Cavity effects on spontaneous ignition of pressurized hydrogen jets
The release of pressurized hydrogen jets can lead to spontaneous ignition, which poses a major challenge to the safe utilization of hydrogen energy. Previous studies have primarily focused on the spontaneous ignition of pressurized hydrogen released into tubes. However, in real industrial scenarios,...
Ausführliche Beschreibung
Autor*in: |
Zhang, Jiaxin [verfasserIn] Huang, Jiaming [verfasserIn] Ba, Qingxin [verfasserIn] Zhou, Bo [verfasserIn] Christopher, David M. [verfasserIn] Gao, Ming [verfasserIn] Li, Xuefang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Fuel - New York, NY [u.a.] : Elsevier, 1970, 359 |
---|---|
Übergeordnetes Werk: |
volume:359 |
DOI / URN: |
10.1016/j.fuel.2023.130495 |
---|
Katalog-ID: |
ELV066346746 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV066346746 | ||
003 | DE-627 | ||
005 | 20231231093204.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231231s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.fuel.2023.130495 |2 doi | |
035 | |a (DE-627)ELV066346746 | ||
035 | |a (ELSEVIER)S0016-2361(23)03109-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
084 | |a 58.21 |2 bkl | ||
100 | 1 | |a Zhang, Jiaxin |e verfasserin |0 (orcid)0000-0002-1143-802X |4 aut | |
245 | 1 | 0 | |a Cavity effects on spontaneous ignition of pressurized hydrogen jets |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The release of pressurized hydrogen jets can lead to spontaneous ignition, which poses a major challenge to the safe utilization of hydrogen energy. Previous studies have primarily focused on the spontaneous ignition of pressurized hydrogen released into tubes. However, in real industrial scenarios, pressurized hydrogen is usually released into the atmosphere or a complex equipment environment. Therefore, the effect of obstacles on spontaneous ignition needs to be considered. In this study, the spontaneous ignition of sudden releases of pressurized hydrogen entering various cavity shapes was modeled using the standard k-ω turbulence model, the eddy dissipation concept (EDC) model and a detailed 21-step chemistry model. The effects of the cavities on the jet flow fields and the spontaneous ignition were analyzed for various cavity shapes and release pressures. For the pressures considered in this study, the cylindrical cavity did not lead to ignition. The highest hydrogen jet temperature occurred in the contact region due to the shock wave reflection, after which spontaneous ignition could not occur due to the flow divergence. The pressurized hydrogen entering hemispherical and conical cavities enhanced the hydrogen-air mixing which led to combustible regions and the formation of multidimensional shock waves, which significantly increased the spontaneous ignition probability. The cavities created a high-temperature region inside the cavity that experienced ignition but the flames did not spread out of the cavity. The conical cavity produced lower flame temperatures than the hemispherical cavity but prolonged the flame lifetime. Higher initial hydrogen release pressures resulted in more violent multidimensional shock wave interactions and higher contact surface temperatures, which lead to earlier ignition times but with little impact on the initial location of the spontaneous ignition. The results of this study provide a scientific foundation for hydrogen safety codes, safe equipment designs and the development of industry codes and standards. | ||
650 | 4 | |a Spontaneous ignition | |
650 | 4 | |a Cavities | |
650 | 4 | |a Hydrogen jet | |
650 | 4 | |a Hydrogen safety | |
700 | 1 | |a Huang, Jiaming |e verfasserin |4 aut | |
700 | 1 | |a Ba, Qingxin |e verfasserin |4 aut | |
700 | 1 | |a Zhou, Bo |e verfasserin |4 aut | |
700 | 1 | |a Christopher, David M. |e verfasserin |4 aut | |
700 | 1 | |a Gao, Ming |e verfasserin |4 aut | |
700 | 1 | |a Li, Xuefang |e verfasserin |0 (orcid)0000-0003-1846-5626 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Fuel |d New York, NY [u.a.] : Elsevier, 1970 |g 359 |h Online-Ressource |w (DE-627)300898584 |w (DE-600)1483656-7 |w (DE-576)09555176X |x 0016-2361 |7 nnns |
773 | 1 | 8 | |g volume:359 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 58.21 |j Brennstoffe |j Kraftstoffe |j Explosivstoffe |q VZ |
951 | |a AR | ||
952 | |d 359 |
author_variant |
j z jz j h jh q b qb b z bz d m c dm dmc m g mg x l xl |
---|---|
matchkey_str |
article:00162361:2023----::aiyfetosotnosgiinfrsu |
hierarchy_sort_str |
2023 |
bklnumber |
58.21 |
publishDate |
2023 |
allfields |
