Green hybrid energy harvesting for intelligent mobile edge computing in internet of things
Mobile device (MD) is usually energy constrained and the computation task will be interrupted when the battery power is run out. Intelligent mobile edge computing (MEC), as a promising technology in internet of things (IoT), can effectively save the computational energy of MD. Meanwhile, the hybrid...
Ausführliche Beschreibung
Autor*in: |
Ge, Pingzheng [verfasserIn] Zhao, Junhui [verfasserIn] Zhang, Huan [verfasserIn] Zou, Dan [verfasserIn] Wang, Minjun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Physical communication - Amsterdam [u.a.] : Elsevier, 2008, 61 |
---|---|
Übergeordnetes Werk: |
volume:61 |
DOI / URN: |
10.1016/j.phycom.2023.102171 |
---|
Katalog-ID: |
ELV066139902 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV066139902 | ||
003 | DE-627 | ||
005 | 20231214093013.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231214s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.phycom.2023.102171 |2 doi | |
035 | |a (DE-627)ELV066139902 | ||
035 | |a (ELSEVIER)S1874-4907(23)00174-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
100 | 1 | |a Ge, Pingzheng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Green hybrid energy harvesting for intelligent mobile edge computing in internet of things |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Mobile device (MD) is usually energy constrained and the computation task will be interrupted when the battery power is run out. Intelligent mobile edge computing (MEC), as a promising technology in internet of things (IoT), can effectively save the computational energy of MD. Meanwhile, the hybrid energy harvesting (HEH) technology can enable MD to harvest available energy from the surrounding environment, so as to achieve the goal of green computing. According to the above mentioned, we integrate HEH technology into MEC to solve the limited energy problem of MD in this paper. Besides, to maximize the system utility (SU), a SU model with three measurable indicators of the latency, remaining energy and task success rate is proposed. Then, we improve the deep deterministic policy gradients (DDPG) algorithm and propose twin delayed deep deterministic policy gradient (TDDDPG) algorithm to obtain the suboptimal solution of proposed model. Eventually, the simulation results show that the TDDDPG can obtain the optimal SU compared with local computing (LC) algorithm, edge server computing (ESC) algorithm, random offloading (RO) algorithm and deep deterministic policy gradient (DDPG) algorithm. | ||
650 | 4 | |a Green computing | |
650 | 4 | |a Hybrid energy harvesting | |
650 | 4 | |a Intelligent mobile edge computing | |
650 | 4 | |a IoT | |
700 | 1 | |a Zhao, Junhui |e verfasserin |0 (orcid)0000-0001-5958-6622 |4 aut | |
700 | 1 | |a Zhang, Huan |e verfasserin |4 aut | |
700 | 1 | |a Zou, Dan |e verfasserin |4 aut | |
700 | 1 | |a Wang, Minjun |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Physical communication |d Amsterdam [u.a.] : Elsevier, 2008 |g 61 |h Online-Ressource |w (DE-627)573751552 |w (DE-600)2441929-1 |w (DE-576)294350721 |x 1876-3219 |7 nnns |
773 | 1 | 8 | |g volume:61 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 61 |
author_variant |
p g pg j z jz h z hz d z dz m w mw |
---|---|
matchkey_str |
article:18763219:2023----::rehbieeghretnfrnelgnmblegcmu |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1016/j.phycom.2023.102171 doi (DE-627)ELV066139902 (ELSEVIER)S1874-4907(23)00174-X DE-627 ger DE-627 rda eng 530 620 VZ Ge, Pingzheng verfasserin aut Green hybrid energy harvesting for intelligent mobile edge computing in internet of things 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mobile device (MD) is usually energy constrained and the computation task will be interrupted when the battery power is run out. Intelligent mobile edge computing (MEC), as a promising technology in internet of things (IoT), can effectively save the computational energy of MD. Meanwhile, the hybrid energy harvesting (HEH) technology can enable MD to harvest available energy from the surrounding environment, so as to achieve the goal of green computing. According to the above mentioned, we integrate HEH technology into MEC to solve the limited energy problem of MD in this paper. Besides, to maximize the system utility (SU), a SU model with three measurable indicators of the latency, remaining energy and task success rate is proposed. Then, we improve the deep deterministic policy gradients (DDPG) algorithm and propose twin delayed deep deterministic policy gradient (TDDDPG) algorithm to obtain the suboptimal solution of proposed model. Eventually, the simulation results show that the TDDDPG can obtain the optimal SU compared with local computing (LC) algorithm, edge server computing (ESC) algorithm, random offloading (RO) algorithm and deep deterministic policy gradient (DDPG) algorithm. Green computing Hybrid energy harvesting Intelligent mobile edge computing IoT Zhao, Junhui verfasserin (orcid)0000-0001-5958-6622 aut Zhang, Huan verfasserin aut Zou, Dan verfasserin aut Wang, Minjun verfasserin aut Enthalten in Physical communication Amsterdam [u.a.] : Elsevier, 2008 61 Online-Ressource (DE-627)573751552 (DE-600)2441929-1 (DE-576)294350721 1876-3219 nnns volume:61 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 61 |
