A comparative optimization procedure to evaluate pattern recognition algorithms on hannes prosthesis
Stability and repeatability of Pattern Recognition (PR) myoelectric control for upper limb prosthetic devices remain unresolved challenges in multi-DoFs systems. In this study, we tested several state-of-the-art classifiers to compare their offline performance in different configurations. Parameters...
Ausführliche Beschreibung
Autor*in: |
Marinelli, A. [verfasserIn] Canepa, M. [verfasserIn] Di Domenico, D. [verfasserIn] Gruppioni, E. [verfasserIn] Laffranchi, M. [verfasserIn] De Michieli, L. [verfasserIn] Chiappalone, M. [verfasserIn] Semprini, M. [verfasserIn] Boccardo, N. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Neurocomputing - Amsterdam : Elsevier, 1989, 569 |
---|---|
Übergeordnetes Werk: |
volume:569 |
DOI / URN: |
10.1016/j.neucom.2023.127123 |
---|
Katalog-ID: |
ELV066280400 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV066280400 | ||
003 | DE-627 | ||
005 | 20240119093021.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231229s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.neucom.2023.127123 |2 doi | |
035 | |a (DE-627)ELV066280400 | ||
035 | |a (ELSEVIER)S0925-2312(23)01246-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 54.72 |2 bkl | ||
100 | 1 | |a Marinelli, A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A comparative optimization procedure to evaluate pattern recognition algorithms on hannes prosthesis |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Stability and repeatability of Pattern Recognition (PR) myoelectric control for upper limb prosthetic devices remain unresolved challenges in multi-DoFs systems. In this study, we tested several state-of-the-art classifiers to compare their offline performance in different configurations. Parameters such as realization costs, overall encumbrance, and algorithm complexity were considered for the analysis. The results showed that NLR performed comparably to LDA but with fewer EMG sensors. This study demonstrated that sensor numbers can be reduced to a few units for various algorithms, with NLR being the most tolerant due to its non-linearity. In conclusion, NLR can effectively control the multi-DoFs Hannes system in real-time, offering similar performances to other algorithms while reducing the system's complexity and encumbrance as compared to LDA. It also offers improved tolerance to reduced available information and lower implementation costs. | ||
650 | 4 | |a Pattern recognition control | |
650 | 4 | |a Real-time | |
650 | 4 | |a Hannes system | |
650 | 4 | |a EMG sensors | |
650 | 4 | |a NLR and LDA algorithms | |
700 | 1 | |a Canepa, M. |e verfasserin |4 aut | |
700 | 1 | |a Di Domenico, D. |e verfasserin |4 aut | |
700 | 1 | |a Gruppioni, E. |e verfasserin |4 aut | |
700 | 1 | |a Laffranchi, M. |e verfasserin |4 aut | |
700 | 1 | |a De Michieli, L. |e verfasserin |4 aut | |
700 | 1 | |a Chiappalone, M. |e verfasserin |4 aut | |
700 | 1 | |a Semprini, M. |e verfasserin |4 aut | |
700 | 1 | |a Boccardo, N. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Neurocomputing |d Amsterdam : Elsevier, 1989 |g 569 |h Online-Ressource |w (DE-627)271176008 |w (DE-600)1479006-3 |w (DE-576)078412358 |x 1872-8286 |7 nnns |
773 | 1 | 8 | |g volume:569 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 54.72 |j Künstliche Intelligenz |q VZ |
951 | |a AR | ||
952 | |d 569 |
author_variant |
a m am m c mc d d d dd ddd e g eg m l ml m l d ml mld m c mc m s ms n b nb |
---|---|
matchkey_str |
article:18728286:2023----::cmaaiepiiainrcdrteautpteneontoagr |
hierarchy_sort_str |
2023 |
bklnumber |
54.72 |
publishDate |
2023 |
allfields |
10.1016/j.neucom.2023.127123 doi (DE-627)ELV066280400 (ELSEVIER)S0925-2312(23)01246-8 DE-627 ger DE-627 rda eng 610 VZ 54.72 bkl Marinelli, A. verfasserin aut A comparative optimization procedure to evaluate pattern recognition algorithms on hannes prosthesis 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Stability and repeatability of Pattern Recognition (PR) myoelectric control for upper limb prosthetic devices remain unresolved challenges in multi-DoFs systems. In this study, we tested several state-of-the-art classifiers to compare their offline performance in different configurations. Parameters such as realization costs, overall encumbrance, and algorithm complexity were considered for the analysis. The results showed that NLR performed comparably to LDA but with fewer EMG sensors. This study demonstrated that sensor numbers can be reduced to a few units for various algorithms, with NLR being the most tolerant due to its non-linearity. In conclusion, NLR can effectively control the multi-DoFs Hannes system in real-time, offering similar performances to other algorithms while reducing the system's complexity and encumbrance as compared to LDA. It also offers improved tolerance to reduced available information and lower implementation costs. Pattern recognition control Real-time Hannes system EMG sensors NLR and LDA algorithms Canepa, M. verfasserin aut Di Domenico, D. verfasserin aut Gruppioni, E. verfasserin aut Laffranchi, M. verfasserin aut De Michieli, L. verfasserin aut Chiappalone, M. verfasserin aut Semprini, M. verfasserin aut Boccardo, N. verfasserin aut Enthalten in Neurocomputing Amsterdam : Elsevier, 1989 569 Online-Ressource (DE-627)271176008 (DE-600)1479006-3 (DE-576)078412358 1872-8286 nnns volume:569 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 569 |
