Westerly aridity in the western Tarim Basin driven by global cooling since the mid-Pleistocene transition
To explore the relationship between the global cooling, westerlies, and central Asian aridity, we report ∼1.1 Ma local sedimentary environment changes according to physical-chemical parameters from an 800-m core (KT11) from the Kashgar region in the western Tarim Basin, China. Grain size end-member...
Ausführliche Beschreibung
Autor*in: |
Liu, Hongye [verfasserIn] Zhang, Rui [verfasserIn] Gu, Yansheng [verfasserIn] Dai, Gaowen [verfasserIn] Li, Lin [verfasserIn] Guan, Shuo [verfasserIn] Fu, Zhongbiao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Quaternary science reviews - Amsterdam [u.a.] : Elsevier, 1982, 322 |
---|---|
Übergeordnetes Werk: |
volume:322 |
DOI / URN: |
10.1016/j.quascirev.2023.108412 |
---|
Katalog-ID: |
ELV066052815 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV066052815 | ||
003 | DE-627 | ||
005 | 20231213093226.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231207s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.quascirev.2023.108412 |2 doi | |
035 | |a (DE-627)ELV066052815 | ||
035 | |a (ELSEVIER)S0277-3791(23)00460-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 38.15 |2 bkl | ||
100 | 1 | |a Liu, Hongye |e verfasserin |4 aut | |
245 | 1 | 0 | |a Westerly aridity in the western Tarim Basin driven by global cooling since the mid-Pleistocene transition |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a To explore the relationship between the global cooling, westerlies, and central Asian aridity, we report ∼1.1 Ma local sedimentary environment changes according to physical-chemical parameters from an 800-m core (KT11) from the Kashgar region in the western Tarim Basin, China. Grain size end-member (EM) modelling is employed to quantify the processes of sediment transport and deposition. Four end members with modal values of 272 μm, 144 μm, 45.6 μm and 12.7 μm were extracted and explained 97.9% of the variance in the grain size data, corresponding aeolian dynamics, river energies, delta development and pedogenesis/long-term suspension components transported by wind or water, respectively. Four dominant sedimentation types, including lacustrine facies, delta facies, fluvial facies, and aeolian dunes, were identified through lithology and grain size frequency curves. The 1.1 Ma sedimentary successions experienced delta deposits interbedded with fluvial and aeolian deposits and lacustrines (1.1–0.6 Ma), alternating fluvial and aeolian facies with the occurrence of deltas and lacustrines (0.6–0.15 Ma), and aeolian facies interbedded with deltas and fluvial facies (0.15 Ma-present). Stepwise drying sedimentary conditions and enhanced desertification indicated by increasing rubidium/strontium ratios and proportion of aeolian sands, and decreasing total organic carbon since the past 1.1 Ma, implied intensified westerlies, likely resulted from ice volume expansion and ongoing global cooling according to geological record comparison and simulations during the Last Glacial Maximum compared to preindustrial conditions, which may have controlled the expansion of the permanent deserts in inland Asia. These persistent drying trends and intensified westerly circulation in arid regions during glacial periods after the mid-Pleistocene Transition indicated by larger amplitudes of aeolian sand proportion than prior to 0.6 Ma are similar to those in the interior monsoonal Asia, where the larger-amplitude of median grain size indicated enhanced Asian winter monsoon intensity and drier glacials. | ||
650 | 4 | |a Sedimentary succession | |
650 | 4 | |a Westerlies | |
650 | 4 | |a Asian aridity | |
650 | 4 | |a Ice volume expansion | |
650 | 4 | |a Mid-pleistocene | |
650 | 4 | |a Tarim Basin | |
700 | 1 | |a Zhang, Rui |e verfasserin |4 aut | |
700 | 1 | |a Gu, Yansheng |e verfasserin |4 aut | |
700 | 1 | |a Dai, Gaowen |e verfasserin |4 aut | |
700 | 1 | |a Li, Lin |e verfasserin |4 aut | |
700 | 1 | |a Guan, Shuo |e verfasserin |4 aut | |
700 | 1 | |a Fu, Zhongbiao |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Quaternary science reviews |d Amsterdam [u.a.] : Elsevier, 1982 |g 322 |h Online-Ressource |w (DE-627)303614544 |w (DE-600)1495523-4 |w (DE-576)259484040 |x 0277-3791 |7 nnns |
773 | 1 | 8 | |g volume:322 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 38.15 |j Historische Geologie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 322 |
author_variant |
h l hl r z rz y g yg g d gd l l ll s g sg z f zf |
---|---|
matchkey_str |
article:02773791:2023----::etryrdtiteetrtrmaidiebgoacoigicte |
hierarchy_sort_str |
2023 |
bklnumber |
38.15 |
publishDate |
2023 |
allfields |
