A decision framework of offshore wind power station site selection using a MULTIMOORA method under pythagorean hesitant fuzzy environment
As global energy demand continues to grow, the demand for renewable energy continues to rise. To meet this demand, many countries have begun to actively promote the development of offshore wind power projects. Since siting is the key to the success of offshore wind power projects, this paper aims to...
Ausführliche Beschreibung
Autor*in: |
Zhou, Qingchao [verfasserIn] Ye, Chunming [verfasserIn] Geng, Xiuli [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Ocean engineering - Amsterdam [u.a.] : Elsevier Science, 1970, 291 |
---|---|
Übergeordnetes Werk: |
volume:291 |
DOI / URN: |
10.1016/j.oceaneng.2023.116416 |
---|
Katalog-ID: |
ELV066343879 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV066343879 | ||
003 | DE-627 | ||
005 | 20240110093226.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231231s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.oceaneng.2023.116416 |2 doi | |
035 | |a (DE-627)ELV066343879 | ||
035 | |a (ELSEVIER)S0029-8018(23)02800-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 50.92 |2 bkl | ||
100 | 1 | |a Zhou, Qingchao |e verfasserin |4 aut | |
245 | 1 | 0 | |a A decision framework of offshore wind power station site selection using a MULTIMOORA method under pythagorean hesitant fuzzy environment |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a As global energy demand continues to grow, the demand for renewable energy continues to rise. To meet this demand, many countries have begun to actively promote the development of offshore wind power projects. Since siting is the key to the success of offshore wind power projects, this paper aims to develop a mixed decision-making framework to address the siting of offshore wind power station (OWPS). Firstly, establish a relatively comprehensive OWPS evaluation attribute system. Secondly, the pythagorean hesitation fuzzy set (PHFS) was used to describe the evaluation information in the OWPS site selection process. It can ensure the hesitancy and fuzziness of evaluation information, and is not constrained by the sum of membership and non membership being less than 1. Thirdly, the improved SWARA method is used to calculate the weight of attributes. Finally, an extended MULTIMOORA (Multi-Objective Optimization on the basis of a Ratio Analysis plus the Full Multiplicative form) method is proposed to rank the siting alternatives for OWPS. The proposed method is applied to the study of OWPS site selection in Shandong Province, China. Through calculation, the comprehensive ranking values are G 1 = 14, G 2 = 7, G 3 = 4, G 4 = 8 and G 5 = 13. Therefore, A 3 is the best alternative. Through sensitivity analysis and comparative analysis, it was verified that the proposed model has good reliability and stability. | ||
650 | 4 | |a OWPS | |
650 | 4 | |a Site selection | |
650 | 4 | |a Pythagorean hesitant fuzzy set | |
650 | 4 | |a SWARA | |
650 | 4 | |a MULTIMOORA | |
700 | 1 | |a Ye, Chunming |e verfasserin |4 aut | |
700 | 1 | |a Geng, Xiuli |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Ocean engineering |d Amsterdam [u.a.] : Elsevier Science, 1970 |g 291 |h Online-Ressource |w (DE-627)30658977X |w (DE-600)1498543-3 |w (DE-576)259484164 |x 0029-8018 |7 nnns |
773 | 1 | 8 | |g volume:291 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.92 |j Meerestechnik |q VZ |
951 | |a AR | ||
952 | |d 291 |
author_variant |
q z qz c y cy x g xg |
---|---|
matchkey_str |
article:00298018:2023----::dcsofaeokffsoeidoesainieeetouigmliormtoudry |
hierarchy_sort_str |
2023 |
bklnumber |
50.92 |
publishDate |
2023 |
allfields |
10.1016/j.oceaneng.2023.116416 doi (DE-627)ELV066343879 (ELSEVIER)S0029-8018(23)02800-7 DE-627 ger DE-627 rda eng 690 VZ 50.92 bkl Zhou, Qingchao verfasserin aut A decision framework of offshore wind power station site selection using a MULTIMOORA method under pythagorean hesitant fuzzy environment 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As global energy demand continues to grow, the demand for renewable energy continues to rise. To meet this demand, many countries have begun to actively promote the development of offshore wind power projects. Since siting is the key to the success of offshore wind power projects, this paper aims to develop a mixed decision-making framework to address the siting of offshore wind power station (OWPS). Firstly, establish a relatively comprehensive OWPS evaluation attribute system. Secondly, the pythagorean hesitation fuzzy set (PHFS) was used to describe the evaluation information in the OWPS site selection process. It can ensure the hesitancy and fuzziness of evaluation information, and