spelling |
10.1016/j.phycom.2023.102171 doi (DE-627)ELV066139902 (ELSEVIER)S1874-4907(23)00174-X DE-627 ger DE-627 rda eng 530 620 VZ Ge, Pingzheng verfasserin aut Green hybrid energy harvesting for intelligent mobile edge computing in internet of things 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mobile device (MD) is usually energy constrained and the computation task will be interrupted when the battery power is run out. Intelligent mobile edge computing (MEC), as a promising technology in internet of things (IoT), can effectively save the computational energy of MD. Meanwhile, the hybrid energy harvesting (HEH) technology can enable MD to harvest available energy from the surrounding environment, so as to achieve the goal of green computing. According to the above mentioned, we integrate HEH technology into MEC to solve the limited energy problem of MD in this paper. Besides, to maximize the system utility (SU), a SU model with three measurable indicators of the latency, remaining energy and task success rate is proposed. Then, we improve the deep deterministic policy gradients (DDPG) algorithm and propose twin delayed deep deterministic policy gradient (TDDDPG) algorithm to obtain the suboptimal solution of proposed model. Eventually, the simulation results show that the TDDDPG can obtain the optimal SU compared with local computing (LC) algorithm, edge server computing (ESC) algorithm, random offloading (RO) algorithm and deep deterministic policy gradient (DDPG) algorithm. Green computing Hybrid energy harvesting Intelligent mobile edge computing IoT Zhao, Junhui verfasserin (orcid)0000-0001-5958-6622 aut Zhang, Huan verfasserin aut Zou, Dan verfasserin aut Wang, Minjun verfasserin aut Enthalten in Physical communication Amsterdam [u.a.] : Elsevier, 2008 61 Online-Ressource (DE-627)573751552 (DE-600)2441929-1 (DE-576)294350721 1876-3219 nnns volume:61 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 61 |
allfields_unstemmed |
10.1016/j.phycom.2023.102171 doi (DE-627)ELV066139902 (ELSEVIER)S1874-4907(23)00174-X DE-627 ger DE-627 rda eng 530 620 VZ Ge, Pingzheng verfasserin aut Green hybrid energy harvesting for intelligent mobile edge computing in internet of things 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mobile device (MD) is usually energy constrained and the computation task will be interrupted when the battery power is run out. Intelligent mobile edge computing (MEC), as a promising technology in internet of things (IoT), can effectively save the computational energy of MD. Meanwhile, the hybrid energy harvesting (HEH) technology can enable MD to harvest available energy from the surrounding environment, so as to achieve the goal of green computing. According to the above mentioned, we integrate HEH technology into MEC to solve the limited energy problem of MD in this paper. Besides, to maximize the system utility (SU), a SU model with three measurable indicators of the latency, remaining energy and task success rate is proposed. Then, we improve the deep deterministic policy gradients (DDPG) algorithm and propose twin delayed deep deterministic policy gradient (TDDDPG) algorithm to obtain the suboptimal solution of proposed model. Eventually, the simulation results show that the TDDDPG can obtain the optimal SU compared with local computing (LC) algorithm, edge server computing (ESC) algorithm, random offloading (RO) algorithm and deep deterministic policy gradient (DDPG) algorithm. Green computing Hybrid energy harvesting Intelligent mobile edge computing IoT Zhao, Junhui verfasserin (orcid)0000-0001-5958-6622 aut Zhang, Huan verfasserin aut Zou, Dan verfasserin aut Wang, Minjun verfasserin aut Enthalten in Physical communication Amsterdam [u.a.] : Elsevier, 2008 61 Online-Ressource (DE-627)573751552 (DE-600)2441929-1 (DE-576)294350721 1876-3219 nnns volume:61 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 61 |
allfieldsGer |
10.1016/j.phycom.2023.102171 doi (DE-627)ELV066139902 (ELSEVIER)S1874-4907(23)00174-X DE-627 ger DE-627 rda eng 530 620 VZ Ge, Pingzheng verfasserin aut Green hybrid energy harvesting for intelligent mobile edge computing in internet of things 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mobile device (MD) is usually energy constrained and the computation task will be interrupted when the battery power is run out. Intelligent mobile edge computing (MEC), as a promising technology in internet of things (IoT), can effectively save the computational energy of MD. Meanwhile, the hybrid energy harvesting (HEH) technology can enable MD to harvest available energy from the surrounding environment, so as to achieve the goal of green computing. According to the above mentioned, we integrate HEH technology into MEC to solve the limited energy problem of MD in this paper. Besides, to maximize the system utility (SU), a SU model with three measurable indicators of the latency, remaining energy and task success rate is proposed. Then, we improve the deep deterministic