Preliminary analysis of maximum hypothetical accident for a solid core space nuclear reactor power system
In order to study the safety characteristics of the solid core space nuclear reactor power (SNRP) system under the maximum hypothetical accident, a two-dimensional entire core transient heat transfer analysis model was established, and the key parameters response characteristics of the ultra-small l...
Ausführliche Beschreibung
Autor*in: |
Li, Ge [verfasserIn] Huaqi, Li [verfasserIn] Jianqiang, Shan [verfasserIn] Xinbiao, Jiang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Annals of nuclear energy - Amsterdam [u.a.] : Elsevier Science, 1975, 197 |
---|---|
Übergeordnetes Werk: |
volume:197 |
DOI / URN: |
10.1016/j.anucene.2023.110250 |
---|
Katalog-ID: |
ELV066166578 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV066166578 | ||
003 | DE-627 | ||
005 | 20231216093131.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231216s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.anucene.2023.110250 |2 doi | |
035 | |a (DE-627)ELV066166578 | ||
035 | |a (ELSEVIER)S0306-4549(23)00569-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 33.00 |2 bkl | ||
084 | |a 52.55 |2 bkl | ||
100 | 1 | |a Li, Ge |e verfasserin |0 (orcid)0000-0002-2070-8925 |4 aut | |
245 | 1 | 0 | |a Preliminary analysis of maximum hypothetical accident for a solid core space nuclear reactor power system |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In order to study the safety characteristics of the solid core space nuclear reactor power (SNRP) system under the maximum hypothetical accident, a two-dimensional entire core transient heat transfer analysis model was established, and the key parameters response characteristics of the ultra-small lithium-cooled SNRP under two maximum hypothetical accidents, namely, loss of heat sink (LOHS) and loss of coolant accident (LOCA), were calculated and analyzed. In the maximum hypothetical accidents, the coolant cooling capacity is lost, thus the core decay power is discharged into space only through the radiation of the residual heat removal system and the side surface of the reactor vessel. During the accidents, the heat transfer of the core deteriorated, and the fuel temperature may rise to the melting point, resulting in radioactive leakage. The results show that: (1) In the LOHS accident, the maximum fuel temperature reaches 2150 K at 550 s, and the pressure of the primary system volume accumulator continues to increase to the set system pressure safety limit of 2 MPa, resulting the primary loop overpressure failure. And the fuel matrix temperature is close to the set cladding limit temperature of 2200 K; (2) In the LOCA, the deterioration of heat transfer in the core makes the temperature increase rapidly, reaching a maximum of 3016 K at about 630 s, which is very close to the melting temperature of UN fuel 3123 K. As the decay power decreases, the maximum core temperature decreases to less than 1600 K after 24 h of the accident. The auxiliary cooling system of the solid core SNRP system under the maximum hypothetical accident is optimized, and the design parameters of the auxiliary cooling system meeting the safety requirements are obtained. | ||
650 | 4 | |a Solid-core space nuclear reactor | |
650 | 4 | |a Loss of coolant accident | |
650 | 4 | |a Loss of heat sink accident | |
650 | 4 | |a Core heat transfer | |
650 | 4 | |a Safety limit | |
700 | 1 | |a Huaqi, Li |e verfasserin |4 aut | |
700 | 1 | |a Jianqiang, Shan |e verfasserin |4 aut | |
700 | 1 | |a Xinbiao, Jiang |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Annals of nuclear energy |d Amsterdam [u.a.] : Elsevier Science, 1975 |g 197 |h Online-Ressource |w (DE-627)320406679 |w (DE-600)2000768-1 |w (DE-576)120883511 |x 0306-4549 |7 nnns |
773 | 1 | 8 | |g volume:197 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 33.00 |j Physik: Allgemeines |q VZ |
936 | b | k | |a 52.55 |j Kerntechnik |j Reaktortechnik |q VZ |
951 | |a AR | ||
952 | |d 197 |
author_variant |
g l gl l h lh s j sj j x jx |
---|---|
matchkey_str |
article:03064549:2023----::rlmnraayiomxmmyohtclcietoaoicrsae |
hierarchy_sort_str |
2023 |
bklnumber |
33.00 52.55 |
publishDate |
2023 |
allfields |