10.1016/j.fuel.2023.130495 doi (DE-627)ELV066346746 (ELSEVIER)S0016-2361(23)03109-5 DE-627 ger DE-627 rda eng 660 VZ 58.21 bkl Zhang, Jiaxin verfasserin (orcid)0000-0002-1143-802X aut Cavity effects on spontaneous ignition of pressurized hydrogen jets 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The release of pressurized hydrogen jets can lead to spontaneous ignition, which poses a major challenge to the safe utilization of hydrogen energy. Previous studies have primarily focused on the spontaneous ignition of pressurized hydrogen released into tubes. However, in real industrial scenarios, pressurized hydrogen is usually released into the atmosphere or a complex equipment environment. Therefore, the effect of obstacles on spontaneous ignition needs to be considered. In this study, the spontaneous ignition of sudden releases of pressurized hydrogen entering various cavity shapes was modeled using the standard k-ω turbulence model, the eddy dissipation concept (EDC) model and a detailed 21-step chemistry model. The effects of the cavities on the jet flow fields and the spontaneous ignition were analyzed for various cavity shapes and release pressures. For the pressures considered in this study, the cylindrical cavity did not lead to ignition. The highest hydrogen jet temperature occurred in the contact region due to the shock wave reflection, after which spontaneous ignition could not occur due to the flow divergence. The pressurized hydrogen entering hemispherical and conical cavities enhanced the hydrogen-air mixing which led to combustible regions and the formation of multidimensional shock waves, which significantly increased the spontaneous ignition probability. The cavities created a high-temperature region inside the cavity that experienced ignition but the flames did not spread out of the cavity. The conical cavity produced lower flame temperatures than the hemispherical cavity but prolonged the flame lifetime. Higher initial hydrogen release pressures resulted in more violent multidimensional shock wave interactions and higher contact surface temperatures, which lead to earlier ignition times but with little impact on the initial location of the spontaneous ignition. The results of this study provide a scientific foundation for hydrogen safety codes, safe equipment designs and the development of industry codes and standards. Spontaneous ignition Cavities Hydrogen jet Hydrogen safety Huang, Jiaming verfasserin aut Ba, Qingxin verfasserin aut Zhou, Bo verfasserin aut Christopher, David M. verfasserin aut Gao, Ming verfasserin aut Li, Xuefang verfasserin (orcid)0000-0003-1846-5626 aut Enthalten in Fuel New York, NY [u.a.] : Elsevier, 1970 359 Online-Ressource (DE-627)300898584 (DE-600)1483656-7 (DE-576)09555176X 0016-2361 nnns volume:359 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.21 Brennstoffe Kraftstoffe Explosivstoffe VZ AR 359 |
spelling |
10.1016/j.fuel.2023.130495 doi (DE-627)ELV066346746 (ELSEVIER)S0016-2361(23)03109-5 DE-627 ger DE-627 rda eng 660 VZ 58.21 bkl Zhang, Jiaxin verfasserin (orcid)0000-0002-1143-802X aut Cavity effects on spontaneous ignition of pressurized hydrogen jets 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The release of pressurized hydrogen jets can lead to spontaneous ignition, which poses a major challenge to the safe utilization of hydrogen energy. Previous studies have primarily focused on the spontaneous ignition of pressurized hydrogen released into tubes. However, in real industrial scenarios, pressurized hydrogen is usually released into the atmosphere or a complex equipment environment. Therefore, the effect of obstacles on spontaneous ignition needs to be considered. In this study, the spontaneous ignition of sudden releases of pressurized hydrogen entering various cavity shapes was modeled using the standard k-ω turbulence model, the eddy dissipation concept (EDC) model and a detailed 21-step chemistry model. The effects of the cavities on the jet flow fields and the spontaneous ignition were analyzed for various cavity shapes and release pressures. For the pressures considered in this study, the cylindrical cavity did not lead to ignition. The highest hydrogen jet temperature occurred in the contact region due to the shock wave reflection, after which spontaneous ignition could not occur due to the flow divergence. The pressurized hydrogen entering hemispherical and conical cavities enhanced the hydrogen-air mixing which led to combustible regions and the formation of multidimensional shock waves, which significantly increased the spontaneous ignition probability. The cavities created a high-temperature region inside the cavity that experienced ignition but the flames did not spread out of the cavity. The conical cavity produced lower flame temperatures than the hemispherical