policy gradients (DDPG) algorithm and propose twin delayed deep deterministic policy gradient (TDDDPG) algorithm to obtain the suboptimal solution of proposed model. Eventually, the simulation results show that the TDDDPG can obtain the optimal SU compared with local computing (LC) algorithm, edge server computing (ESC) algorithm, random offloading (RO) algorithm and deep deterministic policy gradient (DDPG) algorithm. Green computing Hybrid energy harvesting Intelligent mobile edge computing IoT Zhao, Junhui verfasserin (orcid)0000-0001-5958-6622 aut Zhang, Huan verfasserin aut Zou, Dan verfasserin aut Wang, Minjun verfasserin aut Enthalten in Physical communication Amsterdam [u.a.] : Elsevier, 2008 61 Online-Ressource (DE-627)573751552 (DE-600)2441929-1 (DE-576)294350721 1876-3219 nnns volume:61 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 61 |
allfieldsSound |
10.1016/j.phycom.2023.102171 doi (DE-627)ELV066139902 (ELSEVIER)S1874-4907(23)00174-X DE-627 ger DE-627 rda eng 530 620 VZ Ge, Pingzheng verfasserin aut Green hybrid energy harvesting for intelligent mobile edge computing in internet of things 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mobile device (MD) is usually energy constrained and the computation task will be interrupted when the battery power is run out. Intelligent mobile edge computing (MEC), as a promising technology in internet of things (IoT), can effectively save the computational energy of MD. Meanwhile, the hybrid energy harvesting (HEH) technology can enable MD to harvest available energy from the surrounding environment, so as to achieve the goal of green computing. According to the above mentioned, we integrate HEH technology into MEC to solve the limited energy problem of MD in this paper. Besides, to maximize the system utility (SU), a SU model with three measurable indicators of the latency, remaining energy and task success rate is proposed. Then, we improve the deep deterministic policy gradients (DDPG) algorithm and propose twin delayed deep deterministic policy gradient (TDDDPG) algorithm to obtain the suboptimal solution of proposed model. Eventually, the simulation results show that the TDDDPG can obtain the optimal SU compared with local computing (LC) algorithm, edge server computing (ESC) algorithm, random offloading (RO) algorithm and deep deterministic policy gradient (DDPG) algorithm. Green computing Hybrid energy harvesting Intelligent mobile edge computing IoT Zhao, Junhui verfasserin (orcid)0000-0001-5958-6622 aut Zhang, Huan verfasserin aut Zou, Dan verfasserin aut Wang, Minjun verfasserin aut Enthalten in Physical communication Amsterdam [u.a.] : Elsevier, 2008 61 Online-Ressource (DE-627)573751552 (DE-600)2441929-1 (DE-576)294350721 1876-3219 nnns volume:61 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 61 |
language |
English |
source |
Enthalten in Physical communication 61 volume:61 |
sourceStr |
Enthalten in Physical communication 61 volume:61 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Green computing Hybrid energy harvesting Intelligent mobile edge computing IoT |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Physical communication |
authorswithroles_txt_mv |
Ge, Pingzheng @@aut@@ Zhao, Junhui @@aut@@ Zhang, Huan @@aut@@ Zou, Dan @@aut@@ Wang, Minjun @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
573751552 |
dewey-sort |
3530 |
id |
ELV066139902 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066139902</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231214093013.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231214s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.phycom.2023.102171</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066139902</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1874-4907(23)00174-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ge, Pingzheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Green hybrid energy harvesting for intelligent mobile edge computing in internet of things</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mobile device (MD) is usually energy constrained and the computation task will be interrupted when the battery power is run out. Intelligent mobile edge computing (MEC), as a promising technology in internet of things (IoT), can effectively save the computational energy of MD. Meanwhile, the hybrid energy harvesting (HEH) technology can enable MD to harvest available energy from the surrounding environment, so as to achieve the goal of green computing. According to the above mentioned, we integrate HEH technology into MEC to solve the limited energy problem of MD in this paper. Besides, to maximize the system utility (SU), a SU model with three measurable indicators of the latency, remaining energy and task success rate is proposed. Then, we improve the deep deterministic policy gradients (DDPG) algorithm and propose twin delayed deep deterministic policy gradient (TDDDPG) algorithm to obtain the suboptimal solution of proposed model. Eventually, the simulation results show that the TDDDPG can obtain the optimal SU compared with local computing (LC) algorithm, edge server computing (ESC) algorithm, random offloading (RO) algorithm and deep deterministic policy gradient (DDPG) algorithm.