10.1016/j.quascirev.2023.108412 doi (DE-627)ELV066052815 (ELSEVIER)S0277-3791(23)00460-2 DE-627 ger DE-627 rda eng 550 VZ 38.15 bkl Liu, Hongye verfasserin aut Westerly aridity in the western Tarim Basin driven by global cooling since the mid-Pleistocene transition 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To explore the relationship between the global cooling, westerlies, and central Asian aridity, we report ∼1.1 Ma local sedimentary environment changes according to physical-chemical parameters from an 800-m core (KT11) from the Kashgar region in the western Tarim Basin, China. Grain size end-member (EM) modelling is employed to quantify the processes of sediment transport and deposition. Four end members with modal values of 272 μm, 144 μm, 45.6 μm and 12.7 μm were extracted and explained 97.9% of the variance in the grain size data, corresponding aeolian dynamics, river energies, delta development and pedogenesis/long-term suspension components transported by wind or water, respectively. Four dominant sedimentation types, including lacustrine facies, delta facies, fluvial facies, and aeolian dunes, were identified through lithology and grain size frequency curves. The 1.1 Ma sedimentary successions experienced delta deposits interbedded with fluvial and aeolian deposits and lacustrines (1.1–0.6 Ma), alternating fluvial and aeolian facies with the occurrence of deltas and lacustrines (0.6–0.15 Ma), and aeolian facies interbedded with deltas and fluvial facies (0.15 Ma-present). Stepwise drying sedimentary conditions and enhanced desertification indicated by increasing rubidium/strontium ratios and proportion of aeolian sands, and decreasing total organic carbon since the past 1.1 Ma, implied intensified westerlies, likely resulted from ice volume expansion and ongoing global cooling according to geological record comparison and simulations during the Last Glacial Maximum compared to preindustrial conditions, which may have controlled the expansion of the permanent deserts in inland Asia. These persistent drying trends and intensified westerly circulation in arid regions during glacial periods after the mid-Pleistocene Transition indicated by larger amplitudes of aeolian sand proportion than prior to 0.6 Ma are similar to those in the interior monsoonal Asia, where the larger-amplitude of median grain size indicated enhanced Asian winter monsoon intensity and drier glacials. Sedimentary succession Westerlies Asian aridity Ice volume expansion Mid-pleistocene Tarim Basin Zhang, Rui verfasserin aut Gu, Yansheng verfasserin aut Dai, Gaowen verfasserin aut Li, Lin verfasserin aut Guan, Shuo verfasserin aut Fu, Zhongbiao verfasserin aut Enthalten in Quaternary science reviews Amsterdam [u.a.] : Elsevier, 1982 322 Online-Ressource (DE-627)303614544 (DE-600)1495523-4 (DE-576)259484040 0277-3791 nnns volume:322 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.15 Historische Geologie: Allgemeines VZ AR 322 |
spelling |
10.1016/j.quascirev.2023.108412 doi (DE-627)ELV066052815 (ELSEVIER)S0277-3791(23)00460-2 DE-627 ger DE-627 rda eng 550 VZ 38.15 bkl Liu, Hongye verfasserin aut Westerly aridity in the western Tarim Basin driven by global cooling since the mid-Pleistocene transition 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To explore the relationship between the global cooling, westerlies, and central Asian aridity, we report ∼1.1 Ma local sedimentary environment changes according to physical-chemical parameters from an 800-m core (KT11) from the Kashgar region in the western Tarim Basin, China. Grain size end-member (EM) modelling is employed to quantify the processes of sediment transport and deposition. Four end members with modal values of 272 μm, 144 μm, 45.6 μm and 12.7 μm were extracted and explained 97.9% of the variance in the grain size data, corresponding aeolian dynamics, river energies, delta development and pedogenesis/long-term suspension components transported by wind or water, respectively. Four dominant sedimentation types, including lacustrine facies, delta facies, fluvial facies, and aeolian dunes, were identified through lithology and grain size frequency curves. The 1.1 Ma sedimentary successions experienced delta deposits interbedded with fluvial and aeolian deposits and lacustrines (1.1–0.6 Ma), alternating fluvial and aeolian facies with the occurrence of deltas and lacustrines (0.6–0.15 Ma), and aeolian facies interbedded with deltas and fluvial facies (0.15 Ma-present). Stepwise drying sedimentary conditions and enhanced desertification indicated by increasing rubidium/strontium ratios and proportion of aeolian sands, and decreasing total organic carbon since the past 1.1 Ma, implied intensified westerlies, likely resulted from ice volume expansion