FRET-engineering of organic nanoparticles for photoacoustic imaging-guided photodynamic and augmented photothermal therapy
Phototherapy has gained a large amount of attention in tumor treatment due to its non-invasive feature. However, conventional photosensitizers suffer from the deficiency in low photon utilization efficiency, which leads to lower tumor treatment efficiency. In this contribution, a small molecular nea...
Ausführliche Beschreibung
Autor*in: |
Xu, Kang [verfasserIn] Guo, Mengchao [verfasserIn] Sun, Xu [verfasserIn] Xie, Xiaoji [verfasserIn] Cai, Yu [verfasserIn] Dong, Xiaochen [verfasserIn] Shao, Jinjun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Sensors and actuators |
---|---|
Übergeordnetes Werk: |
volume:401 |
DOI / URN: |
10.1016/j.snb.2023.135091 |
---|
Katalog-ID: |
ELV066194024 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV066194024 | ||
003 | DE-627 | ||
005 | 20231220093021.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231220s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.snb.2023.135091 |2 doi | |
035 | |a (DE-627)ELV066194024 | ||
035 | |a (ELSEVIER)S0925-4005(23)01809-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
084 | |a 50.22 |2 bkl | ||
084 | |a 35.07 |2 bkl | ||
100 | 1 | |a Xu, Kang |e verfasserin |4 aut | |
245 | 1 | 0 | |a FRET-engineering of organic nanoparticles for photoacoustic imaging-guided photodynamic and augmented photothermal therapy |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Phototherapy has gained a large amount of attention in tumor treatment due to its non-invasive feature. However, conventional photosensitizers suffer from the deficiency in low photon utilization efficiency, which leads to lower tumor treatment efficiency. In this contribution, a small molecular near-infrared dye BDF was synthesized to construct phototheranostic nanoparticles BDFPEG-Ce6 NPs for combinational photodynamic therapy (PDT) and enhanced photothermal therapy (PTT). Within BDF@PEG-Ce6 NPs, Ce6 and BDF played the roles of energy donor and energy acceptor, respectively, for the Förster resonance energy transfer (FRET) process. Upon 660 nm photoirradiation, photosensitizer Ce6 within BDF@PEG-Ce6 NPs not only demonstrated photodynamic activity but also served as an energy generator to release energy (donor) to be absorbed by BDF dye with FRET efficiency of 97.7%. Thus, BDF@PEG-Ce6 NPs showed an outstanding photothermal effect, enabling photoacoustic (PA) imaging of tumor sites to guide tumor treatment. It is believed that this work can provide a new idea for the rational design of photosensitizers for better tumor treatment in the future. | ||
650 | 4 | |a Phototherapy | |
650 | 4 | |a FRET | |
650 | 4 | |a Photothermal | |
650 | 4 | |a Photodynamic | |
650 | 4 | |a Photoacoustic imaging | |
700 | 1 | |a Guo, Mengchao |e verfasserin |4 aut | |
700 | 1 | |a Sun, Xu |e verfasserin |4 aut | |
700 | 1 | |a Xie, Xiaoji |e verfasserin |4 aut | |
700 | 1 | |a Cai, Yu |e verfasserin |4 aut | |
700 | 1 | |a Dong, Xiaochen |e verfasserin |4 aut | |
700 | 1 | |a Shao, Jinjun |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Sensors and actuators <Lausanne> / B |d Amsterdam [u.a.] : Elsevier Science, 1990 |g 401 |h Online-Ressource |w (DE-627)306710358 |w (DE-600)1500731-5 |w (DE-576)082435855 |x 0925-4005 |7 nnns |
773 | 1 | 8 | |g volume:401 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.22 |j Sensorik |q VZ |
936 | b | k | |a 35.07 |j Chemisches Labor |j chemische Methoden |q VZ |
951 | |a AR | ||
952 | |d 401 |
author_variant |
k x kx m g mg x s xs x x xx y c yc x d xd j s js |
---|---|
matchkey_str |
article:09254005:2023----::rtniernoogncaoatcefrhtaosiiaiguddhtdnmcn |
hierarchy_sort_str |
2023 |
bklnumber |
50.22 35.07 |
publishDate |
2023 |
allfields |
10.1016/j.snb.2023.135091 doi (DE-627)ELV066194024 (ELSEVIER)S0925-4005(23)01809-9 DE-627 ger DE-627 rda eng 530 620 VZ 50.22 bkl 35.07 bkl Xu, Kang verfasserin aut FRET-engineering of organic nanoparticles for photoacoustic imaging-guided photodynamic and augmented photothermal therapy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Phototherapy has gained a large amount of attention in tumor treatment due to its non-invasive feature. However, conventional photosensitizers suffer from the deficiency in low photon utilization efficiency, which leads to lower tumor treatment efficiency. In this contribution, a small molecular near-infrared dye BDF was synthesized to construct phototheranostic nanoparticles BDFPEG-Ce6 NPs for combinational photodynamic therapy (PDT) and enhanced photothermal therapy (PTT). Within BDF@PEG-Ce6 NPs, Ce6 and BDF played the roles