spelling |
10.1016/j.neucom.2023.127123 doi (DE-627)ELV066280400 (ELSEVIER)S0925-2312(23)01246-8 DE-627 ger DE-627 rda eng 610 VZ 54.72 bkl Marinelli, A. verfasserin aut A comparative optimization procedure to evaluate pattern recognition algorithms on hannes prosthesis 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Stability and repeatability of Pattern Recognition (PR) myoelectric control for upper limb prosthetic devices remain unresolved challenges in multi-DoFs systems. In this study, we tested several state-of-the-art classifiers to compare their offline performance in different configurations. Parameters such as realization costs, overall encumbrance, and algorithm complexity were considered for the analysis. The results showed that NLR performed comparably to LDA but with fewer EMG sensors. This study demonstrated that sensor numbers can be reduced to a few units for various algorithms, with NLR being the most tolerant due to its non-linearity. In conclusion, NLR can effectively control the multi-DoFs Hannes system in real-time, offering similar performances to other algorithms while reducing the system's complexity and encumbrance as compared to LDA. It also offers improved tolerance to reduced available information and lower implementation costs. Pattern recognition control Real-time Hannes system EMG sensors NLR and LDA algorithms Canepa, M. verfasserin aut Di Domenico, D. verfasserin aut Gruppioni, E. verfasserin aut Laffranchi, M. verfasserin aut De Michieli, L. verfasserin aut Chiappalone, M. verfasserin aut Semprini, M. verfasserin aut Boccardo, N. verfasserin aut Enthalten in Neurocomputing Amsterdam : Elsevier, 1989 569 Online-Ressource (DE-627)271176008 (DE-600)1479006-3 (DE-576)078412358 1872-8286 nnns volume:569 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 569 |
allfields_unstemmed |
10.1016/j.neucom.2023.127123 doi (DE-627)ELV066280400 (ELSEVIER)S0925-2312(23)01246-8 DE-627 ger DE-627 rda eng 610 VZ 54.72 bkl Marinelli, A. verfasserin aut A comparative optimization procedure to evaluate pattern recognition algorithms on hannes prosthesis 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Stability and repeatability of Pattern Recognition (PR) myoelectric control for upper limb prosthetic devices remain unresolved challenges in multi-DoFs systems. In this study, we tested several state-of-the-art classifiers to compare their offline performance in different configurations. Parameters such as realization costs, overall encumbrance, and algorithm complexity were considered for the analysis. The results showed that NLR performed comparably to LDA but with fewer EMG sensors. This study demonstrated that sensor numbers can be reduced to a few units for various algorithms, with NLR being the most tolerant due to its non-linearity. In conclusion, NLR can effectively control the multi-DoFs Hannes system in real-time, offering similar performances to other algorithms while reducing the system's complexity and encumbrance as compared to LDA. It also offers improved tolerance to reduced available information and lower implementation costs. Pattern recognition control Real-time Hannes system EMG sensors NLR and LDA algorithms Canepa, M. verfasserin aut Di Domenico, D. verfasserin aut Gruppioni, E. verfasserin aut Laffranchi, M. verfasserin aut De Michieli, L. verfasserin aut Chiappalone, M. verfasserin aut Semprini, M. verfasserin aut Boccardo, N. verfasserin aut Enthalten in Neurocomputing Amsterdam : Elsevier, 1989 569 Online-Ressource (DE-627)271176008 (DE-600)1479006-3 (DE-576)078412358 1872-8286 nnns volume:569 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 569 |
allfieldsGer |
10.1016/j.neucom.2023.127123 doi (DE-627)ELV066280400 (ELSEVIER)S0925-2312(23)01246-8 DE-627 ger DE-627 rda eng 610 VZ 54.72 bkl Marinelli, A. verfasserin aut A comparative optimization procedure to evaluate pattern recognition algorithms on hannes prosthesis 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Stability and repeatability of Pattern Recognition (PR) myoelectric control for upper limb prosthetic devices remain unresolved challenges in multi-DoFs systems. In this study, we tested several state-of-the-art classifiers to compare their offline performance in different configurations. Parameters such as realization costs, overall encumbrance, and algorithm complexity were considered for the analysis. The results showed that NLR performed comparably to LDA but with fewer EMG sensors. This study demonstrated that sensor numbers can be reduced to a few units for various algorithms, with NLR being the most tolerant due to its non-linearity. In conclusion, NLR can effectively