and ongoing global cooling according to geological record comparison and simulations during the Last Glacial Maximum compared to preindustrial conditions, which may have controlled the expansion of the permanent deserts in inland Asia. These persistent drying trends and intensified westerly circulation in arid regions during glacial periods after the mid-Pleistocene Transition indicated by larger amplitudes of aeolian sand proportion than prior to 0.6 Ma are similar to those in the interior monsoonal Asia, where the larger-amplitude of median grain size indicated enhanced Asian winter monsoon intensity and drier glacials. Sedimentary succession Westerlies Asian aridity Ice volume expansion Mid-pleistocene Tarim Basin Zhang, Rui verfasserin aut Gu, Yansheng verfasserin aut Dai, Gaowen verfasserin aut Li, Lin verfasserin aut Guan, Shuo verfasserin aut Fu, Zhongbiao verfasserin aut Enthalten in Quaternary science reviews Amsterdam [u.a.] : Elsevier, 1982 322 Online-Ressource (DE-627)303614544 (DE-600)1495523-4 (DE-576)259484040 0277-3791 nnns volume:322 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.15 Historische Geologie: Allgemeines VZ AR 322 |
allfields_unstemmed |
10.1016/j.quascirev.2023.108412 doi (DE-627)ELV066052815 (ELSEVIER)S0277-3791(23)00460-2 DE-627 ger DE-627 rda eng 550 VZ 38.15 bkl Liu, Hongye verfasserin aut Westerly aridity in the western Tarim Basin driven by global cooling since the mid-Pleistocene transition 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To explore the relationship between the global cooling, westerlies, and central Asian aridity, we report ∼1.1 Ma local sedimentary environment changes according to physical-chemical parameters from an 800-m core (KT11) from the Kashgar region in the western Tarim Basin, China. Grain size end-member (EM) modelling is employed to quantify the processes of sediment transport and deposition. Four end members with modal values of 272 μm, 144 μm, 45.6 μm and 12.7 μm were extracted and explained 97.9% of the variance in the grain size data, corresponding aeolian dynamics, river energies, delta development and pedogenesis/long-term suspension components transported by wind or water, respectively. Four dominant sedimentation types, including lacustrine facies, delta facies, fluvial facies, and aeolian dunes, were identified through lithology and grain size frequency curves. The 1.1 Ma sedimentary successions experienced delta deposits interbedded with fluvial and aeolian deposits and lacustrines (1.1–0.6 Ma), alternating fluvial and aeolian facies with the occurrence of deltas and lacustrines (0.6–0.15 Ma), and aeolian facies interbedded with deltas and fluvial facies (0.15 Ma-present). Stepwise drying sedimentary conditions and enhanced desertification indicated by increasing rubidium/strontium ratios and proportion of aeolian sands, and decreasing total organic carbon since the past 1.1 Ma, implied intensified westerlies, likely resulted from ice volume expansion and ongoing global cooling according to geological record comparison and simulations during the Last Glacial Maximum compared to preindustrial conditions, which may have controlled the expansion of the permanent deserts in inland Asia. These persistent drying trends and intensified westerly circulation in arid regions during glacial periods after the mid-Pleistocene Transition indicated by larger amplitudes of aeolian sand proportion than prior to 0.6 Ma are similar to those in the interior monsoonal Asia, where the larger-amplitude of median grain size indicated enhanced Asian winter monsoon intensity and drier glacials. Sedimentary succession Westerlies Asian aridity Ice volume expansion Mid-pleistocene Tarim Basin Zhang, Rui verfasserin aut Gu, Yansheng verfasserin aut Dai, Gaowen verfasserin aut Li, Lin verfasserin aut Guan, Shuo verfasserin aut Fu, Zhongbiao verfasserin aut Enthalten in Quaternary science reviews Amsterdam [u.a.] : Elsevier, 1982 322 Online-Ressource (DE-627)303614544 (DE-600)1495523-4 (DE-576)259484040 0277-3791 nnns volume:322 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.15 Historische Geologie: Allgemeines VZ AR 322 |
allfieldsGer |