of energy donor and energy acceptor, respectively, for the Förster resonance energy transfer (FRET) process. Upon 660 nm photoirradiation, photosensitizer Ce6 within BDF@PEG-Ce6 NPs not only demonstrated photodynamic activity but also served as an energy generator to release energy (donor) to be absorbed by BDF dye with FRET efficiency of 97.7%. Thus, BDF@PEG-Ce6 NPs showed an outstanding photothermal effect, enabling photoacoustic (PA) imaging of tumor sites to guide tumor treatment. It is believed that this work can provide a new idea for the rational design of photosensitizers for better tumor treatment in the future. Phototherapy FRET Photothermal Photodynamic Photoacoustic imaging Guo, Mengchao verfasserin aut Sun, Xu verfasserin aut Xie, Xiaoji verfasserin aut Cai, Yu verfasserin aut Dong, Xiaochen verfasserin aut Shao, Jinjun verfasserin aut Enthalten in Sensors and actuators <Lausanne> / B Amsterdam [u.a.] : Elsevier Science, 1990 401 Online-Ressource (DE-627)306710358 (DE-600)1500731-5 (DE-576)082435855 0925-4005 nnns volume:401 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.22 Sensorik VZ 35.07 Chemisches Labor chemische Methoden VZ AR 401 |
spelling |
10.1016/j.snb.2023.135091 doi (DE-627)ELV066194024 (ELSEVIER)S0925-4005(23)01809-9 DE-627 ger DE-627 rda eng 530 620 VZ 50.22 bkl 35.07 bkl Xu, Kang verfasserin aut FRET-engineering of organic nanoparticles for photoacoustic imaging-guided photodynamic and augmented photothermal therapy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Phototherapy has gained a large amount of attention in tumor treatment due to its non-invasive feature. However, conventional photosensitizers suffer from the deficiency in low photon utilization efficiency, which leads to lower tumor treatment efficiency. In this contribution, a small molecular near-infrared dye BDF was synthesized to construct phototheranostic nanoparticles BDFPEG-Ce6 NPs for combinational photodynamic therapy (PDT) and enhanced photothermal therapy (PTT). Within BDF@PEG-Ce6 NPs, Ce6 and BDF played the roles of energy donor and energy acceptor, respectively, for the Förster resonance energy transfer (FRET) process. Upon 660 nm photoirradiation, photosensitizer Ce6 within BDF@PEG-Ce6 NPs not only demonstrated photodynamic activity but also served as an energy generator to release energy (donor) to be absorbed by BDF dye with FRET efficiency of 97.7%. Thus, BDF@PEG-Ce6 NPs showed an outstanding photothermal effect, enabling photoacoustic (PA) imaging of tumor sites to guide tumor treatment. It is believed that this work can provide a new idea for the rational design of photosensitizers for better tumor treatment in the future. Phototherapy FRET Photothermal Photodynamic Photoacoustic imaging Guo, Mengchao verfasserin aut Sun, Xu verfasserin aut Xie, Xiaoji verfasserin aut Cai, Yu verfasserin aut Dong, Xiaochen verfasserin aut Shao, Jinjun verfasserin aut Enthalten in Sensors and actuators <Lausanne> / B Amsterdam [u.a.] : Elsevier Science, 1990 401 Online-Ressource (DE-627)306710358 (DE-600)1500731-5 (DE-576)082435855 0925-4005 nnns volume:401 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.22 Sensorik VZ 35.07 Chemisches Labor chemische Methoden VZ AR 401 |
allfields_unstemmed |
10.1016/j.snb.2023.135091 doi (DE-627)ELV066194024 (ELSEVIER)S0925-4005(23)01809-9 DE-627 ger DE-627 rda eng 530 620 VZ 50.22 bkl 35.07 bkl Xu, Kang verfasserin aut FRET-engineering of organic nanoparticles for photoacoustic imaging-guided photodynamic and augmented photothermal therapy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Phototherapy has gained a large amount of attention in tumor treatment due to its non-invasive feature. However, conventional photosensitizers suffer from the deficiency in low photon utilization efficiency, which leads to lower tumor treatment efficiency. In this contribution, a small molecular near-infrared dye BDF was synthesized to construct phototheranostic nanoparticles BDFPEG-Ce6 NPs for combinational photodynamic therapy (PDT) and enhanced photothermal therapy (PTT). Within BDF@PEG-Ce6 NPs, Ce6 and BDF played the roles of energy donor and energy acceptor, respectively, for the Förster resonance energy transfer (FRET) process. Upon 660 nm photoirradiation, photosensitizer Ce6 within BDF@PEG-Ce6 NPs not only demonstrated photodynamic activity but also served as an energy generator to release energy (donor) to be absorbed by BDF dye with FRET efficiency of 97.7%. Thus, BDF@PEG-Ce6 NPs showed an outstanding photothermal effect, enabling photoacoustic (PA) imaging of tumor sites to guide tumor treatment. It is believed that this work can provide a new idea for the rational design of photosensitizers for better tumor treatment in the future. Phototherapy FRET Photothermal Photodynamic Photoacoustic imaging Guo, Mengchao verfasserin aut Sun, Xu verfasserin aut Xie, Xiaoji verfasserin aut Cai, Yu verfasserin aut Dong, Xiaochen verfasserin aut Shao, Jinjun verfasserin aut Enthalten in Sensors and actuators <Lausanne> / B Amsterdam [u.a.] : Elsevier Science, 1990 401 Online-Ressource (DE-627)306710358 (DE-600)1500731-5 (DE-576)082435855 0925-4005 nnns volume:401 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.22 Sensorik VZ 35.07 Chemisches Labor chemische Methoden VZ AR 401 |
