Investigating surface wear characteristics of single-crystal SiC based on metal electrochemical corrosion
Aiming at the environmental pollution of the polishing solution in chemical mechanical polishing, this study introduces a chemical mechanical polishing technique for single-crystal SiC based on metal electrochemical corrosion. The wear properties of the SiC C-surface, as influenced by different mate...
Ausführliche Beschreibung
Autor*in: |
Hu, Da [verfasserIn] Lu, Jiabin [verfasserIn] Yan, Qiusheng [verfasserIn] Luo, Yingrong [verfasserIn] Luo, Ziyuan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Materials science in semiconductor processing - Amsterdam [u.a.] : Elsevier Science, 1998, 171 |
---|---|
Übergeordnetes Werk: |
volume:171 |
DOI / URN: |
10.1016/j.mssp.2023.108004 |
---|
Katalog-ID: |
ELV066188946 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV066188946 | ||
003 | DE-627 | ||
005 | 20231220093005.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231220s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.mssp.2023.108004 |2 doi | |
035 | |a (DE-627)ELV066188946 | ||
035 | |a (ELSEVIER)S1369-8001(23)00697-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
084 | |a 53.56 |2 bkl | ||
100 | 1 | |a Hu, Da |e verfasserin |4 aut | |
245 | 1 | 0 | |a Investigating surface wear characteristics of single-crystal SiC based on metal electrochemical corrosion |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Aiming at the environmental pollution of the polishing solution in chemical mechanical polishing, this study introduces a chemical mechanical polishing technique for single-crystal SiC based on metal electrochemical corrosion. The wear properties of the SiC C-surface, as influenced by different materials on grinding balls (Cu, Fe, Al, and Al2O3), and different solutions (KCl, Na2SO4, Fenton, and H2O), were examined through wear experiments to elucidate the material removal mechanisms involved. The experiments demonstrated that the most significant wear marks, with a peak cross-sectional area of 46.89 μm2, were obtained when the C-face of SiC was ground with Al-paired grinding balls in an Na2SO4 electrolyte solution. Energy dispersive spectroscopy analysis of the wear debris revealed an O elemental content of 11 %, and X-ray photoelectron spectroscopy analysis indicated the existence of SiO2 and Al2O3 oxides. Subsequently, the effects of Na2SO4 solution concentration and pH on the wear pattern of the C-surface were investigated. The largest wear cross-sectional area (approximately 50 μm2) was observed when using an Na2SO4 electrolyte solution with a concentration of 1.25 mol/L at a pH of 9 in an alkaline solution. The proposed mechanism of material removal in single-crystal SiC via metal electrochemical corrosion involves the Al metal acting as a cathode. This causes galvanic coupling corrosion, generating a corrosion current, which subsequently induces oxidation of the SiO2 oxide layer on the anode SiC surface. The oxidized layer is then mechanically removed. | ||
650 | 4 | |a Single-crystal SiC | |
650 | 4 | |a Metal electrochemical corrosion | |
650 | 4 | |a Electrolyte solution | |
650 | 4 | |a Wear | |
700 | 1 | |a Lu, Jiabin |e verfasserin |4 aut | |
700 | 1 | |a Yan, Qiusheng |e verfasserin |4 aut | |
700 | 1 | |a Luo, Yingrong |e verfasserin |4 aut | |
700 | 1 | |a Luo, Ziyuan |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Materials science in semiconductor processing |d Amsterdam [u.a.] : Elsevier Science, 1998 |g 171 |h Online-Ressource |w (DE-627)324658672 |w (DE-600)2029689-7 |w (DE-576)09718876X |x 1873-4081 |7 nnns |
773 | 1 | 8 | |g volume:171 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 53.56 |j Halbleitertechnologie |q VZ |
951 | |a AR | ||
952 | |d 171 |
author_variant |
d h dh j l jl q y qy y l yl z l zl |
---|---|
matchkey_str |
article:18734081:2023----::netgtnsraeerhrceitcosnlcytlibsdnea |
hierarchy_sort_str |
2023 |
bklnumber |
53.56 |
publishDate |
2023 |
allfields |