10.1016/j.anucene.2023.110250 doi (DE-627)ELV066166578 (ELSEVIER)S0306-4549(23)00569-8 DE-627 ger DE-627 rda eng 530 VZ 33.00 bkl 52.55 bkl Li, Ge verfasserin (orcid)0000-0002-2070-8925 aut Preliminary analysis of maximum hypothetical accident for a solid core space nuclear reactor power system 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to study the safety characteristics of the solid core space nuclear reactor power (SNRP) system under the maximum hypothetical accident, a two-dimensional entire core transient heat transfer analysis model was established, and the key parameters response characteristics of the ultra-small lithium-cooled SNRP under two maximum hypothetical accidents, namely, loss of heat sink (LOHS) and loss of coolant accident (LOCA), were calculated and analyzed. In the maximum hypothetical accidents, the coolant cooling capacity is lost, thus the core decay power is discharged into space only through the radiation of the residual heat removal system and the side surface of the reactor vessel. During the accidents, the heat transfer of the core deteriorated, and the fuel temperature may rise to the melting point, resulting in radioactive leakage. The results show that: (1) In the LOHS accident, the maximum fuel temperature reaches 2150 K at 550 s, and the pressure of the primary system volume accumulator continues to increase to the set system pressure safety limit of 2 MPa, resulting the primary loop overpressure failure. And the fuel matrix temperature is close to the set cladding limit temperature of 2200 K; (2) In the LOCA, the deterioration of heat transfer in the core makes the temperature increase rapidly, reaching a maximum of 3016 K at about 630 s, which is very close to the melting temperature of UN fuel 3123 K. As the decay power decreases, the maximum core temperature decreases to less than 1600 K after 24 h of the accident. The auxiliary cooling system of the solid core SNRP system under the maximum hypothetical accident is optimized, and the design parameters of the auxiliary cooling system meeting the safety requirements are obtained. Solid-core space nuclear reactor Loss of coolant accident Loss of heat sink accident Core heat transfer Safety limit Huaqi, Li verfasserin aut Jianqiang, Shan verfasserin aut Xinbiao, Jiang verfasserin aut Enthalten in Annals of nuclear energy Amsterdam [u.a.] : Elsevier Science, 1975 197 Online-Ressource (DE-627)320406679 (DE-600)2000768-1 (DE-576)120883511 0306-4549 nnns volume:197 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.00 Physik: Allgemeines VZ 52.55 Kerntechnik Reaktortechnik VZ AR 197 |
spelling |
10.1016/j.anucene.2023.110250 doi (DE-627)ELV066166578 (ELSEVIER)S0306-4549(23)00569-8 DE-627 ger DE-627 rda eng 530 VZ 33.00 bkl 52.55 bkl Li, Ge verfasserin (orcid)0000-0002-2070-8925 aut Preliminary analysis of maximum hypothetical accident for a solid core space nuclear reactor power system 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to study the safety characteristics of the solid core space nuclear reactor power (SNRP) system under the maximum hypothetical accident, a two-dimensional entire core transient heat transfer analysis model was established, and the key parameters response characteristics of the ultra-small lithium-cooled SNRP under two maximum hypothetical accidents, namely, loss of heat sink (LOHS) and loss of coolant accident (LOCA), were calculated and analyzed. In the maximum hypothetical accidents, the coolant cooling capacity is lost, thus the core decay power is discharged into space only through the radiation of the residual heat removal system and the side surface of the reactor vessel. During the accidents, the heat transfer of the core deteriorated, and the fuel temperature may rise to the melting point, resulting in radioactive leakage. The results show that: (1) In the LOHS accident, the maximum fuel temperature reaches 2150 K at 550 s, and the pressure of the primary system volume accumulator continues to increase to the set system pressure safety limit of 2 MPa, resulting the primary loop overpressure failure. And the fuel matrix temperature is close to the set cladding limit temperature of 2200 K; (2) In the LOCA, the deterioration of heat transfer in the core makes the temperature increase rapidly, reaching a maximum of 3016 K at about 630 s, which is very close to the melting temperature of UN fuel 3123 K. As the decay power decreases, the maximum core temperature decreases to less than 1600 K after 24 h of the accident. The auxiliary cooling system of the solid core SNRP system under the maximum hypothetical accident is optimized, and the design parameters of the auxiliary cooling system meeting the safety requirements are obtained. Solid-core space nuclear reactor Loss of coolant accident Loss of heat sink accident Core heat transfer Safety limit Huaqi, Li verfasserin aut Jianqiang, Shan verfasserin aut Xinbiao, Jiang verfasserin aut Enthalten in Annals of nuclear energy Amsterdam [u.a.] : Elsevier Science, 1975 197 Online-Ressource (DE-627)320406679 (DE-600)2000768-1 (DE-576)120883511 0306-4549 nnns volume:197 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.00 Physik: Allgemeines VZ 52.55 Kerntechnik Reaktortechnik VZ AR 197 |
allfields_unstemmed |