control the multi-DoFs Hannes system in real-time, offering similar performances to other algorithms while reducing the system's complexity and encumbrance as compared to LDA. It also offers improved tolerance to reduced available information and lower implementation costs. Pattern recognition control Real-time Hannes system EMG sensors NLR and LDA algorithms Canepa, M. verfasserin aut Di Domenico, D. verfasserin aut Gruppioni, E. verfasserin aut Laffranchi, M. verfasserin aut De Michieli, L. verfasserin aut Chiappalone, M. verfasserin aut Semprini, M. verfasserin aut Boccardo, N. verfasserin aut Enthalten in Neurocomputing Amsterdam : Elsevier, 1989 569 Online-Ressource (DE-627)271176008 (DE-600)1479006-3 (DE-576)078412358 1872-8286 nnns volume:569 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 569 |
allfieldsSound |
10.1016/j.neucom.2023.127123 doi (DE-627)ELV066280400 (ELSEVIER)S0925-2312(23)01246-8 DE-627 ger DE-627 rda eng 610 VZ 54.72 bkl Marinelli, A. verfasserin aut A comparative optimization procedure to evaluate pattern recognition algorithms on hannes prosthesis 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Stability and repeatability of Pattern Recognition (PR) myoelectric control for upper limb prosthetic devices remain unresolved challenges in multi-DoFs systems. In this study, we tested several state-of-the-art classifiers to compare their offline performance in different configurations. Parameters such as realization costs, overall encumbrance, and algorithm complexity were considered for the analysis. The results showed that NLR performed comparably to LDA but with fewer EMG sensors. This study demonstrated that sensor numbers can be reduced to a few units for various algorithms, with NLR being the most tolerant due to its non-linearity. In conclusion, NLR can effectively control the multi-DoFs Hannes system in real-time, offering similar performances to other algorithms while reducing the system's complexity and encumbrance as compared to LDA. It also offers improved tolerance to reduced available information and lower implementation costs. Pattern recognition control Real-time Hannes system EMG sensors NLR and LDA algorithms Canepa, M. verfasserin aut Di Domenico, D. verfasserin aut Gruppioni, E. verfasserin aut Laffranchi, M. verfasserin aut De Michieli, L. verfasserin aut Chiappalone, M. verfasserin aut Semprini, M. verfasserin aut Boccardo, N. verfasserin aut Enthalten in Neurocomputing Amsterdam : Elsevier, 1989 569 Online-Ressource (DE-627)271176008 (DE-600)1479006-3 (DE-576)078412358 1872-8286 nnns volume:569 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 569 |
language |
English |
source |
Enthalten in Neurocomputing 569 volume:569 |
sourceStr |
Enthalten in Neurocomputing 569 volume:569 |
format_phy_str_mv |
Article |
bklname |
Künstliche Intelligenz |
institution |
findex.gbv.de |
topic_facet |
Pattern recognition control Real-time Hannes system EMG sensors NLR and LDA algorithms |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Neurocomputing |
authorswithroles_txt_mv |
Marinelli, A. @@aut@@ Canepa, M. @@aut@@ Di Domenico, D. @@aut@@ Gruppioni, E. @@aut@@ Laffranchi, M. @@aut@@ De Michieli, L. @@aut@@ Chiappalone, M. @@aut@@ Semprini, M. @@aut@@ Boccardo, N. @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
271176008 |
dewey-sort |
3610 |
id |
ELV066280400 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV066280400</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240119093021.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231229s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neucom.2023.127123</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066280400</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-2312(23)01246-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marinelli, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A comparative optimization procedure to evaluate pattern recognition algorithms on hannes prosthesis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Stability and repeatability of Pattern Recognition (PR) myoelectric control for upper limb prosthetic devices remain unresolved challenges in multi-DoFs systems. In this study, we tested several state-of-the-art classifiers to compare their offline performance in different configurations. Parameters such as realization costs, overall encumbrance, and algorithm complexity were considered for the analysis. The results showed that NLR performed comparably to LDA but with fewer EMG sensors. This study demonstrated that sensor numbers can be reduced to a few units for various algorithms, with NLR being the most tolerant due to its non-linearity. In conclusion, NLR can effectively control the multi-DoFs Hannes system in real-time, offering similar performances to other algorithms while reducing the system's complexity and encumbrance as compared to LDA. It also offers improved tolerance to reduced available information and lower implementation costs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pattern recognition