allfieldsGer |
10.1016/j.snb.2023.135091 doi (DE-627)ELV066194024 (ELSEVIER)S0925-4005(23)01809-9 DE-627 ger DE-627 rda eng 530 620 VZ 50.22 bkl 35.07 bkl Xu, Kang verfasserin aut FRET-engineering of organic nanoparticles for photoacoustic imaging-guided photodynamic and augmented photothermal therapy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Phototherapy has gained a large amount of attention in tumor treatment due to its non-invasive feature. However, conventional photosensitizers suffer from the deficiency in low photon utilization efficiency, which leads to lower tumor treatment efficiency. In this contribution, a small molecular near-infrared dye BDF was synthesized to construct phototheranostic nanoparticles BDFPEG-Ce6 NPs for combinational photodynamic therapy (PDT) and enhanced photothermal therapy (PTT). Within BDF@PEG-Ce6 NPs, Ce6 and BDF played the roles of energy donor and energy acceptor, respectively, for the Förster resonance energy transfer (FRET) process. Upon 660 nm photoirradiation, photosensitizer Ce6 within BDF@PEG-Ce6 NPs not only demonstrated photodynamic activity but also served as an energy generator to release energy (donor) to be absorbed by BDF dye with FRET efficiency of 97.7%. Thus, BDF@PEG-Ce6 NPs showed an outstanding photothermal effect, enabling photoacoustic (PA) imaging of tumor sites to guide tumor treatment. It is believed that this work can provide a new idea for the rational design of photosensitizers for better tumor treatment in the future. Phototherapy FRET Photothermal Photodynamic Photoacoustic imaging Guo, Mengchao verfasserin aut Sun, Xu verfasserin aut Xie, Xiaoji verfasserin aut Cai, Yu verfasserin aut Dong, Xiaochen verfasserin aut Shao, Jinjun verfasserin aut Enthalten in Sensors and actuators <Lausanne> / B Amsterdam [u.a.] : Elsevier Science, 1990 401 Online-Ressource (DE-627)306710358 (DE-600)1500731-5 (DE-576)082435855 0925-4005 nnns volume:401 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.22 Sensorik VZ 35.07 Chemisches Labor chemische Methoden VZ AR 401 |
allfieldsSound |
10.1016/j.snb.2023.135091 doi (DE-627)ELV066194024 (ELSEVIER)S0925-4005(23)01809-9 DE-627 ger DE-627 rda eng 530 620 VZ 50.22 bkl 35.07 bkl Xu, Kang verfasserin aut FRET-engineering of organic nanoparticles for photoacoustic imaging-guided photodynamic and augmented photothermal therapy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Phototherapy has gained a large amount of attention in tumor treatment due to its non-invasive feature. However, conventional photosensitizers suffer from the deficiency in low photon utilization efficiency, which leads to lower tumor treatment efficiency. In this contribution, a small molecular near-infrared dye BDF was synthesized to construct phototheranostic nanoparticles BDFPEG-Ce6 NPs for combinational photodynamic therapy (PDT) and enhanced photothermal therapy (PTT). Within BDF@PEG-Ce6 NPs, Ce6 and BDF played the roles of energy donor and energy acceptor, respectively, for the Förster resonance energy transfer (FRET) process. Upon 660 nm photoirradiation, photosensitizer Ce6 within BDF@PEG-Ce6 NPs not only demonstrated photodynamic activity but also served as an energy generator to release energy (donor) to be absorbed by BDF dye with FRET efficiency of 97.7%. Thus, BDF@PEG-Ce6 NPs showed an outstanding photothermal effect, enabling photoacoustic (PA) imaging of tumor sites to guide tumor treatment. It is believed that this work can provide a new idea for the rational design of photosensitizers for better tumor treatment in the future. Phototherapy FRET Photothermal Photodynamic Photoacoustic imaging Guo, Mengchao verfasserin aut Sun, Xu verfasserin aut Xie, Xiaoji verfasserin aut Cai, Yu verfasserin aut Dong, Xiaochen verfasserin aut Shao, Jinjun verfasserin aut Enthalten in Sensors and actuators <Lausanne> / B Amsterdam [u.a.] : Elsevier Science, 1990 401 Online-Ressource (DE-627)306710358 (DE-600)1500731-5 (DE-576)082435855 0925-4005 nnns volume:401 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.22 Sensorik VZ 35.07 Chemisches Labor chemische Methoden VZ AR 401 |