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Green computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hybrid energy harvesting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligent mobile edge computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IoT</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Junhui</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5958-6622</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Huan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zou, Dan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Minjun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physical communication</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 2008</subfield><subfield code="g">61</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)573751552</subfield><subfield code="w">(DE-600)2441929-1</subfield><subfield code="w">(DE-576)294350721</subfield><subfield code="x">1876-3219</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield></datafield></record></collection>
|
author |
Ge, Pingzheng |
spellingShingle |
Ge, Pingzheng ddc 530 misc Green computing misc Hybrid energy harvesting misc Intelligent mobile edge computing misc IoT Green hybrid energy harvesting for intelligent mobile edge computing in internet of things |
authorStr |
Ge, Pingzheng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)573751552 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1876-3219 |
topic_title |
530 620 VZ Green hybrid energy harvesting for intelligent mobile edge computing in internet of things Green computing Hybrid energy harvesting Intelligent mobile edge computing IoT |
topic |
ddc 530 misc Green computing misc Hybrid energy harvesting misc Intelligent mobile edge computing misc IoT |
topic_unstemmed |
ddc 530 misc Green computing misc Hybrid energy harvesting misc Intelligent mobile edge computing misc IoT |
topic_browse |
ddc 530 misc Green computing misc Hybrid energy harvesting misc Intelligent mobile edge computing misc IoT |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Physical communication |
hierarchy_parent_id |
573751552 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Physical communication |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)573751552 (DE-600)2441929-1 (DE-576)294350721 |
title |
Green hybrid energy harvesting for intelligent mobile edge computing in internet of things |
ctrlnum |
(DE-627)ELV066139902 (ELSEVIER)S1874-4907(23)00174-X |
title_full |
Green hybrid energy harvesting for intelligent mobile edge computing in internet of things |
author_sort |
Ge, Pingzheng |
journal |
Physical communication |
journalStr |
Physical communication |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Ge, Pingzheng Zhao, Junhui Zhang, Huan Zou, Dan Wang, Minjun |
container_volume |
61 |
class |
530 620 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Ge, Pingzheng |
doi_str_mv |
10.1016/j.phycom.2023.102171 |
normlink |
(ORCID)0000-0001-5958-6622 |
normlink_prefix_str_mv |
(orcid)0000-0001-5958-6622 |
dewey-full |
530 620 |
author2-role |
verfasserin |
title_sort |
green hybrid energy harvesting for intelligent mobile edge computing in internet of things |
title_auth |
Green hybrid energy harvesting for intelligent mobile edge computing in internet of things |
abstract |
Mobile device (MD) is usually energy constrained and the computation task will be interrupted when the battery power is run out. Intelligent mobile edge computing (MEC), as a promising technology in internet of things (IoT), can effectively save the computational energy of MD. Meanwhile, the hybrid energy harvesting (HEH) technology can enable MD to harvest available energy from the surrounding environment, so as to achieve the goal of green computing. According to the above mentioned, we integrate HEH technology into MEC to solve the limited energy problem of MD in this paper. Besides, to maximize the system utility (SU), a SU model with three measurable indicators of the latency, remaining energy and task success rate is proposed. Then, we improve the deep deterministic policy gradients (DDPG) algorithm and propose twin delayed deep deterministic policy gradient (TDDDPG) algorithm to obtain the suboptimal solution of proposed model. Eventually, the simulation results show that the TDDDPG can obtain the optimal SU compared with local computing (LC) algorithm, edge server computing (ESC) algorithm, random offloading (RO) algorithm and deep deterministic policy gradient (DDPG) algorithm. |
abstractGer |