10.1016/j.mssp.2023.108004 doi (DE-627)ELV066188946 (ELSEVIER)S1369-8001(23)00697-2 DE-627 ger DE-627 rda eng 530 620 VZ 53.56 bkl Hu, Da verfasserin aut Investigating surface wear characteristics of single-crystal SiC based on metal electrochemical corrosion 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aiming at the environmental pollution of the polishing solution in chemical mechanical polishing, this study introduces a chemical mechanical polishing technique for single-crystal SiC based on metal electrochemical corrosion. The wear properties of the SiC C-surface, as influenced by different materials on grinding balls (Cu, Fe, Al, and Al2O3), and different solutions (KCl, Na2SO4, Fenton, and H2O), were examined through wear experiments to elucidate the material removal mechanisms involved. The experiments demonstrated that the most significant wear marks, with a peak cross-sectional area of 46.89 μm2, were obtained when the C-face of SiC was ground with Al-paired grinding balls in an Na2SO4 electrolyte solution. Energy dispersive spectroscopy analysis of the wear debris revealed an O elemental content of 11 %, and X-ray photoelectron spectroscopy analysis indicated the existence of SiO2 and Al2O3 oxides. Subsequently, the effects of Na2SO4 solution concentration and pH on the wear pattern of the C-surface were investigated. The largest wear cross-sectional area (approximately 50 μm2) was observed when using an Na2SO4 electrolyte solution with a concentration of 1.25 mol/L at a pH of 9 in an alkaline solution. The proposed mechanism of material removal in single-crystal SiC via metal electrochemical corrosion involves the Al metal acting as a cathode. This causes galvanic coupling corrosion, generating a corrosion current, which subsequently induces oxidation of the SiO2 oxide layer on the anode SiC surface. The oxidized layer is then mechanically removed. Single-crystal SiC Metal electrochemical corrosion Electrolyte solution Wear Lu, Jiabin verfasserin aut Yan, Qiusheng verfasserin aut Luo, Yingrong verfasserin aut Luo, Ziyuan verfasserin aut Enthalten in Materials science in semiconductor processing Amsterdam [u.a.] : Elsevier Science, 1998 171 Online-Ressource (DE-627)324658672 (DE-600)2029689-7 (DE-576)09718876X 1873-4081 nnns volume:171 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.56 Halbleitertechnologie VZ AR 171 |
spelling |
10.1016/j.mssp.2023.108004 doi (DE-627)ELV066188946 (ELSEVIER)S1369-8001(23)00697-2 DE-627 ger DE-627 rda eng 530 620 VZ 53.56 bkl Hu, Da verfasserin aut Investigating surface wear characteristics of single-crystal SiC based on metal electrochemical corrosion 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aiming at the environmental pollution of the polishing solution in chemical mechanical polishing, this study introduces a chemical mechanical polishing technique for single-crystal SiC based on metal electrochemical corrosion. The wear properties of the SiC C-surface, as influenced by different materials on grinding balls (Cu, Fe, Al, and Al2O3), and different solutions (KCl, Na2SO4, Fenton, and H2O), were examined through wear experiments to elucidate the material removal mechanisms involved. The experiments demonstrated that the most significant wear marks, with a peak cross-sectional area of 46.89 μm2, were obtained when the C-face of SiC was ground with Al-paired grinding balls in an Na2SO4 electrolyte solution. Energy dispersive spectroscopy analysis of the wear debris revealed an O elemental content of 11 %, and X-ray photoelectron spectroscopy analysis indicated the existence of SiO2 and Al2O3 oxides. Subsequently, the effects of Na2SO4 solution concentration and pH on the wear pattern of the C-surface were investigated. The largest wear cross-sectional area (approximately 50 μm2) was observed when using an Na2SO4 electrolyte solution with a concentration of 1.25 mol/L at a pH of 9 in an alkaline solution. The proposed mechanism of material removal in single-crystal SiC via metal electrochemical corrosion involves the Al metal acting as a cathode. This causes galvanic coupling corrosion, generating a corrosion current, which subsequently induces oxidation of the SiO2 oxide layer on the anode SiC surface. The oxidized layer is then mechanically removed. Single-crystal SiC Metal electrochemical corrosion Electrolyte solution Wear Lu, Jiabin verfasserin aut Yan, Qiusheng verfasserin aut Luo, Yingrong verfasserin aut Luo, Ziyuan verfasserin aut Enthalten in Materials science in semiconductor processing Amsterdam [u.a.] : Elsevier Science, 1998 171 Online-Ressource (DE-627)324658672 (DE-600)2029689-7 (DE-576)09718876X 1873-4081 nnns volume:171 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.56 Halbleitertechnologie VZ AR 171 |
allfields_unstemmed |