cavity but prolonged the flame lifetime. Higher initial hydrogen release pressures resulted in more violent multidimensional shock wave interactions and higher contact surface temperatures, which lead to earlier ignition times but with little impact on the initial location of the spontaneous ignition. The results of this study provide a scientific foundation for hydrogen safety codes, safe equipment designs and the development of industry codes and standards. Spontaneous ignition Cavities Hydrogen jet Hydrogen safety Huang, Jiaming verfasserin aut Ba, Qingxin verfasserin aut Zhou, Bo verfasserin aut Christopher, David M. verfasserin aut Gao, Ming verfasserin aut Li, Xuefang verfasserin (orcid)0000-0003-1846-5626 aut Enthalten in Fuel New York, NY [u.a.] : Elsevier, 1970 359 Online-Ressource (DE-627)300898584 (DE-600)1483656-7 (DE-576)09555176X 0016-2361 nnns volume:359 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.21 Brennstoffe Kraftstoffe Explosivstoffe VZ AR 359 |
allfields_unstemmed |
10.1016/j.fuel.2023.130495 doi (DE-627)ELV066346746 (ELSEVIER)S0016-2361(23)03109-5 DE-627 ger DE-627 rda eng 660 VZ 58.21 bkl Zhang, Jiaxin verfasserin (orcid)0000-0002-1143-802X aut Cavity effects on spontaneous ignition of pressurized hydrogen jets 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The release of pressurized hydrogen jets can lead to spontaneous ignition, which poses a major challenge to the safe utilization of hydrogen energy. Previous studies have primarily focused on the spontaneous ignition of pressurized hydrogen released into tubes. However, in real industrial scenarios, pressurized hydrogen is usually released into the atmosphere or a complex equipment environment. Therefore, the effect of obstacles on spontaneous ignition needs to be considered. In this study, the spontaneous ignition of sudden releases of pressurized hydrogen entering various cavity shapes was modeled using the standard k-ω turbulence model, the eddy dissipation concept (EDC) model and a detailed 21-step chemistry model. The effects of the cavities on the jet flow fields and the spontaneous ignition were analyzed for various cavity shapes and release pressures. For the pressures considered in this study, the cylindrical cavity did not lead to ignition. The highest hydrogen jet temperature occurred in the contact region due to the shock wave reflection, after which spontaneous ignition could not occur due to the flow divergence. The pressurized hydrogen entering hemispherical and conical cavities enhanced the hydrogen-air mixing which led to combustible regions and the formation of multidimensional shock waves, which significantly increased the spontaneous ignition probability. The cavities created a high-temperature region inside the cavity that experienced ignition but the flames did not spread out of the cavity. The conical cavity produced lower flame temperatures than the hemispherical cavity but prolonged the flame lifetime. Higher initial hydrogen release pressures resulted in more violent multidimensional shock wave interactions and higher contact surface temperatures, which lead to earlier ignition times but with little impact on the initial location of the spontaneous ignition. The results of this study provide a scientific foundation for hydrogen safety codes, safe equipment designs and the development of industry codes and standards. Spontaneous ignition Cavities Hydrogen jet Hydrogen safety Huang, Jiaming verfasserin aut Ba, Qingxin verfasserin aut Zhou, Bo verfasserin aut Christopher, David M. verfasserin aut Gao, Ming verfasserin aut Li, Xuefang verfasserin (orcid)0000-0003-1846-5626 aut Enthalten in Fuel New York, NY [u.a.] : Elsevier, 1970 359 Online-Ressource (DE-627)300898584 (DE-600)1483656-7 (DE-576)09555176X 0016-2361 nnns volume:359 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.21 Brennstoffe Kraftstoffe Explosivstoffe VZ AR 359 |
allfieldsGer |
10.1016/j.fuel.2023.130495 doi (DE-627)ELV066346746 (ELSEVIER)S0016-2361(23)03109-5 DE-627 ger DE-627 rda eng 660 VZ 58.21 bkl Zhang, Jiaxin verfasserin (orcid)0000-0002-1143-802X aut Cavity effects on spontaneous ignition of pressurized hydrogen jets 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The release of pressurized hydrogen jets can lead to spontaneous ignition, which poses a major challenge to the safe utilization of hydrogen energy. Previous studies have primarily focused on the spontaneous ignition of pressurized hydrogen released into tubes. However, in real industrial scenarios, pressurized hydrogen is usually released into the atmosphere or a complex equipment environment. Therefore, the effect of obstacles on spontaneous ignition needs to be considered. In