10.1016/j.anucene.2023.110250 doi (DE-627)ELV066166578 (ELSEVIER)S0306-4549(23)00569-8 DE-627 ger DE-627 rda eng 530 VZ 33.00 bkl 52.55 bkl Li, Ge verfasserin (orcid)0000-0002-2070-8925 aut Preliminary analysis of maximum hypothetical accident for a solid core space nuclear reactor power system 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to study the safety characteristics of the solid core space nuclear reactor power (SNRP) system under the maximum hypothetical accident, a two-dimensional entire core transient heat transfer analysis model was established, and the key parameters response characteristics of the ultra-small lithium-cooled SNRP under two maximum hypothetical accidents, namely, loss of heat sink (LOHS) and loss of coolant accident (LOCA), were calculated and analyzed. In the maximum hypothetical accidents, the coolant cooling capacity is lost, thus the core decay power is discharged into space only through the radiation of the residual heat removal system and the side surface of the reactor vessel. During the accidents, the heat transfer of the core deteriorated, and the fuel temperature may rise to the melting point, resulting in radioactive leakage. The results show that: (1) In the LOHS accident, the maximum fuel temperature reaches 2150 K at 550 s, and the pressure of the primary system volume accumulator continues to increase to the set system pressure safety limit of 2 MPa, resulting the primary loop overpressure failure. And the fuel matrix temperature is close to the set cladding limit temperature of 2200 K; (2) In the LOCA, the deterioration of heat transfer in the core makes the temperature increase rapidly, reaching a maximum of 3016 K at about 630 s, which is very close to the melting temperature of UN fuel 3123 K. As the decay power decreases, the maximum core temperature decreases to less than 1600 K after 24 h of the accident. The auxiliary cooling system of the solid core SNRP system under the maximum hypothetical accident is optimized, and the design parameters of the auxiliary cooling system meeting the safety requirements are obtained. Solid-core space nuclear reactor Loss of coolant accident Loss of heat sink accident Core heat transfer Safety limit Huaqi, Li verfasserin aut Jianqiang, Shan verfasserin aut Xinbiao, Jiang verfasserin aut Enthalten in Annals of nuclear energy Amsterdam [u.a.] : Elsevier Science, 1975 197 Online-Ressource (DE-627)320406679 (DE-600)2000768-1 (DE-576)120883511 0306-4549 nnns volume:197 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.00 Physik: Allgemeines VZ 52.55 Kerntechnik Reaktortechnik VZ AR 197 |
allfieldsGer |
10.1016/j.anucene.2023.110250 doi (DE-627)ELV066166578 (ELSEVIER)S0306-4549(23)00569-8 DE-627 ger DE-627 rda eng 530 VZ 33.00 bkl 52.55 bkl Li, Ge verfasserin (orcid)0000-0002-2070-8925 aut Preliminary analysis of maximum hypothetical accident for a solid core space nuclear reactor power system 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to study the safety characteristics of the solid core space nuclear reactor power (SNRP) system under the maximum hypothetical accident, a two-dimensional entire core transient heat transfer analysis model was established, and the key parameters response characteristics of the ultra-small lithium-cooled SNRP under two maximum hypothetical accidents, namely, loss of heat sink (LOHS) and loss of coolant accident (LOCA), were calculated and analyzed. In the maximum hypothetical accidents, the coolant cooling capacity is lost, thus the core decay power is discharged into space only through the radiation of the residual heat removal system and the side surface of the reactor vessel. During the accidents, the heat transfer of the core deteriorated, and the fuel temperature may rise to the melting point, resulting in radioactive leakage. The results show that: (1) In the LOHS accident, the maximum fuel temperature reaches 2150 K at 550 s, and the pressure of the primary system volume accumulator continues to increase to the set system pressure safety limit of 2 MPa, resulting the primary loop overpressure failure. And the fuel matrix temperature is close to the set cladding limit temperature of 2200 K; (2) In the LOCA, the deterioration of heat transfer in the core makes the temperature increase rapidly, reaching a maximum of 3016 K at about 630 s, which is very close to the melting temperature of UN fuel 3123 K. As the decay power decreases, the maximum core temperature decreases to less than 1600 K after 24 h of the accident. The auxiliary cooling system of the solid core SNRP system under the maximum hypothetical accident is optimized, and the design parameters of the auxiliary cooling system meeting the safety requirements are obtained. Solid-core space nuclear reactor Loss of coolant accident Loss of heat sink accident Core heat transfer Safety limit Huaqi, Li verfasserin aut Jianqiang, Shan verfasserin aut Xinbiao, Jiang verfasserin aut Enthalten in Annals of nuclear energy Amsterdam [u.a.] : Elsevier Science, 1975 197 Online-Ressource (DE-627)320406679 (DE-600)2000768-1 (DE-576)120883511 0306-4549 nnns volume:197 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.00 Physik: Allgemeines VZ 52.55 Kerntechnik Reaktortechnik VZ AR 197 |