10.1016/j.quascirev.2023.108412 doi (DE-627)ELV066052815 (ELSEVIER)S0277-3791(23)00460-2 DE-627 ger DE-627 rda eng 550 VZ 38.15 bkl Liu, Hongye verfasserin aut Westerly aridity in the western Tarim Basin driven by global cooling since the mid-Pleistocene transition 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To explore the relationship between the global cooling, westerlies, and central Asian aridity, we report ∼1.1 Ma local sedimentary environment changes according to physical-chemical parameters from an 800-m core (KT11) from the Kashgar region in the western Tarim Basin, China. Grain size end-member (EM) modelling is employed to quantify the processes of sediment transport and deposition. Four end members with modal values of 272 μm, 144 μm, 45.6 μm and 12.7 μm were extracted and explained 97.9% of the variance in the grain size data, corresponding aeolian dynamics, river energies, delta development and pedogenesis/long-term suspension components transported by wind or water, respectively. Four dominant sedimentation types, including lacustrine facies, delta facies, fluvial facies, and aeolian dunes, were identified through lithology and grain size frequency curves. The 1.1 Ma sedimentary successions experienced delta deposits interbedded with fluvial and aeolian deposits and lacustrines (1.1–0.6 Ma), alternating fluvial and aeolian facies with the occurrence of deltas and lacustrines (0.6–0.15 Ma), and aeolian facies interbedded with deltas and fluvial facies (0.15 Ma-present). Stepwise drying sedimentary conditions and enhanced desertification indicated by increasing rubidium/strontium ratios and proportion of aeolian sands, and decreasing total organic carbon since the past 1.1 Ma, implied intensified westerlies, likely resulted from ice volume expansion and ongoing global cooling according to geological record comparison and simulations during the Last Glacial Maximum compared to preindustrial conditions, which may have controlled the expansion of the permanent deserts in inland Asia. These persistent drying trends and intensified westerly circulation in arid regions during glacial periods after the mid-Pleistocene Transition indicated by larger amplitudes of aeolian sand proportion than prior to 0.6 Ma are similar to those in the interior monsoonal Asia, where the larger-amplitude of median grain size indicated enhanced Asian winter monsoon intensity and drier glacials. Sedimentary succession Westerlies Asian aridity Ice volume expansion Mid-pleistocene Tarim Basin Zhang, Rui verfasserin aut Gu, Yansheng verfasserin aut Dai, Gaowen verfasserin aut Li, Lin verfasserin aut Guan, Shuo verfasserin aut Fu, Zhongbiao verfasserin aut Enthalten in Quaternary science reviews Amsterdam [u.a.] : Elsevier, 1982 322 Online-Ressource (DE-627)303614544 (DE-600)1495523-4 (DE-576)259484040 0277-3791 nnns volume:322 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.15 Historische Geologie: Allgemeines VZ AR 322 |
allfieldsSound |
10.1016/j.quascirev.2023.108412 doi (DE-627)ELV066052815 (ELSEVIER)S0277-3791(23)00460-2 DE-627 ger DE-627 rda eng 550 VZ 38.15 bkl Liu, Hongye verfasserin aut Westerly aridity in the western Tarim Basin driven by global cooling since the mid-Pleistocene transition 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To explore the relationship between the global cooling, westerlies, and central Asian aridity, we report ∼1.1 Ma local sedimentary environment changes according to physical-chemical parameters from an 800-m core (KT11) from the Kashgar region in the western Tarim Basin, China. Grain size end-member (EM) modelling is employed to quantify the processes of sediment transport and deposition. Four end members with modal values of 272 μm, 144 μm, 45.6 μm and 12.7 μm were extracted and explained 97.9% of the variance in the grain size data, corresponding aeolian dynamics, river energies, delta development and pedogenesis/long-term suspension components transported by wind or water, respectively. Four dominant sedimentation types, including lacustrine facies, delta facies, fluvial facies, and aeolian dunes, were identified through lithology and grain size frequency curves. The 1.1 Ma sedimentary successions experienced delta deposits interbedded with fluvial and aeolian deposits and lacustrines (1.1–0.6 Ma), alternating fluvial and aeolian facies with the occurrence of deltas and lacustrines (0.6–0.15 Ma), and aeolian facies interbedded with deltas and fluvial facies (0.15 Ma-present). Stepwise drying sedimentary conditions and enhanced desertification indicated by increasing rubidium/strontium ratios and proportion of aeolian sands, and decreasing total organic carbon since the past 1.1 Ma, implied intensified westerlies, likely resulted from ice volume expansion and ongoing global cooling according to geological record comparison and simulations during the Last Glacial Maximum compared to preindustrial conditions, which may have controlled the expansion of the permanent deserts in inland Asia. These persistent drying trends and intensified westerly circulation in arid regions during glacial periods after the mid-Pleistocene Transition indicated by larger amplitudes of aeolian sand proportion than prior to 0.6 Ma are similar to those in the interior monsoonal Asia, where the larger-amplitude of median grain size indicated enhanced Asian winter monsoon intensity and drier glacials. Sedimentary succession Westerlies Asian aridity Ice volume expansion Mid-pleistocene Tarim Basin Zhang, Rui verfasserin aut Gu, Yansheng verfasserin aut Dai, Gaowen verfasserin aut Li, Lin verfasserin aut Guan, Shuo verfasserin aut Fu, Zhongbiao verfasserin aut Enthalten in Quaternary science reviews Amsterdam [u.a.] : Elsevier, 1982 322 Online-Ressource (DE-627)303614544 (DE-600)1495523-4 (DE-576)259484040 0277-3791 nnns volume:322 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.15 Historische Geologie: Allgemeines VZ AR 322 |