this study, the spontaneous ignition of sudden releases of pressurized hydrogen entering various cavity shapes was modeled using the standard k-ω turbulence model, the eddy dissipation concept (EDC) model and a detailed 21-step chemistry model. The effects of the cavities on the jet flow fields and the spontaneous ignition were analyzed for various cavity shapes and release pressures. For the pressures considered in this study, the cylindrical cavity did not lead to ignition. The highest hydrogen jet temperature occurred in the contact region due to the shock wave reflection, after which spontaneous ignition could not occur due to the flow divergence. The pressurized hydrogen entering hemispherical and conical cavities enhanced the hydrogen-air mixing which led to combustible regions and the formation of multidimensional shock waves, which significantly increased the spontaneous ignition probability. The cavities created a high-temperature region inside the cavity that experienced ignition but the flames did not spread out of the cavity. The conical cavity produced lower flame temperatures than the hemispherical cavity but prolonged the flame lifetime. Higher initial hydrogen release pressures resulted in more violent multidimensional shock wave interactions and higher contact surface temperatures, which lead to earlier ignition times but with little impact on the initial location of the spontaneous ignition. The results of this study provide a scientific foundation for hydrogen safety codes, safe equipment designs and the development of industry codes and standards. Spontaneous ignition Cavities Hydrogen jet Hydrogen safety Huang, Jiaming verfasserin aut Ba, Qingxin verfasserin aut Zhou, Bo verfasserin aut Christopher, David M. verfasserin aut Gao, Ming verfasserin aut Li, Xuefang verfasserin (orcid)0000-0003-1846-5626 aut Enthalten in Fuel New York, NY [u.a.] : Elsevier, 1970 359 Online-Ressource (DE-627)300898584 (DE-600)1483656-7 (DE-576)09555176X 0016-2361 nnns volume:359 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.21 Brennstoffe Kraftstoffe Explosivstoffe VZ AR 359 |
allfieldsSound |
10.1016/j.fuel.2023.130495 doi (DE-627)ELV066346746 (ELSEVIER)S0016-2361(23)03109-5 DE-627 ger DE-627 rda eng 660 VZ 58.21 bkl Zhang, Jiaxin verfasserin (orcid)0000-0002-1143-802X aut Cavity effects on spontaneous ignition of pressurized hydrogen jets 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The release of pressurized hydrogen jets can lead to spontaneous ignition, which poses a major challenge to the safe utilization of hydrogen energy. Previous studies have primarily focused on the spontaneous ignition of pressurized hydrogen released into tubes. However, in real industrial scenarios, pressurized hydrogen is usually released into the atmosphere or a complex equipment environment. Therefore, the effect of obstacles on spontaneous ignition needs to be considered. In this study, the spontaneous ignition of sudden releases of pressurized hydrogen entering various cavity shapes was modeled using the standard k-ω turbulence model, the eddy dissipation concept (EDC) model and a detailed 21-step chemistry model. The effects of the cavities on the jet flow fields and the spontaneous ignition were analyzed for various cavity shapes and release pressures. For the pressures considered in this study, the cylindrical cavity did not lead to ignition. The highest hydrogen jet temperature occurred in the contact region due to the shock wave reflection, after which spontaneous ignition could not occur due to the flow divergence. The pressurized hydrogen entering hemispherical and conical cavities enhanced the hydrogen-air mixing which led to combustible regions and the formation of multidimensional shock waves, which significantly increased the spontaneous ignition probability. The cavities created a high-temperature region inside the cavity that experienced ignition but the flames did not spread out of the cavity. The conical cavity produced lower flame temperatures than the hemispherical cavity but prolonged the flame lifetime. Higher initial hydrogen release pressures resulted in more violent multidimensional shock wave interactions and higher contact surface temperatures, which lead to earlier ignition times but with little impact on the initial location of the spontaneous ignition. The results of this study provide a scientific foundation for hydrogen safety codes, safe equipment designs and the development of industry codes and standards. Spontaneous ignition Cavities Hydrogen jet Hydrogen safety Huang, Jiaming verfasserin aut Ba, Qingxin verfasserin aut Zhou, Bo verfasserin aut Christopher, David M. verfasserin aut Gao, Ming verfasserin aut Li, Xuefang verfasserin (orcid)0000-0003-1846-5626 aut Enthalten in Fuel New York, NY [u.a.] : Elsevier, 1970 359 Online-Ressource (DE-627)300898584 (DE-600)1483656-7 (DE-576)09555176X 0016-2361 nnns volume:359 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.21 Brennstoffe Kraftstoffe Explosivstoffe VZ AR 359 |
