Self-supported heterojunction nanofibrous membranes for high-performance flexible asymmetric capacitors
Rational design of an electrode material with high flexibility and electrochemical performance is the key to wearable energy storage devices. Herein, a facile and productive needleless electrospinning method was introduced to prepare self-supported and flexible nanofibrous electrode materials for as...
Ausführliche Beschreibung
Autor*in: |
Zhang, Xunlong [verfasserIn] Yan, Guilong [verfasserIn] Li, Zhenyu [verfasserIn] Chen, Jingyu [verfasserIn] Wang, Li [verfasserIn] Li, Han [verfasserIn] Wu, Yuanpeng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Applied surface science - Amsterdam : Elsevier, 1985, 648 |
---|---|
Übergeordnetes Werk: |
volume:648 |
DOI / URN: |
10.1016/j.apsusc.2023.159059 |
---|
Katalog-ID: |
ELV066232112 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV066232112 | ||
003 | DE-627 | ||
005 | 20231222093307.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231222s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.apsusc.2023.159059 |2 doi | |
035 | |a (DE-627)ELV066232112 | ||
035 | |a (ELSEVIER)S0169-4332(23)02739-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |a 530 |a 660 |q VZ |
084 | |a 33.68 |2 bkl | ||
084 | |a 35.18 |2 bkl | ||
084 | |a 52.78 |2 bkl | ||
100 | 1 | |a Zhang, Xunlong |e verfasserin |0 (orcid)0009-0002-4472-9365 |4 aut | |
245 | 1 | 0 | |a Self-supported heterojunction nanofibrous membranes for high-performance flexible asymmetric capacitors |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Rational design of an electrode material with high flexibility and electrochemical performance is the key to wearable energy storage devices. Herein, a facile and productive needleless electrospinning method was introduced to prepare self-supported and flexible nanofibrous electrode materials for asymmetric capacitor. The MnO2 nanoclusters and ZIF67-derived Co3O4 nano-sheets were sequentially deposited on the surface of N, B-doped carbon nanofibers (hetero-junction MnO2/Co3O4/NB-PCNF). Attributing to the constructed multi-pathway for redox reactions on electrode, the specific capacitance of NB-PCNF and MnO2/Co3O4/NB-PCNF can reach up to 204.2F/g and 141.43F/g at a small current density of 0.1 A/g, respectively. In long-term cycling tests, the electrode materials exhibited excellent cycling stability and good rate capability. The electrodes were assembled with Potassium-ion hydrogel electrolyte to form a flexible asymmetric solid-state supercapacitor (FASS-SC). FASS-SC can reach a voltage window of 1.6 V. It provided 28.2 W h/kg at an energy density of 600 W/kg and a specific capacitance retention of 94.18 % after 10,000 cycles. The FASS-SC offers new research ideas for future flexible devices and wearable technologies. | ||
650 | 4 | |a Carbon nanofibers | |
650 | 4 | |a Hetero-junction | |
650 | 4 | |a Asymmetric supercapacitor | |
650 | 4 | |a Flexible | |
650 | 4 | |a Energy storage | |
700 | 1 | |a Yan, Guilong |e verfasserin |0 (orcid)0000-0003-1128-3467 |4 aut | |
700 | 1 | |a Li, Zhenyu |e verfasserin |4 aut | |
700 | 1 | |a Chen, Jingyu |e verfasserin |0 (orcid)0000-0002-1275-0656 |4 aut | |
700 | 1 | |a Wang, Li |e verfasserin |4 aut | |
700 | 1 | |a Li, Han |e verfasserin |4 aut | |
700 | 1 | |a Wu, Yuanpeng |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied surface science |d Amsterdam : Elsevier, 1985 |g 648 |h Online-Ressource |w (DE-627)312151128 |w (DE-600)2002520-8 |w (DE-576)094476985 |7 nnns |
773 | 1 | 8 | |g volume:648 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 33.68 |j Oberflächen |j Dünne Schichten |j Grenzflächen |x Physik |q VZ |
936 | b | k | |a 35.18 |j Kolloidchemie |j Grenzflächenchemie |q VZ |
936 | b | k | |a 52.78 |j Oberflächentechnik |j Wärmebehandlung |q VZ |
951 | |a AR | ||
952 | |d 648 |
author_variant |
x z xz g y gy z l zl j c jc l w lw h l hl y w yw |
---|---|
matchkey_str |
zhangxunlongyanguilonglizhenyuchenjingyu:2023----:efuprehtrjntonnfbosebaefrihefracfe |
hierarchy_sort_str |
2023 |
bklnumber |
33.68 35.18 52.78 |
publishDate |
2023 |
allfields |