language |
English |
source |
Enthalten in Quaternary science reviews 322 volume:322 |
sourceStr |
Enthalten in Quaternary science reviews 322 volume:322 |
format_phy_str_mv |
Article |
bklname |
Historische Geologie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Sedimentary succession Westerlies Asian aridity Ice volume expansion Mid-pleistocene Tarim Basin |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Quaternary science reviews |
authorswithroles_txt_mv |
Liu, Hongye @@aut@@ Zhang, Rui @@aut@@ Gu, Yansheng @@aut@@ Dai, Gaowen @@aut@@ Li, Lin @@aut@@ Guan, Shuo @@aut@@ Fu, Zhongbiao @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
303614544 |
dewey-sort |
3550 |
id |
ELV066052815 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV066052815</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231213093226.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231207s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.quascirev.2023.108412</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066052815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0277-3791(23)00460-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.15</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Hongye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Westerly aridity in the western Tarim Basin driven by global cooling since the mid-Pleistocene transition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To explore the relationship between the global cooling, westerlies, and central Asian aridity, we report ∼1.1 Ma local sedimentary environment changes according to physical-chemical parameters from an 800-m core (KT11) from the Kashgar region in the western Tarim Basin, China. Grain size end-member (EM) modelling is employed to quantify the processes of sediment transport and deposition. Four end members with modal values of 272 μm, 144 μm, 45.6 μm and 12.7 μm were extracted and explained 97.9% of the variance in the grain size data, corresponding aeolian dynamics, river energies, delta development and pedogenesis/long-term suspension components transported by wind or water, respectively. Four dominant sedimentation types, including lacustrine facies, delta facies, fluvial facies, and aeolian dunes, were identified through lithology and grain size frequency curves. The 1.1 Ma sedimentary successions experienced delta deposits interbedded with fluvial and aeolian deposits and lacustrines (1.1–0.6 Ma), alternating fluvial and aeolian facies with the occurrence of deltas and lacustrines (0.6–0.15 Ma), and aeolian facies interbedded with deltas and fluvial facies (0.15 Ma-present). Stepwise drying sedimentary conditions and enhanced desertification indicated by increasing rubidium/strontium ratios and proportion of aeolian sands, and decreasing total organic carbon since the past 1.1 Ma, implied intensified westerlies, likely resulted from ice volume expansion and ongoing global cooling according to geological record comparison and simulations during the Last Glacial Maximum compared to preindustrial conditions, which may have controlled the expansion of the permanent deserts in inland Asia. These persistent drying trends and intensified westerly circulation in arid regions during glacial periods after the mid-Pleistocene Transition indicated by larger amplitudes of aeolian sand proportion than prior to 0.6 Ma are similar to those in the interior monsoonal Asia, where the larger-amplitude of median grain size indicated enhanced Asian winter monsoon intensity and drier glacials.