language |
English |
source |
Enthalten in Fuel 359 volume:359 |
sourceStr |
Enthalten in Fuel 359 volume:359 |
format_phy_str_mv |
Article |
bklname |
Brennstoffe Kraftstoffe Explosivstoffe |
institution |
findex.gbv.de |
topic_facet |
Spontaneous ignition Cavities Hydrogen jet Hydrogen safety |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Fuel |
authorswithroles_txt_mv |
Zhang, Jiaxin @@aut@@ Huang, Jiaming @@aut@@ Ba, Qingxin @@aut@@ Zhou, Bo @@aut@@ Christopher, David M. @@aut@@ Gao, Ming @@aut@@ Li, Xuefang @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
300898584 |
dewey-sort |
3660 |
id |
ELV066346746 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066346746</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231231093204.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231231s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.fuel.2023.130495</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066346746</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0016-2361(23)03109-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.21</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Jiaxin</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1143-802X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cavity effects on spontaneous ignition of pressurized hydrogen jets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The release of pressurized hydrogen jets can lead to spontaneous ignition, which poses a major challenge to the safe utilization of hydrogen energy. Previous studies have primarily focused on the spontaneous ignition of pressurized hydrogen released into tubes. However, in real industrial scenarios, pressurized hydrogen is usually released into the atmosphere or a complex equipment environment. Therefore, the effect of obstacles on spontaneous ignition needs to be considered. In this study, the spontaneous ignition of sudden releases of pressurized hydrogen entering various cavity shapes was modeled using the standard k-ω turbulence model, the eddy dissipation concept (EDC) model and a detailed 21-step chemistry model. The effects of the cavities on the jet flow fields and the spontaneous ignition were analyzed for various cavity shapes and release pressures. For the pressures considered in this study, the cylindrical cavity did not lead to ignition. The highest hydrogen jet temperature occurred in the contact region due to the shock wave reflection, after which spontaneous ignition could not occur due to the flow divergence. The pressurized hydrogen entering hemispherical and conical cavities enhanced the hydrogen-air mixing which led to combustible regions and the formation of multidimensional shock waves, which significantly increased the spontaneous ignition probability. The cavities created a high-temperature region inside the cavity that experienced ignition but the flames did not spread out of the cavity. The conical cavity produced lower flame temperatures than the hemispherical cavity but prolonged the flame lifetime. Higher initial hydrogen release pressures resulted in more violent multidimensional shock wave interactions and higher contact surface temperatures, which lead to earlier ignition times but with little impact on the initial location of the spontaneous ignition. The results of this study provide a scientific foundation for hydrogen safety codes, safe equipment designs and the development of industry codes and standards.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spontaneous ignition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cavities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen jet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen safety</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Jiaming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ba, Qingxin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Bo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Christopher, David M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Ming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xuefang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1846-5626</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Fuel</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1970</subfield><subfield code="g">359</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)300898584</subfield><subfield code="w">(DE-600)1483656-7</subfield><subfield code="w">(DE-576)09555176X</subfield><subfield code="x">0016-2361</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:359</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.21</subfield><subfield code="j">Brennstoffe</subfield><subfield code="j">Kraftstoffe</subfield><subfield code="j">Explosivstoffe</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">359</subfield></datafield></record></collection>