10.1016/j.apsusc.2023.159059 doi (DE-627)ELV066232112 (ELSEVIER)S0169-4332(23)02739-3 DE-627 ger DE-627 rda eng 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Zhang, Xunlong verfasserin (orcid)0009-0002-4472-9365 aut Self-supported heterojunction nanofibrous membranes for high-performance flexible asymmetric capacitors 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rational design of an electrode material with high flexibility and electrochemical performance is the key to wearable energy storage devices. Herein, a facile and productive needleless electrospinning method was introduced to prepare self-supported and flexible nanofibrous electrode materials for asymmetric capacitor. The MnO2 nanoclusters and ZIF67-derived Co3O4 nano-sheets were sequentially deposited on the surface of N, B-doped carbon nanofibers (hetero-junction MnO2/Co3O4/NB-PCNF). Attributing to the constructed multi-pathway for redox reactions on electrode, the specific capacitance of NB-PCNF and MnO2/Co3O4/NB-PCNF can reach up to 204.2F/g and 141.43F/g at a small current density of 0.1 A/g, respectively. In long-term cycling tests, the electrode materials exhibited excellent cycling stability and good rate capability. The electrodes were assembled with Potassium-ion hydrogel electrolyte to form a flexible asymmetric solid-state supercapacitor (FASS-SC). FASS-SC can reach a voltage window of 1.6 V. It provided 28.2 W h/kg at an energy density of 600 W/kg and a specific capacitance retention of 94.18 % after 10,000 cycles. The FASS-SC offers new research ideas for future flexible devices and wearable technologies. Carbon nanofibers Hetero-junction Asymmetric supercapacitor Flexible Energy storage Yan, Guilong verfasserin (orcid)0000-0003-1128-3467 aut Li, Zhenyu verfasserin aut Chen, Jingyu verfasserin (orcid)0000-0002-1275-0656 aut Wang, Li verfasserin aut Li, Han verfasserin aut Wu, Yuanpeng verfasserin aut Enthalten in Applied surface science Amsterdam : Elsevier, 1985 648 Online-Ressource (DE-627)312151128 (DE-600)2002520-8 (DE-576)094476985 nnns volume:648 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 648 |
spelling |
10.1016/j.apsusc.2023.159059 doi (DE-627)ELV066232112 (ELSEVIER)S0169-4332(23)02739-3 DE-627 ger DE-627 rda eng 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Zhang, Xunlong verfasserin (orcid)0009-0002-4472-9365 aut Self-supported heterojunction nanofibrous membranes for high-performance flexible asymmetric capacitors 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rational design of an electrode material with high flexibility and electrochemical performance is the key to wearable energy storage devices. Herein, a facile and productive needleless electrospinning method was introduced to prepare self-supported and flexible nanofibrous electrode materials for asymmetric capacitor. The MnO2 nanoclusters and ZIF67-derived Co3O4 nano-sheets were sequentially deposited on the surface of N, B-doped carbon nanofibers (hetero-junction MnO2/Co3O4/NB-PCNF). Attributing to the constructed multi-pathway for redox reactions on electrode, the specific capacitance of NB-PCNF and MnO2/Co3O4/NB-PCNF can reach up to 204.2F/g and 141.43F/g at a small current density of 0.1 A/g, respectively. In long-term cycling tests, the electrode materials exhibited excellent cycling stability and good rate capability. The electrodes were assembled with Potassium-ion hydrogel electrolyte to form a flexible asymmetric solid-state supercapacitor (FASS-SC). FASS-SC can reach a voltage window of 1.6 V. It provided 28.2 W h/kg at an energy density of 600 W/kg and a specific capacitance retention of 94.18 % after 10,000 cycles. The FASS-SC offers new research ideas for future flexible devices and wearable technologies. Carbon nanofibers Hetero-junction Asymmetric supercapacitor Flexible Energy storage Yan, Guilong verfasserin (orcid)0000-0003-1128-3467 aut Li, Zhenyu verfasserin aut Chen, Jingyu verfasserin (orcid)0000-0002-1275-0656 aut Wang, Li verfasserin aut Li, Han verfasserin aut Wu, Yuanpeng verfasserin aut Enthalten in Applied surface science Amsterdam : Elsevier, 1985 648 Online-Ressource (DE-627)312151128 (DE-600)2002520-8 (DE-576)094476985 nnns volume:648 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 648 |
allfields_unstemmed |