is not constrained by the sum of membership and non membership being less than 1. Thirdly, the improved SWARA method is used to calculate the weight of attributes. Finally, an extended MULTIMOORA (Multi-Objective Optimization on the basis of a Ratio Analysis plus the Full Multiplicative form) method is proposed to rank the siting alternatives for OWPS. The proposed method is applied to the study of OWPS site selection in Shandong Province, China. Through calculation, the comprehensive ranking values are G 1 = 14, G 2 = 7, G 3 = 4, G 4 = 8 and G 5 = 13. Therefore, A 3 is the best alternative. Through sensitivity analysis and comparative analysis, it was verified that the proposed model has good reliability and stability. OWPS Site selection Pythagorean hesitant fuzzy set SWARA MULTIMOORA Ye, Chunming verfasserin aut Geng, Xiuli verfasserin aut Enthalten in Ocean engineering Amsterdam [u.a.] : Elsevier Science, 1970 291 Online-Ressource (DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 0029-8018 nnns volume:291 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.92 Meerestechnik VZ AR 291 |
spelling |
10.1016/j.oceaneng.2023.116416 doi (DE-627)ELV066343879 (ELSEVIER)S0029-8018(23)02800-7 DE-627 ger DE-627 rda eng 690 VZ 50.92 bkl Zhou, Qingchao verfasserin aut A decision framework of offshore wind power station site selection using a MULTIMOORA method under pythagorean hesitant fuzzy environment 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As global energy demand continues to grow, the demand for renewable energy continues to rise. To meet this demand, many countries have begun to actively promote the development of offshore wind power projects. Since siting is the key to the success of offshore wind power projects, this paper aims to develop a mixed decision-making framework to address the siting of offshore wind power station (OWPS). Firstly, establish a relatively comprehensive OWPS evaluation attribute system. Secondly, the pythagorean hesitation fuzzy set (PHFS) was used to describe the evaluation information in the OWPS site selection process. It can ensure the hesitancy and fuzziness of evaluation information, and is not constrained by the sum of membership and non membership being less than 1. Thirdly, the improved SWARA method is used to calculate the weight of attributes. Finally, an extended MULTIMOORA (Multi-Objective Optimization on the basis of a Ratio Analysis plus the Full Multiplicative form) method is proposed to rank the siting alternatives for OWPS. The proposed method is applied to the study of OWPS site selection in Shandong Province, China. Through calculation, the comprehensive ranking values are G 1 = 14, G 2 = 7, G 3 = 4, G 4 = 8 and G 5 = 13. Therefore, A 3 is the best alternative. Through sensitivity analysis and comparative analysis, it was verified that the proposed model has good reliability and stability. OWPS Site selection Pythagorean hesitant fuzzy set SWARA MULTIMOORA Ye, Chunming verfasserin aut Geng, Xiuli verfasserin aut Enthalten in Ocean engineering Amsterdam [u.a.] : Elsevier Science, 1970 291 Online-Ressource (DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 0029-8018 nnns volume:291 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.92 Meerestechnik VZ AR 291 |
allfields_unstemmed |
10.1016/j.oceaneng.2023.116416 doi (DE-627)ELV066343879 (ELSEVIER)S0029-8018(23)02800-7 DE-627 ger DE-627 rda eng 690 VZ 50.92 bkl Zhou, Qingchao verfasserin aut A decision framework of offshore wind power station site selection using a MULTIMOORA method under pythagorean hesitant fuzzy environment 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As global energy demand continues to grow, the demand for renewable energy continues to rise. To meet this demand, many countries have begun to actively promote the development of offshore wind power projects. Since siting is the key to the success of offshore wind power projects, this paper aims to develop a mixed decision-making framework to address the siting of offshore wind power station (OWPS). Firstly, establish a relatively comprehensive OWPS evaluation attribute system. Secondly, the pythagorean hesitation fuzzy set (PHFS) was used to describe the evaluation information in the OWPS site selection process. It can ensure the hesitancy and fuzziness of evaluation information, and is not constrained by the sum of membership and non membership being less than 1. Thirdly, the improved SWARA method is used to calculate the weight of attributes. Finally, an extended MULTIMOORA (Multi-Objective Optimization on the basis of a Ratio Analysis plus the Full Multiplicative form) method is proposed to rank the siting alternatives for OWPS. The proposed method is applied to the