|
author |
Zhang, Jiaxin |
spellingShingle |
Zhang, Jiaxin ddc 660 bkl 58.21 misc Spontaneous ignition misc Cavities misc Hydrogen jet misc Hydrogen safety Cavity effects on spontaneous ignition of pressurized hydrogen jets |
authorStr |
Zhang, Jiaxin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)300898584 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0016-2361 |
topic_title |
660 VZ 58.21 bkl Cavity effects on spontaneous ignition of pressurized hydrogen jets Spontaneous ignition Cavities Hydrogen jet Hydrogen safety |
topic |
ddc 660 bkl 58.21 misc Spontaneous ignition misc Cavities misc Hydrogen jet misc Hydrogen safety |
topic_unstemmed |
ddc 660 bkl 58.21 misc Spontaneous ignition misc Cavities misc Hydrogen jet misc Hydrogen safety |
topic_browse |
ddc 660 bkl 58.21 misc Spontaneous ignition misc Cavities misc Hydrogen jet misc Hydrogen safety |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Fuel |
hierarchy_parent_id |
300898584 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Fuel |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)300898584 (DE-600)1483656-7 (DE-576)09555176X |
title |
Cavity effects on spontaneous ignition of pressurized hydrogen jets |
ctrlnum |
(DE-627)ELV066346746 (ELSEVIER)S0016-2361(23)03109-5 |
title_full |
Cavity effects on spontaneous ignition of pressurized hydrogen jets |
author_sort |
Zhang, Jiaxin |
journal |
Fuel |
journalStr |
Fuel |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Zhang, Jiaxin Huang, Jiaming Ba, Qingxin Zhou, Bo Christopher, David M. Gao, Ming Li, Xuefang |
container_volume |
359 |
class |
660 VZ 58.21 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Jiaxin |
doi_str_mv |
10.1016/j.fuel.2023.130495 |
normlink |
(ORCID)0000-0002-1143-802X (ORCID)0000-0003-1846-5626 |
normlink_prefix_str_mv |
(orcid)0000-0002-1143-802X (orcid)0000-0003-1846-5626 |
dewey-full |
660 |
author2-role |
verfasserin |
title_sort |
cavity effects on spontaneous ignition of pressurized hydrogen jets |
title_auth |
Cavity effects on spontaneous ignition of pressurized hydrogen jets |
abstract |
The release of pressurized hydrogen jets can lead to spontaneous ignition, which poses a major challenge to the safe utilization of hydrogen energy. Previous studies have primarily focused on the spontaneous ignition of pressurized hydrogen released into tubes. However, in real industrial scenarios, pressurized hydrogen is usually released into the atmosphere or a complex equipment environment. Therefore, the effect of obstacles on spontaneous ignition needs to be considered. In this study, the spontaneous ignition of sudden releases of pressurized hydrogen entering various cavity shapes was modeled using the standard k-ω turbulence model, the eddy dissipation concept (EDC) model and a detailed 21-step chemistry model. The effects of the cavities on the jet flow fields and the spontaneous ignition were analyzed for various cavity shapes and release pressures. For the pressures considered in this study, the cylindrical cavity did not lead to ignition. The highest hydrogen jet temperature occurred in the contact region due to the shock wave reflection, after which spontaneous ignition could not occur due to the flow divergence. The pressurized hydrogen entering hemispherical and conical cavities enhanced the hydrogen-air mixing which led to combustible regions and the formation of multidimensional shock waves, which significantly increased the spontaneous ignition probability. The cavities created a high-temperature region inside the cavity that experienced ignition but the flames did not spread out of the cavity. The conical cavity produced lower flame temperatures than the hemispherical cavity but prolonged the flame lifetime. Higher initial hydrogen release pressures resulted in more violent multidimensional shock wave interactions and higher contact surface temperatures, which lead to earlier ignition times but with little impact on the initial location of the spontaneous ignition. The results of this study provide a scientific foundation for hydrogen safety codes, safe equipment designs and the development of industry codes and standards. |
abstractGer |