10.1016/j.mssp.2023.108004 doi (DE-627)ELV066188946 (ELSEVIER)S1369-8001(23)00697-2 DE-627 ger DE-627 rda eng 530 620 VZ 53.56 bkl Hu, Da verfasserin aut Investigating surface wear characteristics of single-crystal SiC based on metal electrochemical corrosion 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aiming at the environmental pollution of the polishing solution in chemical mechanical polishing, this study introduces a chemical mechanical polishing technique for single-crystal SiC based on metal electrochemical corrosion. The wear properties of the SiC C-surface, as influenced by different materials on grinding balls (Cu, Fe, Al, and Al2O3), and different solutions (KCl, Na2SO4, Fenton, and H2O), were examined through wear experiments to elucidate the material removal mechanisms involved. The experiments demonstrated that the most significant wear marks, with a peak cross-sectional area of 46.89 μm2, were obtained when the C-face of SiC was ground with Al-paired grinding balls in an Na2SO4 electrolyte solution. Energy dispersive spectroscopy analysis of the wear debris revealed an O elemental content of 11 %, and X-ray photoelectron spectroscopy analysis indicated the existence of SiO2 and Al2O3 oxides. Subsequently, the effects of Na2SO4 solution concentration and pH on the wear pattern of the C-surface were investigated. The largest wear cross-sectional area (approximately 50 μm2) was observed when using an Na2SO4 electrolyte solution with a concentration of 1.25 mol/L at a pH of 9 in an alkaline solution. The proposed mechanism of material removal in single-crystal SiC via metal electrochemical corrosion involves the Al metal acting as a cathode. This causes galvanic coupling corrosion, generating a corrosion current, which subsequently induces oxidation of the SiO2 oxide layer on the anode SiC surface. The oxidized layer is then mechanically removed. Single-crystal SiC Metal electrochemical corrosion Electrolyte solution Wear Lu, Jiabin verfasserin aut Yan, Qiusheng verfasserin aut Luo, Yingrong verfasserin aut Luo, Ziyuan verfasserin aut Enthalten in Materials science in semiconductor processing Amsterdam [u.a.] : Elsevier Science, 1998 171 Online-Ressource (DE-627)324658672 (DE-600)2029689-7 (DE-576)09718876X 1873-4081 nnns volume:171 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.56 Halbleitertechnologie VZ AR 171 |
allfieldsGer |
10.1016/j.mssp.2023.108004 doi (DE-627)ELV066188946 (ELSEVIER)S1369-8001(23)00697-2 DE-627 ger DE-627 rda eng 530 620 VZ 53.56 bkl Hu, Da verfasserin aut Investigating surface wear characteristics of single-crystal SiC based on metal electrochemical corrosion 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aiming at the environmental pollution of the polishing solution in chemical mechanical polishing, this study introduces a chemical mechanical polishing technique for single-crystal SiC based on metal electrochemical corrosion. The wear properties of the SiC C-surface, as influenced by different materials on grinding balls (Cu, Fe, Al, and Al2O3), and different solutions (KCl, Na2SO4, Fenton, and H2O), were examined through wear experiments to elucidate the material removal mechanisms involved. The experiments demonstrated that the most significant wear marks, with a peak cross-sectional area of 46.89 μm2, were obtained when the C-face of SiC was ground with Al-paired grinding balls in an Na2SO4 electrolyte solution. Energy dispersive spectroscopy analysis of the wear debris revealed an O elemental content of 11 %, and X-ray photoelectron spectroscopy analysis indicated the existence of SiO2 and Al2O3 oxides. Subsequently, the effects of Na2SO4 solution concentration and pH on the wear pattern of the C-surface were investigated. The largest wear cross-sectional area (approximately 50 μm2) was observed when using an Na2SO4 electrolyte solution with a concentration of 1.25 mol/L at a pH of 9 in an alkaline solution. The proposed mechanism of material removal in single-crystal SiC via metal electrochemical corrosion involves the Al metal acting as a cathode. This causes galvanic coupling corrosion, generating a corrosion current, which subsequently induces oxidation of the SiO2 oxide layer on the anode SiC surface. The oxidized layer is then mechanically removed. Single-crystal SiC Metal electrochemical corrosion Electrolyte solution Wear Lu, Jiabin verfasserin aut Yan, Qiusheng verfasserin aut Luo, Yingrong verfasserin aut Luo, Ziyuan verfasserin aut Enthalten in Materials science in semiconductor processing Amsterdam [u.a.] : Elsevier Science, 1998 171 Online-Ressource (DE-627)324658672 (DE-600)2029689-7 (DE-576)09718876X 1873-4081 nnns volume:171 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.56 Halbleitertechnologie VZ AR 171 |