allfieldsSound |
10.1016/j.anucene.2023.110250 doi (DE-627)ELV066166578 (ELSEVIER)S0306-4549(23)00569-8 DE-627 ger DE-627 rda eng 530 VZ 33.00 bkl 52.55 bkl Li, Ge verfasserin (orcid)0000-0002-2070-8925 aut Preliminary analysis of maximum hypothetical accident for a solid core space nuclear reactor power system 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to study the safety characteristics of the solid core space nuclear reactor power (SNRP) system under the maximum hypothetical accident, a two-dimensional entire core transient heat transfer analysis model was established, and the key parameters response characteristics of the ultra-small lithium-cooled SNRP under two maximum hypothetical accidents, namely, loss of heat sink (LOHS) and loss of coolant accident (LOCA), were calculated and analyzed. In the maximum hypothetical accidents, the coolant cooling capacity is lost, thus the core decay power is discharged into space only through the radiation of the residual heat removal system and the side surface of the reactor vessel. During the accidents, the heat transfer of the core deteriorated, and the fuel temperature may rise to the melting point, resulting in radioactive leakage. The results show that: (1) In the LOHS accident, the maximum fuel temperature reaches 2150 K at 550 s, and the pressure of the primary system volume accumulator continues to increase to the set system pressure safety limit of 2 MPa, resulting the primary loop overpressure failure. And the fuel matrix temperature is close to the set cladding limit temperature of 2200 K; (2) In the LOCA, the deterioration of heat transfer in the core makes the temperature increase rapidly, reaching a maximum of 3016 K at about 630 s, which is very close to the melting temperature of UN fuel 3123 K. As the decay power decreases, the maximum core temperature decreases to less than 1600 K after 24 h of the accident. The auxiliary cooling system of the solid core SNRP system under the maximum hypothetical accident is optimized, and the design parameters of the auxiliary cooling system meeting the safety requirements are obtained. Solid-core space nuclear reactor Loss of coolant accident Loss of heat sink accident Core heat transfer Safety limit Huaqi, Li verfasserin aut Jianqiang, Shan verfasserin aut Xinbiao, Jiang verfasserin aut Enthalten in Annals of nuclear energy Amsterdam [u.a.] : Elsevier Science, 1975 197 Online-Ressource (DE-627)320406679 (DE-600)2000768-1 (DE-576)120883511 0306-4549 nnns volume:197 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.00 Physik: Allgemeines VZ 52.55 Kerntechnik Reaktortechnik VZ AR 197 |
language |
English |
source |
Enthalten in Annals of nuclear energy 197 volume:197 |
sourceStr |
Enthalten in Annals of nuclear energy 197 volume:197 |
format_phy_str_mv |
Article |
bklname |
Physik: Allgemeines Kerntechnik Reaktortechnik |
institution |
findex.gbv.de |
topic_facet |
Solid-core space nuclear reactor Loss of coolant accident Loss of heat sink accident Core heat transfer Safety limit |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Annals of nuclear energy |
authorswithroles_txt_mv |
Li, Ge @@aut@@ Huaqi, Li @@aut@@ Jianqiang, Shan @@aut@@ Xinbiao, Jiang @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320406679 |
dewey-sort |
3530 |
id |
ELV066166578 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066166578</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231216093131.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231216s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.anucene.2023.110250</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066166578</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0306-4549(23)00569-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.55</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Ge</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2070-8925</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Preliminary analysis of maximum hypothetical accident for a solid core space nuclear reactor power system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In order to study the safety characteristics of the solid core space nuclear reactor power (SNRP) system under the maximum hypothetical accident, a two-dimensional entire core transient heat transfer analysis model was established, and the key parameters response characteristics of the ultra-small lithium-cooled SNRP under two maximum hypothetical accidents, namely, loss of heat sink (LOHS) and loss of coolant accident (LOCA), were calculated and analyzed. In the maximum hypothetical accidents, the coolant cooling capacity is lost, thus the core decay power is discharged into space only through the radiation of the residual heat removal system and the side surface of the