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sedimentary succession</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Westerlies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asian aridity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ice volume expansion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mid-pleistocene</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tarim Basin</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Rui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gu, Yansheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Gaowen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guan, Shuo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fu, Zhongbiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Quaternary science reviews</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1982</subfield><subfield code="g">322</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)303614544</subfield><subfield code="w">(DE-600)1495523-4</subfield><subfield code="w">(DE-576)259484040</subfield><subfield code="x">0277-3791</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.15</subfield><subfield code="j">Historische Geologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">322</subfield></datafield></record></collection>
|
author |
Liu, Hongye |
spellingShingle |
Liu, Hongye ddc 550 bkl 38.15 misc Sedimentary succession misc Westerlies misc Asian aridity misc Ice volume expansion misc Mid-pleistocene misc Tarim Basin Westerly aridity in the western Tarim Basin driven by global cooling since the mid-Pleistocene transition |
authorStr |
Liu, Hongye |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)303614544 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0277-3791 |
topic_title |
550 VZ 38.15 bkl Westerly aridity in the western Tarim Basin driven by global cooling since the mid-Pleistocene transition Sedimentary succession Westerlies Asian aridity Ice volume expansion Mid-pleistocene Tarim Basin |
topic |
ddc 550 bkl 38.15 misc Sedimentary succession misc Westerlies misc Asian aridity misc Ice volume expansion misc Mid-pleistocene misc Tarim Basin |
topic_unstemmed |
ddc 550 bkl 38.15 misc Sedimentary succession misc Westerlies misc Asian aridity misc Ice volume expansion misc Mid-pleistocene misc Tarim Basin |
topic_browse |
ddc 550 bkl 38.15 misc Sedimentary succession misc Westerlies misc Asian aridity misc Ice volume expansion misc Mid-pleistocene misc Tarim Basin |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Quaternary science reviews |
hierarchy_parent_id |
303614544 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Quaternary science reviews |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)303614544 (DE-600)1495523-4 (DE-576)259484040 |
title |
Westerly aridity in the western Tarim Basin driven by global cooling since the mid-Pleistocene transition |
ctrlnum |
(DE-627)ELV066052815 (ELSEVIER)S0277-3791(23)00460-2 |
title_full |
Westerly aridity in the western Tarim Basin driven by global cooling since the mid-Pleistocene transition |
author_sort |
Liu, Hongye |
journal |
Quaternary science reviews |
journalStr |
Quaternary science reviews |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Liu, Hongye Zhang, Rui Gu, Yansheng Dai, Gaowen Li, Lin Guan, Shuo Fu, Zhongbiao |
container_volume |
322 |
class |
550 VZ 38.15 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Hongye |
doi_str_mv |
10.1016/j.quascirev.2023.108412 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
westerly aridity in the western tarim basin driven by global cooling since the mid-pleistocene transition |
title_auth |
Westerly aridity in the western Tarim Basin driven by global cooling since the mid-Pleistocene transition |
abstract |
To explore the relationship between the global cooling, westerlies, and central Asian aridity, we report ∼1.1 Ma local sedimentary environment changes according to physical-chemical parameters from an 800-m core (KT11) from the Kashgar region in the western Tarim Basin, China. Grain size end-member (EM) modelling is employed to quantify the processes of sediment transport and deposition. Four end members with modal values of 272 μm, 144 μm, 45.6 μm and 12.7 μm were extracted and explained 97.9% of the variance in the grain size data, corresponding aeolian dynamics, river energies, delta development and pedogenesis/long-term suspension components transported by wind or water, respectively. Four dominant sedimentation types, including lacustrine facies, delta facies, fluvial facies, and aeolian dunes, were identified through lithology and grain size frequency curves. The 1.1 Ma sedimentary successions experienced delta deposits interbedded with fluvial and aeolian deposits and lacustrines (1.1–0.6 Ma), alternating fluvial and aeolian facies with the occurrence of deltas and lacustrines (0.6–0.15 Ma), and aeolian facies interbedded with deltas and fluvial facies (0.15 Ma-present). Stepwise drying sedimentary conditions and enhanced desertification indicated by increasing rubidium/strontium ratios and proportion of aeolian sands, and decreasing total organic carbon since the past 1.1 Ma, implied intensified westerlies, likely resulted from ice volume expansion and ongoing global cooling according to geological record comparison and simulations during the Last Glacial Maximum compared to preindustrial conditions, which may have controlled the expansion of the permanent deserts in inland Asia. These persistent drying trends and intensified westerly circulation in arid regions during glacial periods after the mid-Pleistocene Transition indicated by larger amplitudes of aeolian sand proportion than prior to 0.6 Ma are similar to those in the interior monsoonal Asia, where the larger-amplitude of median grain size indicated enhanced Asian winter monsoon intensity and drier glacials. |