10.1016/j.apsusc.2023.159059 doi (DE-627)ELV066232112 (ELSEVIER)S0169-4332(23)02739-3 DE-627 ger DE-627 rda eng 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Zhang, Xunlong verfasserin (orcid)0009-0002-4472-9365 aut Self-supported heterojunction nanofibrous membranes for high-performance flexible asymmetric capacitors 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rational design of an electrode material with high flexibility and electrochemical performance is the key to wearable energy storage devices. Herein, a facile and productive needleless electrospinning method was introduced to prepare self-supported and flexible nanofibrous electrode materials for asymmetric capacitor. The MnO2 nanoclusters and ZIF67-derived Co3O4 nano-sheets were sequentially deposited on the surface of N, B-doped carbon nanofibers (hetero-junction MnO2/Co3O4/NB-PCNF). Attributing to the constructed multi-pathway for redox reactions on electrode, the specific capacitance of NB-PCNF and MnO2/Co3O4/NB-PCNF can reach up to 204.2F/g and 141.43F/g at a small current density of 0.1 A/g, respectively. In long-term cycling tests, the electrode materials exhibited excellent cycling stability and good rate capability. The electrodes were assembled with Potassium-ion hydrogel electrolyte to form a flexible asymmetric solid-state supercapacitor (FASS-SC). FASS-SC can reach a voltage window of 1.6 V. It provided 28.2 W h/kg at an energy density of 600 W/kg and a specific capacitance retention of 94.18 % after 10,000 cycles. The FASS-SC offers new research ideas for future flexible devices and wearable technologies. Carbon nanofibers Hetero-junction Asymmetric supercapacitor Flexible Energy storage Yan, Guilong verfasserin (orcid)0000-0003-1128-3467 aut Li, Zhenyu verfasserin aut Chen, Jingyu verfasserin (orcid)0000-0002-1275-0656 aut Wang, Li verfasserin aut Li, Han verfasserin aut Wu, Yuanpeng verfasserin aut Enthalten in Applied surface science Amsterdam : Elsevier, 1985 648 Online-Ressource (DE-627)312151128 (DE-600)2002520-8 (DE-576)094476985 nnns volume:648 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 648 |
allfieldsGer |
10.1016/j.apsusc.2023.159059 doi (DE-627)ELV066232112 (ELSEVIER)S0169-4332(23)02739-3 DE-627 ger DE-627 rda eng 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Zhang, Xunlong verfasserin (orcid)0009-0002-4472-9365 aut Self-supported heterojunction nanofibrous membranes for high-performance flexible asymmetric capacitors 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rational design of an electrode material with high flexibility and electrochemical performance is the key to wearable energy storage devices. Herein, a facile and productive needleless electrospinning method was introduced to prepare self-supported and flexible nanofibrous electrode materials for asymmetric capacitor. The MnO2 nanoclusters and ZIF67-derived Co3O4 nano-sheets were sequentially deposited on the surface of N, B-doped carbon nanofibers (hetero-junction MnO2/Co3O4/NB-PCNF). Attributing to the constructed multi-pathway for redox reactions on electrode, the specific capacitance of NB-PCNF and MnO2/Co3O4/NB-PCNF can reach up to 204.2F/g and 141.43F/g at a small current density of 0.1 A/g, respectively. In long-term cycling tests, the electrode materials exhibited excellent cycling stability and good rate capability. The electrodes were assembled with Potassium-ion hydrogel electrolyte to form a flexible asymmetric solid-state supercapacitor (FASS-SC). FASS-SC can reach a voltage window of 1.6 V. It provided 28.2 W h/kg at an energy density of 600 W/kg and a specific capacitance retention of 94.18 % after 10,000 cycles. The FASS-SC offers new research ideas for future flexible devices and wearable technologies. Carbon nanofibers Hetero-junction Asymmetric supercapacitor Flexible Energy storage Yan, Guilong verfasserin (orcid)0000-0003-1128-3467 aut Li, Zhenyu verfasserin aut Chen, Jingyu verfasserin (orcid)0000-0002-1275-0656 aut Wang, Li verfasserin aut Li, Han verfasserin aut Wu, Yuanpeng verfasserin aut Enthalten in Applied surface science Amsterdam : Elsevier, 1985 648 Online-Ressource (DE-627)312151128 (DE-600)2002520-8 (DE-576)094476985 nnns volume:648 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 648 |