Mobile device (MD) is usually energy constrained and the computation task will be interrupted when the battery power is run out. Intelligent mobile edge computing (MEC), as a promising technology in internet of things (IoT), can effectively save the computational energy of MD. Meanwhile, the hybrid energy harvesting (HEH) technology can enable MD to harvest available energy from the surrounding environment, so as to achieve the goal of green computing. According to the above mentioned, we integrate HEH technology into MEC to solve the limited energy problem of MD in this paper. Besides, to maximize the system utility (SU), a SU model with three measurable indicators of the latency, remaining energy and task success rate is proposed. Then, we improve the deep deterministic policy gradients (DDPG) algorithm and propose twin delayed deep deterministic policy gradient (TDDDPG) algorithm to obtain the suboptimal solution of proposed model. Eventually, the simulation results show that the TDDDPG can obtain the optimal SU compared with local computing (LC) algorithm, edge server computing (ESC) algorithm, random offloading (RO) algorithm and deep deterministic policy gradient (DDPG) algorithm. |
abstract_unstemmed |
Mobile device (MD) is usually energy constrained and the computation task will be interrupted when the battery power is run out. Intelligent mobile edge computing (MEC), as a promising technology in internet of things (IoT), can effectively save the computational energy of MD. Meanwhile, the hybrid energy harvesting (HEH) technology can enable MD to harvest available energy from the surrounding environment, so as to achieve the goal of green computing. According to the above mentioned, we integrate HEH technology into MEC to solve the limited energy problem of MD in this paper. Besides, to maximize the system utility (SU), a SU model with three measurable indicators of the latency, remaining energy and task success rate is proposed. Then, we improve the deep deterministic policy gradients (DDPG) algorithm and propose twin delayed deep deterministic policy gradient (TDDDPG) algorithm to obtain the suboptimal solution of proposed model. Eventually, the simulation results show that the TDDDPG can obtain the optimal SU compared with local computing (LC) algorithm, edge server computing (ESC) algorithm, random offloading (RO) algorithm and deep deterministic policy gradient (DDPG) algorithm. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Green hybrid energy harvesting for intelligent mobile edge computing in internet of things |
remote_bool |
true |
author2 |
Zhao, Junhui Zhang, Huan Zou, Dan Wang, Minjun |
author2Str |
Zhao, Junhui Zhang, Huan Zou, Dan Wang, Minjun |
ppnlink |
573751552 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.phycom.2023.102171 |
up_date |
2024-07-06T16:43:11.162Z |
_version_ |
1803848716037128192 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066139902</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231214093013.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231214s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.phycom.2023.102171</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066139902</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1874-4907(23)00174-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ge, Pingzheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Green hybrid energy harvesting for intelligent mobile edge computing in internet of things</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mobile device (MD) is usually energy constrained and the computation task will be interrupted when the battery power is run out. Intelligent mobile edge computing (MEC), as a promising technology in internet of things (IoT), can effectively save the computational energy of MD. Meanwhile, the hybrid energy harvesting (HEH) technology can enable MD to harvest available energy from the surrounding environment, so as to achieve the goal of green computing. According to the above mentioned, we integrate HEH technology into MEC to solve the limited energy problem of MD in this paper. Besides, to maximize the system utility (SU), a SU model with three measurable indicators of the latency, remaining energy and task success rate is proposed. Then, we improve the deep deterministic policy gradients (DDPG) algorithm and propose twin delayed deep deterministic policy gradient (TDDDPG) algorithm to obtain the suboptimal solution of proposed model. Eventually, the simulation results show that the TDDDPG can obtain the optimal SU compared with local computing (LC) algorithm, edge server computing (ESC) algorithm, random offloading (RO) algorithm and deep deterministic policy gradient (DDPG) algorithm.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Green computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hybrid energy harvesting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligent mobile edge computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IoT</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Junhui</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5958-6622</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Huan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zou, Dan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Minjun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physical communication</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 2008</subfield><subfield code="g">61</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)573751552</subfield><subfield code="w">(DE-600)2441929-1</subfield><subfield code="w">(DE-576)294350721</subfield><subfield code="x">1876-3219</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield></datafield></record></collection>
|
score |
7.401189 |