study of OWPS site selection in Shandong Province, China. Through calculation, the comprehensive ranking values are G 1 = 14, G 2 = 7, G 3 = 4, G 4 = 8 and G 5 = 13. Therefore, A 3 is the best alternative. Through sensitivity analysis and comparative analysis, it was verified that the proposed model has good reliability and stability. OWPS Site selection Pythagorean hesitant fuzzy set SWARA MULTIMOORA Ye, Chunming verfasserin aut Geng, Xiuli verfasserin aut Enthalten in Ocean engineering Amsterdam [u.a.] : Elsevier Science, 1970 291 Online-Ressource (DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 0029-8018 nnns volume:291 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.92 Meerestechnik VZ AR 291 |
allfieldsGer |
10.1016/j.oceaneng.2023.116416 doi (DE-627)ELV066343879 (ELSEVIER)S0029-8018(23)02800-7 DE-627 ger DE-627 rda eng 690 VZ 50.92 bkl Zhou, Qingchao verfasserin aut A decision framework of offshore wind power station site selection using a MULTIMOORA method under pythagorean hesitant fuzzy environment 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As global energy demand continues to grow, the demand for renewable energy continues to rise. To meet this demand, many countries have begun to actively promote the development of offshore wind power projects. Since siting is the key to the success of offshore wind power projects, this paper aims to develop a mixed decision-making framework to address the siting of offshore wind power station (OWPS). Firstly, establish a relatively comprehensive OWPS evaluation attribute system. Secondly, the pythagorean hesitation fuzzy set (PHFS) was used to describe the evaluation information in the OWPS site selection process. It can ensure the hesitancy and fuzziness of evaluation information, and is not constrained by the sum of membership and non membership being less than 1. Thirdly, the improved SWARA method is used to calculate the weight of attributes. Finally, an extended MULTIMOORA (Multi-Objective Optimization on the basis of a Ratio Analysis plus the Full Multiplicative form) method is proposed to rank the siting alternatives for OWPS. The proposed method is applied to the study of OWPS site selection in Shandong Province, China. Through calculation, the comprehensive ranking values are G 1 = 14, G 2 = 7, G 3 = 4, G 4 = 8 and G 5 = 13. Therefore, A 3 is the best alternative. Through sensitivity analysis and comparative analysis, it was verified that the proposed model has good reliability and stability. OWPS Site selection Pythagorean hesitant fuzzy set SWARA MULTIMOORA Ye, Chunming verfasserin aut Geng, Xiuli verfasserin aut Enthalten in Ocean engineering Amsterdam [u.a.] : Elsevier Science, 1970 291 Online-Ressource (DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 0029-8018 nnns volume:291 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.92 Meerestechnik VZ AR 291 |
allfieldsSound |
10.1016/j.oceaneng.2023.116416 doi (DE-627)ELV066343879 (ELSEVIER)S0029-8018(23)02800-7 DE-627 ger DE-627 rda eng 690 VZ 50.92 bkl Zhou, Qingchao verfasserin aut A decision framework of offshore wind power station site selection using a MULTIMOORA method under pythagorean hesitant fuzzy environment 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As global energy demand continues to grow, the demand for renewable energy continues to rise. To meet this demand, many countries have begun to actively promote the development of offshore wind power projects. Since siting is the key to the success of offshore wind power projects, this paper aims to develop a mixed decision-making framework to address the siting of offshore wind power station (OWPS). Firstly, establish a relatively comprehensive OWPS evaluation attribute system. Secondly, the pythagorean hesitation fuzzy set (PHFS) was used to describe the evaluation information in the OWPS site selection process. It can ensure the hesitancy and fuzziness of evaluation information, and is not constrained by the sum of membership and non membership being less than 1. Thirdly, the improved SWARA method is used to calculate the weight of attributes. Finally, an extended MULTIMOORA (Multi-Objective Optimization on the basis of a Ratio Analysis plus the Full Multiplicative form) method is proposed to rank the siting alternatives for OWPS. The proposed method is applied to the study of OWPS site selection in Shandong Province, China. Through calculation, the comprehensive ranking values are G 1 = 14, G 2 = 7, G 3 = 4, G 4 = 8 and G 5 = 13. Therefore, A 3 is the best alternative. Through sensitivity analysis and comparative analysis, it was verified that the proposed model has good reliability and stability. OWPS Site selection Pythagorean hesitant fuzzy set SWARA MULTIMOORA Ye, Chunming verfasserin aut Geng, Xiuli verfasserin aut Enthalten in Ocean engineering Amsterdam [u.a.] : Elsevier Science, 1970 291 Online-Ressource (DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 0029-8018 nnns volume:291 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.92 Meerestechnik VZ AR 291 |