reactor vessel. During the accidents, the heat transfer of the core deteriorated, and the fuel temperature may rise to the melting point, resulting in radioactive leakage. The results show that: (1) In the LOHS accident, the maximum fuel temperature reaches 2150 K at 550 s, and the pressure of the primary system volume accumulator continues to increase to the set system pressure safety limit of 2 MPa, resulting the primary loop overpressure failure. And the fuel matrix temperature is close to the set cladding limit temperature of 2200 K; (2) In the LOCA, the deterioration of heat transfer in the core makes the temperature increase rapidly, reaching a maximum of 3016 K at about 630 s, which is very close to the melting temperature of UN fuel 3123 K. As the decay power decreases, the maximum core temperature decreases to less than 1600 K after 24 h of the accident. The auxiliary cooling system of the solid core SNRP system under the maximum hypothetical accident is optimized, and the design parameters of the auxiliary cooling system meeting the safety requirements are obtained.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solid-core space nuclear reactor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Loss of coolant accident</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Loss of heat sink accident</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Core heat transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Safety limit</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huaqi, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jianqiang, Shan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xinbiao, Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of nuclear energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1975</subfield><subfield code="g">197</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320406679</subfield><subfield code="w">(DE-600)2000768-1</subfield><subfield code="w">(DE-576)120883511</subfield><subfield code="x">0306-4549</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:197</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="j">Physik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.55</subfield><subfield code="j">Kerntechnik</subfield><subfield code="j">Reaktortechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">197</subfield></datafield></record></collection>
|
author |
Li, Ge |
spellingShingle |
Li, Ge ddc 530 bkl 33.00 bkl 52.55 misc Solid-core space nuclear reactor misc Loss of coolant accident misc Loss of heat sink accident misc Core heat transfer misc Safety limit Preliminary analysis of maximum hypothetical accident for a solid core space nuclear reactor power system |
authorStr |
Li, Ge |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320406679 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0306-4549 |
topic_title |
530 VZ 33.00 bkl 52.55 bkl Preliminary analysis of maximum hypothetical accident for a solid core space nuclear reactor power system Solid-core space nuclear reactor Loss of coolant accident Loss of heat sink accident Core heat transfer Safety limit |
topic |
ddc 530 bkl 33.00 bkl 52.55 misc Solid-core space nuclear reactor misc Loss of coolant accident misc Loss of heat sink accident misc Core heat transfer misc Safety limit |
topic_unstemmed |
ddc 530 bkl 33.00 bkl 52.55 misc Solid-core space nuclear reactor misc Loss of coolant accident misc Loss of heat sink accident misc Core heat transfer misc Safety limit |
topic_browse |
ddc 530 bkl 33.00 bkl 52.55 misc Solid-core space nuclear reactor misc Loss of coolant accident misc Loss of heat sink accident misc Core heat transfer misc Safety limit |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Annals of nuclear energy |
hierarchy_parent_id |
320406679 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Annals of nuclear energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320406679 (DE-600)2000768-1 (DE-576)120883511 |
title |
Preliminary analysis of maximum hypothetical accident for a solid core space nuclear reactor power system |
ctrlnum |
(DE-627)ELV066166578 (ELSEVIER)S0306-4549(23)00569-8 |
title_full |
Preliminary analysis of maximum hypothetical accident for a solid core space nuclear reactor power system |
author_sort |
Li, Ge |
journal |
Annals of nuclear energy |
journalStr |
Annals of nuclear energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Li, Ge Huaqi, Li Jianqiang, Shan Xinbiao, Jiang |
container_volume |
197 |
class |
530 VZ 33.00 bkl 52.55 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Ge |
doi_str_mv |
10.1016/j.anucene.2023.110250 |
normlink |
(ORCID)0000-0002-2070-8925 |
normlink_prefix_str_mv |
(orcid)0000-0002-2070-8925 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
preliminary analysis of maximum hypothetical accident for a solid core space nuclear reactor power system |
title_auth |