language |
English |
source |
Enthalten in Sensors and actuators <Lausanne> / B 401 volume:401 |
sourceStr |
Enthalten in Sensors and actuators <Lausanne> / B 401 volume:401 |
format_phy_str_mv |
Article |
bklname |
Sensorik Chemisches Labor chemische Methoden |
institution |
findex.gbv.de |
topic_facet |
Phototherapy FRET Photothermal Photodynamic Photoacoustic imaging |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Sensors and actuators <Lausanne> / B |
authorswithroles_txt_mv |
Xu, Kang @@aut@@ Guo, Mengchao @@aut@@ Sun, Xu @@aut@@ Xie, Xiaoji @@aut@@ Cai, Yu @@aut@@ Dong, Xiaochen @@aut@@ Shao, Jinjun @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
306710358 |
dewey-sort |
3530 |
id |
ELV066194024 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066194024</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231220093021.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231220s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.snb.2023.135091</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066194024</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-4005(23)01809-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.22</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.07</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xu, Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">FRET-engineering of organic nanoparticles for photoacoustic imaging-guided photodynamic and augmented photothermal therapy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Phototherapy has gained a large amount of attention in tumor treatment due to its non-invasive feature. However, conventional photosensitizers suffer from the deficiency in low photon utilization efficiency, which leads to lower tumor treatment efficiency. In this contribution, a small molecular near-infrared dye BDF was synthesized to construct phototheranostic nanoparticles BDFPEG-Ce6 NPs for combinational photodynamic therapy (PDT) and enhanced photothermal therapy (PTT). Within BDF@PEG-Ce6 NPs, Ce6 and BDF played the roles of energy donor and energy acceptor, respectively, for the Förster resonance energy transfer (FRET) process. Upon 660 nm photoirradiation, photosensitizer Ce6 within BDF@PEG-Ce6 NPs not only demonstrated photodynamic activity but also served as an energy generator to release energy (donor) to be absorbed by BDF dye with FRET efficiency of 97.7%. Thus, BDF@PEG-Ce6 NPs showed an outstanding photothermal effect, enabling photoacoustic (PA) imaging of tumor sites to guide tumor treatment. It is believed that this work can provide a new idea for the rational design of photosensitizers for better tumor treatment in the future.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phototherapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FRET</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photothermal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photodynamic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photoacoustic imaging</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Mengchao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Xiaoji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Xiaochen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shao, Jinjun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Sensors and actuators <Lausanne> / B</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1990</subfield><subfield code="g">401</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306710358</subfield><subfield code="w">(DE-600)1500731-5</subfield><subfield code="w">(DE-576)082435855</subfield><subfield code="x">0925-4005</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:401</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.22</subfield><subfield code="j">Sensorik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.07</subfield><subfield code="j">Chemisches Labor</subfield><subfield code="j">chemische Methoden</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">401</subfield></datafield></record></collection>
|
author |
Xu, Kang |
spellingShingle |
Xu, Kang ddc 530 bkl 50.22 bkl 35.07 misc Phototherapy misc FRET misc Photothermal misc Photodynamic misc Photoacoustic imaging FRET-engineering of organic nanoparticles for photoacoustic imaging-guided photodynamic and augmented photothermal therapy |
authorStr |
Xu, Kang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306710358 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0925-4005 |
topic_title |