allfieldsSound |
10.1016/j.mssp.2023.108004 doi (DE-627)ELV066188946 (ELSEVIER)S1369-8001(23)00697-2 DE-627 ger DE-627 rda eng 530 620 VZ 53.56 bkl Hu, Da verfasserin aut Investigating surface wear characteristics of single-crystal SiC based on metal electrochemical corrosion 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aiming at the environmental pollution of the polishing solution in chemical mechanical polishing, this study introduces a chemical mechanical polishing technique for single-crystal SiC based on metal electrochemical corrosion. The wear properties of the SiC C-surface, as influenced by different materials on grinding balls (Cu, Fe, Al, and Al2O3), and different solutions (KCl, Na2SO4, Fenton, and H2O), were examined through wear experiments to elucidate the material removal mechanisms involved. The experiments demonstrated that the most significant wear marks, with a peak cross-sectional area of 46.89 μm2, were obtained when the C-face of SiC was ground with Al-paired grinding balls in an Na2SO4 electrolyte solution. Energy dispersive spectroscopy analysis of the wear debris revealed an O elemental content of 11 %, and X-ray photoelectron spectroscopy analysis indicated the existence of SiO2 and Al2O3 oxides. Subsequently, the effects of Na2SO4 solution concentration and pH on the wear pattern of the C-surface were investigated. The largest wear cross-sectional area (approximately 50 μm2) was observed when using an Na2SO4 electrolyte solution with a concentration of 1.25 mol/L at a pH of 9 in an alkaline solution. The proposed mechanism of material removal in single-crystal SiC via metal electrochemical corrosion involves the Al metal acting as a cathode. This causes galvanic coupling corrosion, generating a corrosion current, which subsequently induces oxidation of the SiO2 oxide layer on the anode SiC surface. The oxidized layer is then mechanically removed. Single-crystal SiC Metal electrochemical corrosion Electrolyte solution Wear Lu, Jiabin verfasserin aut Yan, Qiusheng verfasserin aut Luo, Yingrong verfasserin aut Luo, Ziyuan verfasserin aut Enthalten in Materials science in semiconductor processing Amsterdam [u.a.] : Elsevier Science, 1998 171 Online-Ressource (DE-627)324658672 (DE-600)2029689-7 (DE-576)09718876X 1873-4081 nnns volume:171 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.56 Halbleitertechnologie VZ AR 171 |
language |
English |
source |
Enthalten in Materials science in semiconductor processing 171 volume:171 |
sourceStr |
Enthalten in Materials science in semiconductor processing 171 volume:171 |
format_phy_str_mv |
Article |
bklname |
Halbleitertechnologie |
institution |
findex.gbv.de |
topic_facet |
Single-crystal SiC Metal electrochemical corrosion Electrolyte solution Wear |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Materials science in semiconductor processing |
authorswithroles_txt_mv |
Hu, Da @@aut@@ Lu, Jiabin @@aut@@ Yan, Qiusheng @@aut@@ Luo, Yingrong @@aut@@ Luo, Ziyuan @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
324658672 |
dewey-sort |
3530 |
id |
ELV066188946 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066188946</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231220093005.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231220s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.mssp.2023.108004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066188946</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1369-8001(23)00697-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hu, Da</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Investigating surface wear characteristics of single-crystal SiC based on metal electrochemical corrosion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Aiming at the environmental pollution of the polishing solution in chemical mechanical polishing, this study introduces a chemical mechanical polishing technique for single-crystal SiC based on metal electrochemical corrosion. The wear properties of the SiC C-surface, as influenced by different materials on grinding balls (Cu, Fe, Al, and Al2O3), and different solutions (KCl, Na2SO4, Fenton, and