language |
English |
source |
Enthalten in Ocean engineering 291 volume:291 |
sourceStr |
Enthalten in Ocean engineering 291 volume:291 |
format_phy_str_mv |
Article |
bklname |
Meerestechnik |
institution |
findex.gbv.de |
topic_facet |
OWPS Site selection Pythagorean hesitant fuzzy set SWARA MULTIMOORA |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Ocean engineering |
authorswithroles_txt_mv |
Zhou, Qingchao @@aut@@ Ye, Chunming @@aut@@ Geng, Xiuli @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
30658977X |
dewey-sort |
3690 |
id |
ELV066343879 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV066343879</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240110093226.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231231s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.oceaneng.2023.116416</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066343879</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0029-8018(23)02800-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Qingchao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A decision framework of offshore wind power station site selection using a MULTIMOORA method under pythagorean hesitant fuzzy environment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As global energy demand continues to grow, the demand for renewable energy continues to rise. To meet this demand, many countries have begun to actively promote the development of offshore wind power projects. Since siting is the key to the success of offshore wind power projects, this paper aims to develop a mixed decision-making framework to address the siting of offshore wind power station (OWPS). Firstly, establish a relatively comprehensive OWPS evaluation attribute system. Secondly, the pythagorean hesitation fuzzy set (PHFS) was used to describe the evaluation information in the OWPS site selection process. It can ensure the hesitancy and fuzziness of evaluation information, and is not constrained by the sum of membership and non membership being less than 1. Thirdly, the improved SWARA method is used to calculate the weight of attributes. Finally, an extended MULTIMOORA (Multi-Objective Optimization on the basis of a Ratio Analysis plus the Full Multiplicative form) method is proposed to rank the siting alternatives for OWPS. The proposed method is applied to the study of OWPS site selection in Shandong Province, China. Through calculation, the comprehensive ranking values are G 1 = 14, G 2 = 7, G 3 = 4, G 4 = 8 and G 5 = 13. Therefore, A 3 is the best alternative. Through sensitivity analysis and comparative analysis, it was verified that the proposed model has good reliability and stability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">OWPS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Site selection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pythagorean hesitant fuzzy set</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SWARA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MULTIMOORA</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ye, Chunming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Geng, Xiuli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ocean engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1970</subfield><subfield code="g">291</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)30658977X</subfield><subfield code="w">(DE-600)1498543-3</subfield><subfield code="w">(DE-576)259484164</subfield><subfield code="x">0029-8018</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:291</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">291</subfield></datafield></record></collection>
|
author |
Zhou, Qingchao |
spellingShingle |
Zhou, Qingchao ddc 690 bkl 50.92 misc OWPS misc Site selection misc Pythagorean hesitant fuzzy set misc SWARA misc MULTIMOORA A decision framework of offshore wind power station site selection using a MULTIMOORA method under pythagorean hesitant fuzzy environment |
authorStr |
Zhou, Qingchao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)30658977X |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0029-8018 |
topic_title |
690 VZ 50.92 bkl A decision framework of offshore wind power station site selection using a MULTIMOORA method under pythagorean hesitant fuzzy environment OWPS Site selection Pythagorean hesitant fuzzy set SWARA MULTIMOORA |
topic |
