DPL bioheat transfer model with nonlocal impact on skin tissue during hyperthermia |
remote_bool |
true |
author2 |
Singh, Jitendra |
author2Str |
Singh, Jitendra |
ppnlink |
320604373 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.icheatmasstransfer.2023.107094 |
up_date |
2024-07-07T01:05:13.701Z |
_version_ |
1803880301806485504 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066028949</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231207093026.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231207s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.icheatmasstransfer.2023.107094</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066028949</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0735-1933(23)00483-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chaudhary, Rajneesh Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical analysis of DPL bioheat transfer model with nonlocal impact on skin tissue during hyperthermia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This article discussed a numerical study of dual-phase-lag (DPL) bioheat transfer model with nonlocal impact on skin tissue during hyperthermia therapy when Gaussian type heat device is applied to the skin's outer surface. With the aid of a sufficient value of the parameters η , Q ro and r p for a heating device of the Gaussian type, the temperature distribution at the targeted location is controlled and maintained. These parameters are employed to destroy a significant number of cancer cells in the targeted location while protecting the surrounding healthy tissue. The temperature profile at the targeted location decreases as lagging time τ q and τ T increases, and increases as spatial lagging λ q increases. The blood perfusion effect can be shown when the value of α increases or when blood temperature decreases then it is seen that the temperature profile decreases. The numerical results obtained by the Finite element Legendre wavelet Galerkin (FELWG) approach are compared with the analytical results obtained in the specific situation to evaluate the precision. The obtained numerical results logically relate to the analytical results when we utilized the operational matrix of order M − 1 (where M = 100 ). All impacts of problem parameters are graphically represented during hyperthermia treatment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlocal dual-phase-lag (NLDPL) bioheat transfer model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gaussian distribution type heat device</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FELWG approach</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperthermia therapy</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, Jitendra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International communications in heat and mass transfer</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1983</subfield><subfield code="g">149</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320604373</subfield><subfield code="w">(DE-600)2020560-0</subfield><subfield code="w">(DE-576)096806710</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:149</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">149</subfield></datafield></record></collection>
|
score |
7.401058 |