allfieldsSound |
10.1016/j.apsusc.2023.159059 doi (DE-627)ELV066232112 (ELSEVIER)S0169-4332(23)02739-3 DE-627 ger DE-627 rda eng 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Zhang, Xunlong verfasserin (orcid)0009-0002-4472-9365 aut Self-supported heterojunction nanofibrous membranes for high-performance flexible asymmetric capacitors 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rational design of an electrode material with high flexibility and electrochemical performance is the key to wearable energy storage devices. Herein, a facile and productive needleless electrospinning method was introduced to prepare self-supported and flexible nanofibrous electrode materials for asymmetric capacitor. The MnO2 nanoclusters and ZIF67-derived Co3O4 nano-sheets were sequentially deposited on the surface of N, B-doped carbon nanofibers (hetero-junction MnO2/Co3O4/NB-PCNF). Attributing to the constructed multi-pathway for redox reactions on electrode, the specific capacitance of NB-PCNF and MnO2/Co3O4/NB-PCNF can reach up to 204.2F/g and 141.43F/g at a small current density of 0.1 A/g, respectively. In long-term cycling tests, the electrode materials exhibited excellent cycling stability and good rate capability. The electrodes were assembled with Potassium-ion hydrogel electrolyte to form a flexible asymmetric solid-state supercapacitor (FASS-SC). FASS-SC can reach a voltage window of 1.6 V. It provided 28.2 W h/kg at an energy density of 600 W/kg and a specific capacitance retention of 94.18 % after 10,000 cycles. The FASS-SC offers new research ideas for future flexible devices and wearable technologies. Carbon nanofibers Hetero-junction Asymmetric supercapacitor Flexible Energy storage Yan, Guilong verfasserin (orcid)0000-0003-1128-3467 aut Li, Zhenyu verfasserin aut Chen, Jingyu verfasserin (orcid)0000-0002-1275-0656 aut Wang, Li verfasserin aut Li, Han verfasserin aut Wu, Yuanpeng verfasserin aut Enthalten in Applied surface science Amsterdam : Elsevier, 1985 648 Online-Ressource (DE-627)312151128 (DE-600)2002520-8 (DE-576)094476985 nnns volume:648 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 648 |
language |
English |
source |
Enthalten in Applied surface science 648 volume:648 |
sourceStr |
Enthalten in Applied surface science 648 volume:648 |
format_phy_str_mv |
Article |
bklname |
Oberflächen Dünne Schichten Grenzflächen Kolloidchemie Grenzflächenchemie Oberflächentechnik Wärmebehandlung |
institution |
findex.gbv.de |
topic_facet |
Carbon nanofibers Hetero-junction Asymmetric supercapacitor Flexible Energy storage |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Applied surface science |
authorswithroles_txt_mv |
Zhang, Xunlong @@aut@@ Yan, Guilong @@aut@@ Li, Zhenyu @@aut@@ Chen, Jingyu @@aut@@ Wang, Li @@aut@@ Li, Han @@aut@@ Wu, Yuanpeng @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
312151128 |
dewey-sort |
3670 |
id |
ELV066232112 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066232112</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231222093307.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231222s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.apsusc.2023.159059</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066232112</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0169-4332(23)02739-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">530</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Xunlong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0009-0002-4472-9365</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Self-supported heterojunction nanofibrous membranes for high-performance flexible asymmetric capacitors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rational design of an electrode material with high flexibility and electrochemical performance is the key to wearable energy storage devices. Herein, a facile and productive needleless electrospinning method was introduced to prepare self-supported and flexible nanofibrous electrode materials for asymmetric capacitor. The MnO2 nanoclusters and ZIF67-derived Co3O4 nano-sheets were sequentially deposited on the surface of N, B-doped carbon nanofibers (hetero-junction