control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real-time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hannes system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EMG sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NLR and LDA algorithms</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Canepa, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Di Domenico, D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gruppioni, E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Laffranchi, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Michieli, L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chiappalone, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Semprini, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boccardo, N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neurocomputing</subfield><subfield code="d">Amsterdam : Elsevier, 1989</subfield><subfield code="g">569</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)271176008</subfield><subfield code="w">(DE-600)1479006-3</subfield><subfield code="w">(DE-576)078412358</subfield><subfield code="x">1872-8286</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:569</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">569</subfield></datafield></record></collection>
|
author |
Marinelli, A. |
spellingShingle |
Marinelli, A. ddc 610 bkl 54.72 misc Pattern recognition control misc Real-time misc Hannes system misc EMG sensors misc NLR and LDA algorithms A comparative optimization procedure to evaluate pattern recognition algorithms on hannes prosthesis |
authorStr |
Marinelli, A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)271176008 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1872-8286 |
topic_title |
610 VZ 54.72 bkl A comparative optimization procedure to evaluate pattern recognition algorithms on hannes prosthesis Pattern recognition control Real-time Hannes system EMG sensors NLR and LDA algorithms |
topic |
ddc 610 bkl 54.72 misc Pattern recognition control misc Real-time misc Hannes system misc EMG sensors misc NLR and LDA algorithms |
topic_unstemmed |
ddc 610 bkl 54.72 misc Pattern recognition control misc Real-time misc Hannes system misc EMG sensors misc NLR and LDA algorithms |
topic_browse |
ddc 610 bkl 54.72 misc Pattern recognition control misc Real-time misc Hannes system misc EMG sensors misc NLR and LDA algorithms |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Neurocomputing |
hierarchy_parent_id |
271176008 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Neurocomputing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)271176008 (DE-600)1479006-3 (DE-576)078412358 |
title |
A comparative optimization procedure to evaluate pattern recognition algorithms on hannes prosthesis |
ctrlnum |
(DE-627)ELV066280400 (ELSEVIER)S0925-2312(23)01246-8 |
title_full |
A comparative optimization procedure to evaluate pattern recognition algorithms on hannes prosthesis |
author_sort |
Marinelli, A. |
journal |
Neurocomputing |
journalStr |
Neurocomputing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Marinelli, A. Canepa, M. Di Domenico, D. Gruppioni, E. Laffranchi, M. De Michieli, L. Chiappalone, M. Semprini, M. Boccardo, N. |
container_volume |
569 |
class |
610 VZ 54.72 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Marinelli, A. |
doi_str_mv |
10.1016/j.neucom.2023.127123 |
dewey-full |
610 |
author2-role |
verfasserin |
title_sort |
a comparative optimization procedure to evaluate pattern recognition algorithms on hannes prosthesis |
title_auth |
A comparative optimization procedure to evaluate pattern recognition algorithms on hannes prosthesis |
abstract |
Stability and repeatability of Pattern Recognition (PR) myoelectric control for upper limb prosthetic devices remain unresolved challenges in multi-DoFs systems. In this study, we tested several state-of-the-art classifiers to compare their offline performance in different configurations. Parameters such as realization costs, overall encumbrance, and algorithm complexity were considered for the analysis. The results showed that NLR performed comparably to LDA but with fewer EMG sensors. This study demonstrated that sensor numbers can be reduced to a few units for various algorithms, with NLR being the most tolerant due to its non-linearity. In conclusion, NLR can effectively control the multi-DoFs Hannes system in real-time, offering similar performances to other algorithms while reducing the system's complexity and encumbrance as compared to LDA. It also offers improved tolerance to reduced available information and lower implementation costs. |
abstractGer |