530 620 VZ 50.22 bkl 35.07 bkl FRET-engineering of organic nanoparticles for photoacoustic imaging-guided photodynamic and augmented photothermal therapy Phototherapy FRET Photothermal Photodynamic Photoacoustic imaging |
topic |
ddc 530 bkl 50.22 bkl 35.07 misc Phototherapy misc FRET misc Photothermal misc Photodynamic misc Photoacoustic imaging |
topic_unstemmed |
ddc 530 bkl 50.22 bkl 35.07 misc Phototherapy misc FRET misc Photothermal misc Photodynamic misc Photoacoustic imaging |
topic_browse |
ddc 530 bkl 50.22 bkl 35.07 misc Phototherapy misc FRET misc Photothermal misc Photodynamic misc Photoacoustic imaging |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors and actuators <Lausanne> / B |
hierarchy_parent_id |
306710358 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Sensors and actuators <Lausanne> / B |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306710358 (DE-600)1500731-5 (DE-576)082435855 |
title |
FRET-engineering of organic nanoparticles for photoacoustic imaging-guided photodynamic and augmented photothermal therapy |
ctrlnum |
(DE-627)ELV066194024 (ELSEVIER)S0925-4005(23)01809-9 |
title_full |
FRET-engineering of organic nanoparticles for photoacoustic imaging-guided photodynamic and augmented photothermal therapy |
author_sort |
Xu, Kang |
journal |
Sensors and actuators <Lausanne> / B |
journalStr |
Sensors and actuators <Lausanne> / B |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Xu, Kang Guo, Mengchao Sun, Xu Xie, Xiaoji Cai, Yu Dong, Xiaochen Shao, Jinjun |
container_volume |
401 |
class |
530 620 VZ 50.22 bkl 35.07 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Xu, Kang |
doi_str_mv |
10.1016/j.snb.2023.135091 |
dewey-full |
530 620 |
author2-role |
verfasserin |
title_sort |
fret-engineering of organic nanoparticles for photoacoustic imaging-guided photodynamic and augmented photothermal therapy |
title_auth |
FRET-engineering of organic nanoparticles for photoacoustic imaging-guided photodynamic and augmented photothermal therapy |
abstract |
Phototherapy has gained a large amount of attention in tumor treatment due to its non-invasive feature. However, conventional photosensitizers suffer from the deficiency in low photon utilization efficiency, which leads to lower tumor treatment efficiency. In this contribution, a small molecular near-infrared dye BDF was synthesized to construct phototheranostic nanoparticles BDFPEG-Ce6 NPs for combinational photodynamic therapy (PDT) and enhanced photothermal therapy (PTT). Within BDF@PEG-Ce6 NPs, Ce6 and BDF played the roles of energy donor and energy acceptor, respectively, for the Förster resonance energy transfer (FRET) process. Upon 660 nm photoirradiation, photosensitizer Ce6 within BDF@PEG-Ce6 NPs not only demonstrated photodynamic activity but also served as an energy generator to release energy (donor) to be absorbed by BDF dye with FRET efficiency of 97.7%. Thus, BDF@PEG-Ce6 NPs showed an outstanding photothermal effect, enabling photoacoustic (PA) imaging of tumor sites to guide tumor treatment. It is believed that this work can provide a new idea for the rational design of photosensitizers for better tumor treatment in the future. |
abstractGer |
Phototherapy has gained a large amount of attention in tumor treatment due to its non-invasive feature. However, conventional photosensitizers suffer from the deficiency in low photon utilization efficiency, which leads to lower tumor treatment efficiency. In this contribution, a small molecular near-infrared dye BDF was synthesized to construct phototheranostic nanoparticles BDFPEG-Ce6 NPs for combinational photodynamic therapy (PDT) and enhanced photothermal therapy (PTT). Within BDF@PEG-Ce6 NPs, Ce6 and BDF played the roles of energy donor and energy acceptor, respectively, for the Förster resonance energy transfer (FRET) process. Upon 660 nm photoirradiation, photosensitizer Ce6 within BDF@PEG-Ce6 NPs not only demonstrated photodynamic activity but also served as an energy generator to release energy (donor) to be absorbed by BDF dye with FRET efficiency of 97.7%. Thus, BDF@PEG-Ce6 NPs showed an outstanding photothermal effect, enabling photoacoustic (PA) imaging of tumor sites to guide tumor treatment. It is believed that this work can provide a new idea for the rational design of photosensitizers for better tumor treatment in the future. |
abstract_unstemmed |