Preliminary analysis of maximum hypothetical accident for a solid core space nuclear reactor power system |
abstract |
In order to study the safety characteristics of the solid core space nuclear reactor power (SNRP) system under the maximum hypothetical accident, a two-dimensional entire core transient heat transfer analysis model was established, and the key parameters response characteristics of the ultra-small lithium-cooled SNRP under two maximum hypothetical accidents, namely, loss of heat sink (LOHS) and loss of coolant accident (LOCA), were calculated and analyzed. In the maximum hypothetical accidents, the coolant cooling capacity is lost, thus the core decay power is discharged into space only through the radiation of the residual heat removal system and the side surface of the reactor vessel. During the accidents, the heat transfer of the core deteriorated, and the fuel temperature may rise to the melting point, resulting in radioactive leakage. The results show that: (1) In the LOHS accident, the maximum fuel temperature reaches 2150 K at 550 s, and the pressure of the primary system volume accumulator continues to increase to the set system pressure safety limit of 2 MPa, resulting the primary loop overpressure failure. And the fuel matrix temperature is close to the set cladding limit temperature of 2200 K; (2) In the LOCA, the deterioration of heat transfer in the core makes the temperature increase rapidly, reaching a maximum of 3016 K at about 630 s, which is very close to the melting temperature of UN fuel 3123 K. As the decay power decreases, the maximum core temperature decreases to less than 1600 K after 24 h of the accident. The auxiliary cooling system of the solid core SNRP system under the maximum hypothetical accident is optimized, and the design parameters of the auxiliary cooling system meeting the safety requirements are obtained. |
abstractGer |
In order to study the safety characteristics of the solid core space nuclear reactor power (SNRP) system under the maximum hypothetical accident, a two-dimensional entire core transient heat transfer analysis model was established, and the key parameters response characteristics of the ultra-small lithium-cooled SNRP under two maximum hypothetical accidents, namely, loss of heat sink (LOHS) and loss of coolant accident (LOCA), were calculated and analyzed. In the maximum hypothetical accidents, the coolant cooling capacity is lost, thus the core decay power is discharged into space only through the radiation of the residual heat removal system and the side surface of the reactor vessel. During the accidents, the heat transfer of the core deteriorated, and the fuel temperature may rise to the melting point, resulting in radioactive leakage. The results show that: (1) In the LOHS accident, the maximum fuel temperature reaches 2150 K at 550 s, and the pressure of the primary system volume accumulator continues to increase to the set system pressure safety limit of 2 MPa, resulting the primary loop overpressure failure. And the fuel matrix temperature is close to the set cladding limit temperature of 2200 K; (2) In the LOCA, the deterioration of heat transfer in the core makes the temperature increase rapidly, reaching a maximum of 3016 K at about 630 s, which is very close to the melting temperature of UN fuel 3123 K. As the decay power decreases, the maximum core temperature decreases to less than 1600 K after 24 h of the accident. The auxiliary cooling system of the solid core SNRP system under the maximum hypothetical accident is optimized, and the design parameters of the auxiliary cooling system meeting the safety requirements are obtained. |
abstract_unstemmed |
In order to study the safety characteristics of the solid core space nuclear reactor power (SNRP) system under the maximum hypothetical accident, a two-dimensional entire core transient heat transfer analysis model was established, and the key parameters response characteristics of the ultra-small lithium-cooled SNRP under two maximum hypothetical accidents, namely, loss of heat sink (LOHS) and loss of coolant accident (LOCA), were calculated and analyzed. In the maximum hypothetical accidents, the coolant cooling capacity is lost, thus the core decay power is discharged into space only through the radiation of the residual heat removal system and the side surface of the reactor vessel. During the accidents, the heat transfer of the core deteriorated, and the fuel temperature may rise to the melting point, resulting in radioactive leakage. The results show that: (1) In the LOHS accident, the maximum fuel temperature reaches 2150 K at 550 s, and the pressure of the primary system volume accumulator continues to increase to the set system pressure safety limit of 2 MPa, resulting the primary loop overpressure failure. And the fuel matrix temperature is close to the set cladding limit temperature of 2200 K; (2) In the LOCA, the deterioration of heat transfer in the core makes the temperature increase rapidly, reaching a maximum of 3016 K at about 630 s, which is very close to the melting temperature of UN fuel 3123 K. As the decay power decreases, the maximum core temperature decreases to less than 1600 K after 24 h of the accident. The auxiliary cooling system of the solid core SNRP system under the maximum hypothetical accident is optimized, and the design parameters of the auxiliary cooling system meeting the safety requirements are obtained. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Preliminary analysis of maximum hypothetical accident for a solid core space nuclear reactor power system |