MnO2/Co3O4/NB-PCNF). Attributing to the constructed multi-pathway for redox reactions on electrode, the specific capacitance of NB-PCNF and MnO2/Co3O4/NB-PCNF can reach up to 204.2F/g and 141.43F/g at a small current density of 0.1 A/g, respectively. In long-term cycling tests, the electrode materials exhibited excellent cycling stability and good rate capability. The electrodes were assembled with Potassium-ion hydrogel electrolyte to form a flexible asymmetric solid-state supercapacitor (FASS-SC). FASS-SC can reach a voltage window of 1.6 V. It provided 28.2 W h/kg at an energy density of 600 W/kg and a specific capacitance retention of 94.18 % after 10,000 cycles. The FASS-SC offers new research ideas for future flexible devices and wearable technologies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon nanofibers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hetero-junction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymmetric supercapacitor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flexible</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy storage</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Guilong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1128-3467</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Zhenyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Jingyu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1275-0656</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Yuanpeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied surface science</subfield><subfield code="d">Amsterdam : Elsevier, 1985</subfield><subfield code="g">648</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)312151128</subfield><subfield code="w">(DE-600)2002520-8</subfield><subfield code="w">(DE-576)094476985</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:648</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.68</subfield><subfield code="j">Oberflächen</subfield><subfield code="j">Dünne Schichten</subfield><subfield code="j">Grenzflächen</subfield><subfield code="x">Physik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">648</subfield></datafield></record></collection>
|
author |
Zhang, Xunlong |
spellingShingle |
Zhang, Xunlong ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 misc Carbon nanofibers misc Hetero-junction misc Asymmetric supercapacitor misc Flexible misc Energy storage Self-supported heterojunction nanofibrous membranes for high-performance flexible asymmetric capacitors |
authorStr |
Zhang, Xunlong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)312151128 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing 530 - Physics 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Self-supported heterojunction nanofibrous membranes for high-performance flexible asymmetric capacitors Carbon nanofibers Hetero-junction Asymmetric supercapacitor Flexible Energy storage |
topic |
ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 misc Carbon nanofibers misc Hetero-junction misc Asymmetric supercapacitor misc Flexible misc Energy storage |
topic_unstemmed |
ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 misc Carbon nanofibers misc Hetero-junction misc Asymmetric supercapacitor misc Flexible misc Energy storage |
topic_browse |
ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 misc Carbon nanofibers misc Hetero-junction misc Asymmetric supercapacitor misc Flexible misc Energy storage |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied surface science |
hierarchy_parent_id |
312151128 |
dewey-tens |
670 - Manufacturing 530 - Physics 660 - Chemical engineering |
hierarchy_top_title |
Applied surface science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)312151128 (DE-600)2002520-8 (DE-576)094476985 |
title |
Self-supported heterojunction nanofibrous membranes for high-performance flexible asymmetric capacitors |
ctrlnum |
(DE-627)ELV066232112 (ELSEVIER)S0169-4332(23)02739-3 |
title_full |
Self-supported heterojunction nanofibrous membranes for high-performance flexible asymmetric capacitors |
author_sort |
Zhang, Xunlong |
journal |
Applied surface science |
journalStr |