ddc 690 bkl 50.92 misc OWPS misc Site selection misc Pythagorean hesitant fuzzy set misc SWARA misc MULTIMOORA |
topic_unstemmed |
ddc 690 bkl 50.92 misc OWPS misc Site selection misc Pythagorean hesitant fuzzy set misc SWARA misc MULTIMOORA |
topic_browse |
ddc 690 bkl 50.92 misc OWPS misc Site selection misc Pythagorean hesitant fuzzy set misc SWARA misc MULTIMOORA |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ocean engineering |
hierarchy_parent_id |
30658977X |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Ocean engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 |
title |
A decision framework of offshore wind power station site selection using a MULTIMOORA method under pythagorean hesitant fuzzy environment |
ctrlnum |
(DE-627)ELV066343879 (ELSEVIER)S0029-8018(23)02800-7 |
title_full |
A decision framework of offshore wind power station site selection using a MULTIMOORA method under pythagorean hesitant fuzzy environment |
author_sort |
Zhou, Qingchao |
journal |
Ocean engineering |
journalStr |
Ocean engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Zhou, Qingchao Ye, Chunming Geng, Xiuli |
container_volume |
291 |
class |
690 VZ 50.92 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhou, Qingchao |
doi_str_mv |
10.1016/j.oceaneng.2023.116416 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
a decision framework of offshore wind power station site selection using a multimoora method under pythagorean hesitant fuzzy environment |
title_auth |
A decision framework of offshore wind power station site selection using a MULTIMOORA method under pythagorean hesitant fuzzy environment |
abstract |
As global energy demand continues to grow, the demand for renewable energy continues to rise. To meet this demand, many countries have begun to actively promote the development of offshore wind power projects. Since siting is the key to the success of offshore wind power projects, this paper aims to develop a mixed decision-making framework to address the siting of offshore wind power station (OWPS). Firstly, establish a relatively comprehensive OWPS evaluation attribute system. Secondly, the pythagorean hesitation fuzzy set (PHFS) was used to describe the evaluation information in the OWPS site selection process. It can ensure the hesitancy and fuzziness of evaluation information, and is not constrained by the sum of membership and non membership being less than 1. Thirdly, the improved SWARA method is used to calculate the weight of attributes. Finally, an extended MULTIMOORA (Multi-Objective Optimization on the basis of a Ratio Analysis plus the Full Multiplicative form) method is proposed to rank the siting alternatives for OWPS. The proposed method is applied to the study of OWPS site selection in Shandong Province, China. Through calculation, the comprehensive ranking values are G 1 = 14, G 2 = 7, G 3 = 4, G 4 = 8 and G 5 = 13. Therefore, A 3 is the best alternative. Through sensitivity analysis and comparative analysis, it was verified that the proposed model has good reliability and stability. |
abstractGer |
As global energy demand continues to grow, the demand for renewable energy continues to rise. To meet this demand, many countries have begun to actively promote the development of offshore wind power projects. Since siting is the key to the success of offshore wind power projects, this paper aims to develop a mixed decision-making framework to address the siting of offshore wind power station (OWPS). Firstly, establish a relatively comprehensive OWPS evaluation attribute system. Secondly, the pythagorean hesitation fuzzy set (PHFS) was used to describe the evaluation information in the OWPS site selection process. It can ensure the hesitancy and fuzziness of evaluation information, and is not constrained by the sum of membership and non membership being less than 1. Thirdly, the improved SWARA method is used to calculate the weight of attributes. Finally, an extended MULTIMOORA (Multi-Objective Optimization on the basis of a Ratio Analysis plus the Full Multiplicative form) method is proposed to rank the siting alternatives for OWPS. The proposed method is applied to the study of OWPS site selection in Shandong Province, China. Through calculation, the comprehensive ranking values are G 1 = 14, G 2 = 7, G 3 = 4, G 4 = 8 and G 5 = 13. Therefore, A 3 is the best alternative. Through sensitivity analysis and comparative analysis, it was verified that the proposed model has good reliability and stability. |
abstract_unstemmed |