Stability and repeatability of Pattern Recognition (PR) myoelectric control for upper limb prosthetic devices remain unresolved challenges in multi-DoFs systems. In this study, we tested several state-of-the-art classifiers to compare their offline performance in different configurations. Parameters such as realization costs, overall encumbrance, and algorithm complexity were considered for the analysis. The results showed that NLR performed comparably to LDA but with fewer EMG sensors. This study demonstrated that sensor numbers can be reduced to a few units for various algorithms, with NLR being the most tolerant due to its non-linearity. In conclusion, NLR can effectively control the multi-DoFs Hannes system in real-time, offering similar performances to other algorithms while reducing the system's complexity and encumbrance as compared to LDA. It also offers improved tolerance to reduced available information and lower implementation costs. |
abstract_unstemmed |
Stability and repeatability of Pattern Recognition (PR) myoelectric control for upper limb prosthetic devices remain unresolved challenges in multi-DoFs systems. In this study, we tested several state-of-the-art classifiers to compare their offline performance in different configurations. Parameters such as realization costs, overall encumbrance, and algorithm complexity were considered for the analysis. The results showed that NLR performed comparably to LDA but with fewer EMG sensors. This study demonstrated that sensor numbers can be reduced to a few units for various algorithms, with NLR being the most tolerant due to its non-linearity. In conclusion, NLR can effectively control the multi-DoFs Hannes system in real-time, offering similar performances to other algorithms while reducing the system's complexity and encumbrance as compared to LDA. It also offers improved tolerance to reduced available information and lower implementation costs. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
A comparative optimization procedure to evaluate pattern recognition algorithms on hannes prosthesis |
remote_bool |
true |
author2 |
Canepa, M. Di Domenico, D. Gruppioni, E. Laffranchi, M. De Michieli, L. Chiappalone, M. Semprini, M. Boccardo, N. |
author2Str |
Canepa, M. Di Domenico, D. Gruppioni, E. Laffranchi, M. De Michieli, L. Chiappalone, M. Semprini, M. Boccardo, N. |
ppnlink |
271176008 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.neucom.2023.127123 |
up_date |
2024-07-06T17:13:01.499Z |
_version_ |
1803850593338392576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV066280400</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240119093021.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231229s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neucom.2023.127123</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066280400</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-2312(23)01246-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marinelli, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A comparative optimization procedure to evaluate pattern recognition algorithms on hannes prosthesis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Stability and repeatability of Pattern Recognition (PR) myoelectric control for upper limb prosthetic devices remain unresolved challenges in multi-DoFs systems. In this study, we tested several state-of-the-art classifiers to compare their offline performance in different configurations. Parameters such as realization costs, overall encumbrance, and algorithm complexity were considered for the analysis. The results showed that NLR performed comparably to LDA but with fewer EMG sensors. This study demonstrated that sensor numbers can be reduced to a few units for various algorithms, with NLR being the most tolerant due to its non-linearity. In conclusion, NLR can effectively control the multi-DoFs Hannes system in real-time, offering similar performances to other algorithms while reducing the system's complexity and encumbrance as compared to LDA. It also offers improved tolerance to reduced available information and lower implementation costs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pattern recognition control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real-time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hannes system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EMG sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NLR and LDA algorithms</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Canepa, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Di Domenico, D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gruppioni, E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Laffranchi, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Michieli, L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chiappalone, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Semprini, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boccardo, N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neurocomputing</subfield><subfield code="d">Amsterdam : Elsevier, 1989</subfield><subfield code="g">569</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)271176008</subfield><subfield code="w">(DE-600)1479006-3</subfield><subfield code="w">(DE-576)078412358</subfield><subfield code="x">1872-8286</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:569</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">569</subfield></datafield></record></collection>
|
score |
7.4014015 |