Phototherapy has gained a large amount of attention in tumor treatment due to its non-invasive feature. However, conventional photosensitizers suffer from the deficiency in low photon utilization efficiency, which leads to lower tumor treatment efficiency. In this contribution, a small molecular near-infrared dye BDF was synthesized to construct phototheranostic nanoparticles BDFPEG-Ce6 NPs for combinational photodynamic therapy (PDT) and enhanced photothermal therapy (PTT). Within BDF@PEG-Ce6 NPs, Ce6 and BDF played the roles of energy donor and energy acceptor, respectively, for the Förster resonance energy transfer (FRET) process. Upon 660 nm photoirradiation, photosensitizer Ce6 within BDF@PEG-Ce6 NPs not only demonstrated photodynamic activity but also served as an energy generator to release energy (donor) to be absorbed by BDF dye with FRET efficiency of 97.7%. Thus, BDF@PEG-Ce6 NPs showed an outstanding photothermal effect, enabling photoacoustic (PA) imaging of tumor sites to guide tumor treatment. It is believed that this work can provide a new idea for the rational design of photosensitizers for better tumor treatment in the future. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
FRET-engineering of organic nanoparticles for photoacoustic imaging-guided photodynamic and augmented photothermal therapy |
remote_bool |
true |
author2 |
Guo, Mengchao Sun, Xu Xie, Xiaoji Cai, Yu Dong, Xiaochen Shao, Jinjun |
author2Str |
Guo, Mengchao Sun, Xu Xie, Xiaoji Cai, Yu Dong, Xiaochen Shao, Jinjun |
ppnlink |
306710358 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.snb.2023.135091 |
up_date |
2024-07-06T16:54:37.744Z |
_version_ |
1803849435970535424 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066194024</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231220093021.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231220s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.snb.2023.135091</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066194024</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-4005(23)01809-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.22</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.07</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xu, Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">FRET-engineering of organic nanoparticles for photoacoustic imaging-guided photodynamic and augmented photothermal therapy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Phototherapy has gained a large amount of attention in tumor treatment due to its non-invasive feature. However, conventional photosensitizers suffer from the deficiency in low photon utilization efficiency, which leads to lower tumor treatment efficiency. In this contribution, a small molecular near-infrared dye BDF was synthesized to construct phototheranostic nanoparticles BDFPEG-Ce6 NPs for combinational photodynamic therapy (PDT) and enhanced photothermal therapy (PTT). Within BDF@PEG-Ce6 NPs, Ce6 and BDF played the roles of energy donor and energy acceptor, respectively, for the Förster resonance energy transfer (FRET) process. Upon 660 nm photoirradiation, photosensitizer Ce6 within BDF@PEG-Ce6 NPs not only demonstrated photodynamic activity but also served as an energy generator to release energy (donor) to be absorbed by BDF dye with FRET efficiency of 97.7%. Thus, BDF@PEG-Ce6 NPs showed an outstanding photothermal effect, enabling photoacoustic (PA) imaging of tumor sites to guide tumor treatment. It is believed that this work can provide a new idea for the rational design of photosensitizers for better tumor treatment in the future.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phototherapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FRET</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photothermal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photodynamic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photoacoustic imaging</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Mengchao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Xiaoji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Xiaochen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shao, Jinjun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Sensors and actuators <Lausanne> / B</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1990</subfield><subfield code="g">401</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306710358</subfield><subfield code="w">(DE-600)1500731-5</subfield><subfield code="w">(DE-576)082435855</subfield><subfield code="x">0925-4005</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:401</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.22</subfield><subfield code="j">Sensorik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.07</subfield><subfield code="j">Chemisches Labor</subfield><subfield code="j">chemische Methoden</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">401</subfield></datafield></record></collection>
|
score |
7.401602 |