H2O), were examined through wear experiments to elucidate the material removal mechanisms involved. The experiments demonstrated that the most significant wear marks, with a peak cross-sectional area of 46.89 μm2, were obtained when the C-face of SiC was ground with Al-paired grinding balls in an Na2SO4 electrolyte solution. Energy dispersive spectroscopy analysis of the wear debris revealed an O elemental content of 11 %, and X-ray photoelectron spectroscopy analysis indicated the existence of SiO2 and Al2O3 oxides. Subsequently, the effects of Na2SO4 solution concentration and pH on the wear pattern of the C-surface were investigated. The largest wear cross-sectional area (approximately 50 μm2) was observed when using an Na2SO4 electrolyte solution with a concentration of 1.25 mol/L at a pH of 9 in an alkaline solution. The proposed mechanism of material removal in single-crystal SiC via metal electrochemical corrosion involves the Al metal acting as a cathode. This causes galvanic coupling corrosion, generating a corrosion current, which subsequently induces oxidation of the SiO2 oxide layer on the anode SiC surface. The oxidized layer is then mechanically removed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Single-crystal SiC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metal electrochemical corrosion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrolyte solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wear</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Jiabin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Qiusheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Yingrong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Ziyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Materials science in semiconductor processing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1998</subfield><subfield code="g">171</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)324658672</subfield><subfield code="w">(DE-600)2029689-7</subfield><subfield code="w">(DE-576)09718876X</subfield><subfield code="x">1873-4081</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.56</subfield><subfield code="j">Halbleitertechnologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">171</subfield></datafield></record></collection>
|
author |
Hu, Da |
spellingShingle |
Hu, Da ddc 530 bkl 53.56 misc Single-crystal SiC misc Metal electrochemical corrosion misc Electrolyte solution misc Wear Investigating surface wear characteristics of single-crystal SiC based on metal electrochemical corrosion |
authorStr |
Hu, Da |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)324658672 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-4081 |
topic_title |
530 620 VZ 53.56 bkl Investigating surface wear characteristics of single-crystal SiC based on metal electrochemical corrosion Single-crystal SiC Metal electrochemical corrosion Electrolyte solution Wear |
topic |
ddc 530 bkl 53.56 misc Single-crystal SiC misc Metal electrochemical corrosion misc Electrolyte solution misc Wear |
topic_unstemmed |
ddc 530 bkl 53.56 misc Single-crystal SiC misc Metal electrochemical corrosion misc Electrolyte solution misc Wear |
topic_browse |
ddc 530 bkl 53.56 misc Single-crystal SiC misc Metal electrochemical corrosion misc Electrolyte solution misc Wear |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Materials science in semiconductor processing |
hierarchy_parent_id |
324658672 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Materials science in semiconductor processing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)324658672 (DE-600)2029689-7 (DE-576)09718876X |
title |
Investigating surface wear characteristics of single-crystal SiC based on metal electrochemical corrosion |
ctrlnum |
(DE-627)ELV066188946 (ELSEVIER)S1369-8001(23)00697-2 |
title_full |
Investigating surface wear characteristics of single-crystal SiC based on metal electrochemical corrosion |
author_sort |
Hu, Da |
journal |
Materials science in semiconductor processing |
journalStr |
Materials science in semiconductor processing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Hu, Da Lu, Jiabin Yan, Qiusheng Luo, Yingrong Luo, Ziyuan |
container_volume |
171 |
class |
530 620 VZ 53.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Hu, Da |
doi_str_mv |
10.1016/j.mssp.2023.108004 |
dewey-full |
530 620 |
author2-role |
verfasserin |
title_sort |