abstractGer |
To explore the relationship between the global cooling, westerlies, and central Asian aridity, we report ∼1.1 Ma local sedimentary environment changes according to physical-chemical parameters from an 800-m core (KT11) from the Kashgar region in the western Tarim Basin, China. Grain size end-member (EM) modelling is employed to quantify the processes of sediment transport and deposition. Four end members with modal values of 272 μm, 144 μm, 45.6 μm and 12.7 μm were extracted and explained 97.9% of the variance in the grain size data, corresponding aeolian dynamics, river energies, delta development and pedogenesis/long-term suspension components transported by wind or water, respectively. Four dominant sedimentation types, including lacustrine facies, delta facies, fluvial facies, and aeolian dunes, were identified through lithology and grain size frequency curves. The 1.1 Ma sedimentary successions experienced delta deposits interbedded with fluvial and aeolian deposits and lacustrines (1.1–0.6 Ma), alternating fluvial and aeolian facies with the occurrence of deltas and lacustrines (0.6–0.15 Ma), and aeolian facies interbedded with deltas and fluvial facies (0.15 Ma-present). Stepwise drying sedimentary conditions and enhanced desertification indicated by increasing rubidium/strontium ratios and proportion of aeolian sands, and decreasing total organic carbon since the past 1.1 Ma, implied intensified westerlies, likely resulted from ice volume expansion and ongoing global cooling according to geological record comparison and simulations during the Last Glacial Maximum compared to preindustrial conditions, which may have controlled the expansion of the permanent deserts in inland Asia. These persistent drying trends and intensified westerly circulation in arid regions during glacial periods after the mid-Pleistocene Transition indicated by larger amplitudes of aeolian sand proportion than prior to 0.6 Ma are similar to those in the interior monsoonal Asia, where the larger-amplitude of median grain size indicated enhanced Asian winter monsoon intensity and drier glacials. |
abstract_unstemmed |
To explore the relationship between the global cooling, westerlies, and central Asian aridity, we report ∼1.1 Ma local sedimentary environment changes according to physical-chemical parameters from an 800-m core (KT11) from the Kashgar region in the western Tarim Basin, China. Grain size end-member (EM) modelling is employed to quantify the processes of sediment transport and deposition. Four end members with modal values of 272 μm, 144 μm, 45.6 μm and 12.7 μm were extracted and explained 97.9% of the variance in the grain size data, corresponding aeolian dynamics, river energies, delta development and pedogenesis/long-term suspension components transported by wind or water, respectively. Four dominant sedimentation types, including lacustrine facies, delta facies, fluvial facies, and aeolian dunes, were identified through lithology and grain size frequency curves. The 1.1 Ma sedimentary successions experienced delta deposits interbedded with fluvial and aeolian deposits and lacustrines (1.1–0.6 Ma), alternating fluvial and aeolian facies with the occurrence of deltas and lacustrines (0.6–0.15 Ma), and aeolian facies interbedded with deltas and fluvial facies (0.15 Ma-present). Stepwise drying sedimentary conditions and enhanced desertification indicated by increasing rubidium/strontium ratios and proportion of aeolian sands, and decreasing total organic carbon since the past 1.1 Ma, implied intensified westerlies, likely resulted from ice volume expansion and ongoing global cooling according to geological record comparison and simulations during the Last Glacial Maximum compared to preindustrial conditions, which may have controlled the expansion of the permanent deserts in inland Asia. These persistent drying trends and intensified westerly circulation in arid regions during glacial periods after the mid-Pleistocene Transition indicated by larger amplitudes of aeolian sand proportion than prior to 0.6 Ma are similar to those in the interior monsoonal Asia, where the larger-amplitude of median grain size indicated enhanced Asian winter monsoon intensity and drier glacials. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Westerly aridity in the western Tarim Basin driven by global cooling since the mid-Pleistocene transition |