Applied surface science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Zhang, Xunlong Yan, Guilong Li, Zhenyu Chen, Jingyu Wang, Li Li, Han Wu, Yuanpeng |
container_volume |
648 |
class |
670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Xunlong |
doi_str_mv |
10.1016/j.apsusc.2023.159059 |
normlink |
(ORCID)0009-0002-4472-9365 (ORCID)0000-0003-1128-3467 (ORCID)0000-0002-1275-0656 |
normlink_prefix_str_mv |
(orcid)0009-0002-4472-9365 (orcid)0000-0003-1128-3467 (orcid)0000-0002-1275-0656 |
dewey-full |
670 530 660 |
author2-role |
verfasserin |
title_sort |
self-supported heterojunction nanofibrous membranes for high-performance flexible asymmetric capacitors |
title_auth |
Self-supported heterojunction nanofibrous membranes for high-performance flexible asymmetric capacitors |
abstract |
Rational design of an electrode material with high flexibility and electrochemical performance is the key to wearable energy storage devices. Herein, a facile and productive needleless electrospinning method was introduced to prepare self-supported and flexible nanofibrous electrode materials for asymmetric capacitor. The MnO2 nanoclusters and ZIF67-derived Co3O4 nano-sheets were sequentially deposited on the surface of N, B-doped carbon nanofibers (hetero-junction MnO2/Co3O4/NB-PCNF). Attributing to the constructed multi-pathway for redox reactions on electrode, the specific capacitance of NB-PCNF and MnO2/Co3O4/NB-PCNF can reach up to 204.2F/g and 141.43F/g at a small current density of 0.1 A/g, respectively. In long-term cycling tests, the electrode materials exhibited excellent cycling stability and good rate capability. The electrodes were assembled with Potassium-ion hydrogel electrolyte to form a flexible asymmetric solid-state supercapacitor (FASS-SC). FASS-SC can reach a voltage window of 1.6 V. It provided 28.2 W h/kg at an energy density of 600 W/kg and a specific capacitance retention of 94.18 % after 10,000 cycles. The FASS-SC offers new research ideas for future flexible devices and wearable technologies. |
abstractGer |
Rational design of an electrode material with high flexibility and electrochemical performance is the key to wearable energy storage devices. Herein, a facile and productive needleless electrospinning method was introduced to prepare self-supported and flexible nanofibrous electrode materials for asymmetric capacitor. The MnO2 nanoclusters and ZIF67-derived Co3O4 nano-sheets were sequentially deposited on the surface of N, B-doped carbon nanofibers (hetero-junction MnO2/Co3O4/NB-PCNF). Attributing to the constructed multi-pathway for redox reactions on electrode, the specific capacitance of NB-PCNF and MnO2/Co3O4/NB-PCNF can reach up to 204.2F/g and 141.43F/g at a small current density of 0.1 A/g, respectively. In long-term cycling tests, the electrode materials exhibited excellent cycling stability and good rate capability. The electrodes were assembled with Potassium-ion hydrogel electrolyte to form a flexible asymmetric solid-state supercapacitor (FASS-SC). FASS-SC can reach a voltage window of 1.6 V. It provided 28.2 W h/kg at an energy density of 600 W/kg and a specific capacitance retention of 94.18 % after 10,000 cycles. The FASS-SC offers new research ideas for future flexible devices and wearable technologies. |
abstract_unstemmed |
Rational design of an electrode material with high flexibility and electrochemical performance is the key to wearable energy storage devices. Herein, a facile and productive needleless electrospinning method was introduced to prepare self-supported and flexible nanofibrous electrode materials for asymmetric capacitor. The MnO2 nanoclusters and ZIF67-derived Co3O4 nano-sheets were sequentially deposited on the surface of N, B-doped carbon nanofibers (hetero-junction MnO2/Co3O4/NB-PCNF). Attributing to the constructed multi-pathway for redox reactions on electrode, the specific capacitance of NB-PCNF and MnO2/Co3O4/NB-PCNF can reach up to 204.2F/g and 141.43F/g at a small current density of 0.1 A/g, respectively. In long-term cycling tests, the electrode materials exhibited excellent cycling stability and good rate capability. The electrodes were assembled with Potassium-ion hydrogel electrolyte to form a flexible asymmetric solid-state supercapacitor (FASS-SC). FASS-SC can reach a voltage window of 1.6 V. It provided 28.2 W h/kg at an energy density of 600 W/kg and a specific capacitance retention of 94.18 % after 10,000 cycles. The FASS-SC offers new research ideas for future flexible devices and wearable technologies. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Self-supported heterojunction nanofibrous membranes for high-performance flexible asymmetric capacitors |