investigating surface wear characteristics of single-crystal sic based on metal electrochemical corrosion |
title_auth |
Investigating surface wear characteristics of single-crystal SiC based on metal electrochemical corrosion |
abstract |
Aiming at the environmental pollution of the polishing solution in chemical mechanical polishing, this study introduces a chemical mechanical polishing technique for single-crystal SiC based on metal electrochemical corrosion. The wear properties of the SiC C-surface, as influenced by different materials on grinding balls (Cu, Fe, Al, and Al2O3), and different solutions (KCl, Na2SO4, Fenton, and H2O), were examined through wear experiments to elucidate the material removal mechanisms involved. The experiments demonstrated that the most significant wear marks, with a peak cross-sectional area of 46.89 μm2, were obtained when the C-face of SiC was ground with Al-paired grinding balls in an Na2SO4 electrolyte solution. Energy dispersive spectroscopy analysis of the wear debris revealed an O elemental content of 11 %, and X-ray photoelectron spectroscopy analysis indicated the existence of SiO2 and Al2O3 oxides. Subsequently, the effects of Na2SO4 solution concentration and pH on the wear pattern of the C-surface were investigated. The largest wear cross-sectional area (approximately 50 μm2) was observed when using an Na2SO4 electrolyte solution with a concentration of 1.25 mol/L at a pH of 9 in an alkaline solution. The proposed mechanism of material removal in single-crystal SiC via metal electrochemical corrosion involves the Al metal acting as a cathode. This causes galvanic coupling corrosion, generating a corrosion current, which subsequently induces oxidation of the SiO2 oxide layer on the anode SiC surface. The oxidized layer is then mechanically removed. |
abstractGer |
Aiming at the environmental pollution of the polishing solution in chemical mechanical polishing, this study introduces a chemical mechanical polishing technique for single-crystal SiC based on metal electrochemical corrosion. The wear properties of the SiC C-surface, as influenced by different materials on grinding balls (Cu, Fe, Al, and Al2O3), and different solutions (KCl, Na2SO4, Fenton, and H2O), were examined through wear experiments to elucidate the material removal mechanisms involved. The experiments demonstrated that the most significant wear marks, with a peak cross-sectional area of 46.89 μm2, were obtained when the C-face of SiC was ground with Al-paired grinding balls in an Na2SO4 electrolyte solution. Energy dispersive spectroscopy analysis of the wear debris revealed an O elemental content of 11 %, and X-ray photoelectron spectroscopy analysis indicated the existence of SiO2 and Al2O3 oxides. Subsequently, the effects of Na2SO4 solution concentration and pH on the wear pattern of the C-surface were investigated. The largest wear cross-sectional area (approximately 50 μm2) was observed when using an Na2SO4 electrolyte solution with a concentration of 1.25 mol/L at a pH of 9 in an alkaline solution. The proposed mechanism of material removal in single-crystal SiC via metal electrochemical corrosion involves the Al metal acting as a cathode. This causes galvanic coupling corrosion, generating a corrosion current, which subsequently induces oxidation of the SiO2 oxide layer on the anode SiC surface. The oxidized layer is then mechanically removed. |
abstract_unstemmed |
Aiming at the environmental pollution of the polishing solution in chemical mechanical polishing, this study introduces a chemical mechanical polishing technique for single-crystal SiC based on metal electrochemical corrosion. The wear properties of the SiC C-surface, as influenced by different materials on grinding balls (Cu, Fe, Al, and Al2O3), and different solutions (KCl, Na2SO4, Fenton, and H2O), were examined through wear experiments to elucidate the material removal mechanisms involved. The experiments demonstrated that the most significant wear marks, with a peak cross-sectional area of 46.89 μm2, were obtained when the C-face of SiC was ground with Al-paired grinding balls in an Na2SO4 electrolyte solution. Energy dispersive spectroscopy analysis of the wear debris revealed an O elemental content of 11 %, and X-ray photoelectron spectroscopy analysis indicated the existence of SiO2 and Al2O3 oxides. Subsequently, the effects of Na2SO4 solution concentration and pH on the wear pattern of the C-surface were investigated. The largest wear cross-sectional area (approximately 50 μm2) was observed when using an Na2SO4 electrolyte solution with a concentration of 1.25 mol/L at a pH of 9 in an alkaline solution. The proposed mechanism of material removal in single-crystal SiC via metal electrochemical corrosion involves the Al metal acting as a cathode. This causes galvanic coupling corrosion, generating a corrosion current, which subsequently induces oxidation of the SiO2 oxide layer on the anode SiC surface. The oxidized layer is then mechanically removed. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Investigating surface wear characteristics of single-crystal SiC based on metal electrochemical corrosion |
remote_bool |
true |
author2 |
Lu, Jiabin Yan, Qiusheng Luo, Yingrong Luo, Ziyuan |
author2Str |
Lu, Jiabin Yan, Qiusheng Luo, Yingrong Luo, Ziyuan |
ppnlink |
324658672 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.mssp.2023.108004 |
up_date |
2024-07-06T16:53:31.203Z |
_version_ |
1803849366196191232 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066188946</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231220093005.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231220s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.mssp.2023.108004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066188946</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1369-8001(23)00697-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hu, Da</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Investigating surface wear characteristics of single-crystal SiC based on metal electrochemical corrosion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Aiming at the environmental pollution of the polishing solution in chemical mechanical polishing, this study introduces a chemical mechanical polishing technique for single-crystal SiC based on metal electrochemical corrosion. The wear properties of the SiC C-surface, as influenced by different materials on grinding balls (Cu, Fe, Al, and Al2O3), and different solutions (KCl, Na2SO4, Fenton, and H2O), were examined through wear experiments to elucidate the material removal mechanisms involved. The experiments demonstrated that the most significant wear marks, with a peak cross-sectional area of 46.89 μm2, were obtained when the C-face of SiC was ground with Al-paired grinding balls in an Na2SO4 electrolyte solution. Energy dispersive spectroscopy analysis of the wear debris revealed an O elemental content of 11 %, and X-ray photoelectron spectroscopy analysis indicated the existence of SiO2 and Al2O3 oxides. Subsequently, the effects of Na2SO4 solution concentration and pH on the wear pattern of the C-surface were investigated. The largest wear cross-sectional area (approximately 50 μm2) was observed when using an Na2SO4 electrolyte solution with a concentration of 1.25 mol/L at a pH of 9 in an alkaline solution. The proposed mechanism of material removal in single-crystal SiC via metal electrochemical corrosion involves the Al metal acting as a cathode. This causes galvanic coupling corrosion, generating a corrosion current, which subsequently induces oxidation of the SiO2 oxide layer on the anode SiC surface. The oxidized layer is then mechanically removed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Single-crystal SiC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metal electrochemical corrosion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrolyte solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wear</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Jiabin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Qiusheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Yingrong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Ziyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Materials science in semiconductor processing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1998</subfield><subfield code="g">171</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)324658672</subfield><subfield code="w">(DE-600)2029689-7</subfield><subfield code="w">(DE-576)09718876X</subfield><subfield code="x">1873-4081</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.56</subfield><subfield code="j">Halbleitertechnologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">171</subfield></datafield></record></collection>
|
score |
7.400943 |