remote_bool |
true |
author2 |
Huaqi, Li Jianqiang, Shan Xinbiao, Jiang |
author2Str |
Huaqi, Li Jianqiang, Shan Xinbiao, Jiang |
ppnlink |
320406679 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.anucene.2023.110250 |
up_date |
2024-07-06T16:48:38.699Z |
_version_ |
1803849059483516928 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066166578</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231216093131.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231216s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.anucene.2023.110250</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066166578</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0306-4549(23)00569-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.55</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Ge</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2070-8925</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Preliminary analysis of maximum hypothetical accident for a solid core space nuclear reactor power system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In order to study the safety characteristics of the solid core space nuclear reactor power (SNRP) system under the maximum hypothetical accident, a two-dimensional entire core transient heat transfer analysis model was established, and the key parameters response characteristics of the ultra-small lithium-cooled SNRP under two maximum hypothetical accidents, namely, loss of heat sink (LOHS) and loss of coolant accident (LOCA), were calculated and analyzed. In the maximum hypothetical accidents, the coolant cooling capacity is lost, thus the core decay power is discharged into space only through the radiation of the residual heat removal system and the side surface of the reactor vessel. During the accidents, the heat transfer of the core deteriorated, and the fuel temperature may rise to the melting point, resulting in radioactive leakage. The results show that: (1) In the LOHS accident, the maximum fuel temperature reaches 2150 K at 550 s, and the pressure of the primary system volume accumulator continues to increase to the set system pressure safety limit of 2 MPa, resulting the primary loop overpressure failure. And the fuel matrix temperature is close to the set cladding limit temperature of 2200 K; (2) In the LOCA, the deterioration of heat transfer in the core makes the temperature increase rapidly, reaching a maximum of 3016 K at about 630 s, which is very close to the melting temperature of UN fuel 3123 K. As the decay power decreases, the maximum core temperature decreases to less than 1600 K after 24 h of the accident. The auxiliary cooling system of the solid core SNRP system under the maximum hypothetical accident is optimized, and the design parameters of the auxiliary cooling system meeting the safety requirements are obtained.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solid-core space nuclear reactor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Loss of coolant accident</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Loss of heat sink accident</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Core heat transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Safety limit</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huaqi, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jianqiang, Shan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xinbiao, Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of nuclear energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1975</subfield><subfield code="g">197</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320406679</subfield><subfield code="w">(DE-600)2000768-1</subfield><subfield code="w">(DE-576)120883511</subfield><subfield code="x">0306-4549</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:197</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="j">Physik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.55</subfield><subfield code="j">Kerntechnik</subfield><subfield code="j">Reaktortechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">197</subfield></datafield></record></collection>
|
score |
7.401886 |