remote_bool |
true |
author2 |
Zhang, Rui Gu, Yansheng Dai, Gaowen Li, Lin Guan, Shuo Fu, Zhongbiao |
author2Str |
Zhang, Rui Gu, Yansheng Dai, Gaowen Li, Lin Guan, Shuo Fu, Zhongbiao |
ppnlink |
303614544 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.quascirev.2023.108412 |
up_date |
2024-07-07T01:10:12.393Z |
_version_ |
1803880615006699520 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV066052815</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231213093226.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231207s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.quascirev.2023.108412</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066052815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0277-3791(23)00460-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.15</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Hongye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Westerly aridity in the western Tarim Basin driven by global cooling since the mid-Pleistocene transition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To explore the relationship between the global cooling, westerlies, and central Asian aridity, we report ∼1.1 Ma local sedimentary environment changes according to physical-chemical parameters from an 800-m core (KT11) from the Kashgar region in the western Tarim Basin, China. Grain size end-member (EM) modelling is employed to quantify the processes of sediment transport and deposition. Four end members with modal values of 272 μm, 144 μm, 45.6 μm and 12.7 μm were extracted and explained 97.9% of the variance in the grain size data, corresponding aeolian dynamics, river energies, delta development and pedogenesis/long-term suspension components transported by wind or water, respectively. Four dominant sedimentation types, including lacustrine facies, delta facies, fluvial facies, and aeolian dunes, were identified through lithology and grain size frequency curves. The 1.1 Ma sedimentary successions experienced delta deposits interbedded with fluvial and aeolian deposits and lacustrines (1.1–0.6 Ma), alternating fluvial and aeolian facies with the occurrence of deltas and lacustrines (0.6–0.15 Ma), and aeolian facies interbedded with deltas and fluvial facies (0.15 Ma-present). Stepwise drying sedimentary conditions and enhanced desertification indicated by increasing rubidium/strontium ratios and proportion of aeolian sands, and decreasing total organic carbon since the past 1.1 Ma, implied intensified westerlies, likely resulted from ice volume expansion and ongoing global cooling according to geological record comparison and simulations during the Last Glacial Maximum compared to preindustrial conditions, which may have controlled the expansion of the permanent deserts in inland Asia. These persistent drying trends and intensified westerly circulation in arid regions during glacial periods after the mid-Pleistocene Transition indicated by larger amplitudes of aeolian sand proportion than prior to 0.6 Ma are similar to those in the interior monsoonal Asia, where the larger-amplitude of median grain size indicated enhanced Asian winter monsoon intensity and drier glacials.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sedimentary succession</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Westerlies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asian aridity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ice volume expansion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mid-pleistocene</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tarim Basin</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Rui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gu, Yansheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Gaowen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guan, Shuo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fu, Zhongbiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Quaternary science reviews</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1982</subfield><subfield code="g">322</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)303614544</subfield><subfield code="w">(DE-600)1495523-4</subfield><subfield code="w">(DE-576)259484040</subfield><subfield code="x">0277-3791</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.15</subfield><subfield code="j">Historische Geologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">322</subfield></datafield></record></collection>
|
score |
7.401634 |