As global energy demand continues to grow, the demand for renewable energy continues to rise. To meet this demand, many countries have begun to actively promote the development of offshore wind power projects. Since siting is the key to the success of offshore wind power projects, this paper aims to develop a mixed decision-making framework to address the siting of offshore wind power station (OWPS). Firstly, establish a relatively comprehensive OWPS evaluation attribute system. Secondly, the pythagorean hesitation fuzzy set (PHFS) was used to describe the evaluation information in the OWPS site selection process. It can ensure the hesitancy and fuzziness of evaluation information, and is not constrained by the sum of membership and non membership being less than 1. Thirdly, the improved SWARA method is used to calculate the weight of attributes. Finally, an extended MULTIMOORA (Multi-Objective Optimization on the basis of a Ratio Analysis plus the Full Multiplicative form) method is proposed to rank the siting alternatives for OWPS. The proposed method is applied to the study of OWPS site selection in Shandong Province, China. Through calculation, the comprehensive ranking values are G 1 = 14, G 2 = 7, G 3 = 4, G 4 = 8 and G 5 = 13. Therefore, A 3 is the best alternative. Through sensitivity analysis and comparative analysis, it was verified that the proposed model has good reliability and stability. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
A decision framework of offshore wind power station site selection using a MULTIMOORA method under pythagorean hesitant fuzzy environment |
remote_bool |
true |
author2 |
Ye, Chunming Geng, Xiuli |
author2Str |
Ye, Chunming Geng, Xiuli |
ppnlink |
30658977X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.oceaneng.2023.116416 |
up_date |
2024-07-06T17:25:05.834Z |
_version_ |
1803851352857640960 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV066343879</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240110093226.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231231s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.oceaneng.2023.116416</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066343879</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0029-8018(23)02800-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Qingchao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A decision framework of offshore wind power station site selection using a MULTIMOORA method under pythagorean hesitant fuzzy environment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As global energy demand continues to grow, the demand for renewable energy continues to rise. To meet this demand, many countries have begun to actively promote the development of offshore wind power projects. Since siting is the key to the success of offshore wind power projects, this paper aims to develop a mixed decision-making framework to address the siting of offshore wind power station (OWPS). Firstly, establish a relatively comprehensive OWPS evaluation attribute system. Secondly, the pythagorean hesitation fuzzy set (PHFS) was used to describe the evaluation information in the OWPS site selection process. It can ensure the hesitancy and fuzziness of evaluation information, and is not constrained by the sum of membership and non membership being less than 1. Thirdly, the improved SWARA method is used to calculate the weight of attributes. Finally, an extended MULTIMOORA (Multi-Objective Optimization on the basis of a Ratio Analysis plus the Full Multiplicative form) method is proposed to rank the siting alternatives for OWPS. The proposed method is applied to the study of OWPS site selection in Shandong Province, China. Through calculation, the comprehensive ranking values are G 1 = 14, G 2 = 7, G 3 = 4, G 4 = 8 and G 5 = 13. Therefore, A 3 is the best alternative. Through sensitivity analysis and comparative analysis, it was verified that the proposed model has good reliability and stability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">OWPS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Site selection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pythagorean hesitant fuzzy set</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SWARA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MULTIMOORA</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ye, Chunming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Geng, Xiuli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ocean engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1970</subfield><subfield code="g">291</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)30658977X</subfield><subfield code="w">(DE-600)1498543-3</subfield><subfield code="w">(DE-576)259484164</subfield><subfield code="x">0029-8018</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:291</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">291</subfield></datafield></record></collection>
|
score |
7.399042 |