remote_bool |
true |
author2 |
Yan, Guilong Li, Zhenyu Chen, Jingyu Wang, Li Li, Han Wu, Yuanpeng |
author2Str |
Yan, Guilong Li, Zhenyu Chen, Jingyu Wang, Li Li, Han Wu, Yuanpeng |
ppnlink |
312151128 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.apsusc.2023.159059 |
up_date |
2024-07-06T17:02:36.035Z |
_version_ |
1803849937493950464 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066232112</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231222093307.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231222s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.apsusc.2023.159059</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066232112</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0169-4332(23)02739-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">530</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Xunlong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0009-0002-4472-9365</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Self-supported heterojunction nanofibrous membranes for high-performance flexible asymmetric capacitors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rational design of an electrode material with high flexibility and electrochemical performance is the key to wearable energy storage devices. Herein, a facile and productive needleless electrospinning method was introduced to prepare self-supported and flexible nanofibrous electrode materials for asymmetric capacitor. The MnO2 nanoclusters and ZIF67-derived Co3O4 nano-sheets were sequentially deposited on the surface of N, B-doped carbon nanofibers (hetero-junction MnO2/Co3O4/NB-PCNF). Attributing to the constructed multi-pathway for redox reactions on electrode, the specific capacitance of NB-PCNF and MnO2/Co3O4/NB-PCNF can reach up to 204.2F/g and 141.43F/g at a small current density of 0.1 A/g, respectively. In long-term cycling tests, the electrode materials exhibited excellent cycling stability and good rate capability. The electrodes were assembled with Potassium-ion hydrogel electrolyte to form a flexible asymmetric solid-state supercapacitor (FASS-SC). FASS-SC can reach a voltage window of 1.6 V. It provided 28.2 W h/kg at an energy density of 600 W/kg and a specific capacitance retention of 94.18 % after 10,000 cycles. The FASS-SC offers new research ideas for future flexible devices and wearable technologies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon nanofibers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hetero-junction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymmetric supercapacitor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flexible</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy storage</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Guilong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1128-3467</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Zhenyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Jingyu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1275-0656</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Yuanpeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied surface science</subfield><subfield code="d">Amsterdam : Elsevier, 1985</subfield><subfield code="g">648</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)312151128</subfield><subfield code="w">(DE-600)2002520-8</subfield><subfield code="w">(DE-576)094476985</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:648</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.68</subfield><subfield code="j">Oberflächen</subfield><subfield code="j">Dünne Schichten</subfield><subfield code="j">Grenzflächen</subfield><subfield code="x">Physik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">648</subfield></datafield></record></collection>
|
score |
7.401867 |