The release of pressurized hydrogen jets can lead to spontaneous ignition, which poses a major challenge to the safe utilization of hydrogen energy. Previous studies have primarily focused on the spontaneous ignition of pressurized hydrogen released into tubes. However, in real industrial scenarios, pressurized hydrogen is usually released into the atmosphere or a complex equipment environment. Therefore, the effect of obstacles on spontaneous ignition needs to be considered. In this study, the spontaneous ignition of sudden releases of pressurized hydrogen entering various cavity shapes was modeled using the standard k-ω turbulence model, the eddy dissipation concept (EDC) model and a detailed 21-step chemistry model. The effects of the cavities on the jet flow fields and the spontaneous ignition were analyzed for various cavity shapes and release pressures. For the pressures considered in this study, the cylindrical cavity did not lead to ignition. The highest hydrogen jet temperature occurred in the contact region due to the shock wave reflection, after which spontaneous ignition could not occur due to the flow divergence. The pressurized hydrogen entering hemispherical and conical cavities enhanced the hydrogen-air mixing which led to combustible regions and the formation of multidimensional shock waves, which significantly increased the spontaneous ignition probability. The cavities created a high-temperature region inside the cavity that experienced ignition but the flames did not spread out of the cavity. The conical cavity produced lower flame temperatures than the hemispherical cavity but prolonged the flame lifetime. Higher initial hydrogen release pressures resulted in more violent multidimensional shock wave interactions and higher contact surface temperatures, which lead to earlier ignition times but with little impact on the initial location of the spontaneous ignition. The results of this study provide a scientific foundation for hydrogen safety codes, safe equipment designs and the development of industry codes and standards. |
abstract_unstemmed |
The release of pressurized hydrogen jets can lead to spontaneous ignition, which poses a major challenge to the safe utilization of hydrogen energy. Previous studies have primarily focused on the spontaneous ignition of pressurized hydrogen released into tubes. However, in real industrial scenarios, pressurized hydrogen is usually released into the atmosphere or a complex equipment environment. Therefore, the effect of obstacles on spontaneous ignition needs to be considered. In this study, the spontaneous ignition of sudden releases of pressurized hydrogen entering various cavity shapes was modeled using the standard k-ω turbulence model, the eddy dissipation concept (EDC) model and a detailed 21-step chemistry model. The effects of the cavities on the jet flow fields and the spontaneous ignition were analyzed for various cavity shapes and release pressures. For the pressures considered in this study, the cylindrical cavity did not lead to ignition. The highest hydrogen jet temperature occurred in the contact region due to the shock wave reflection, after which spontaneous ignition could not occur due to the flow divergence. The pressurized hydrogen entering hemispherical and conical cavities enhanced the hydrogen-air mixing which led to combustible regions and the formation of multidimensional shock waves, which significantly increased the spontaneous ignition probability. The cavities created a high-temperature region inside the cavity that experienced ignition but the flames did not spread out of the cavity. The conical cavity produced lower flame temperatures than the hemispherical cavity but prolonged the flame lifetime. Higher initial hydrogen release pressures resulted in more violent multidimensional shock wave interactions and higher contact surface temperatures, which lead to earlier ignition times but with little impact on the initial location of the spontaneous ignition. The results of this study provide a scientific foundation for hydrogen safety codes, safe equipment designs and the development of industry codes and standards. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Cavity effects on spontaneous ignition of pressurized hydrogen jets |
remote_bool |
true |
author2 |
Huang, Jiaming Ba, Qingxin Zhou, Bo Christopher, David M. Gao, Ming Li, Xuefang |
author2Str |
Huang, Jiaming Ba, Qingxin Zhou, Bo Christopher, David M. Gao, Ming Li, Xuefang |
ppnlink |
300898584 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.fuel.2023.130495 |
up_date |
2024-07-06T17:25:42.804Z |
_version_ |
1803851391625592832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066346746</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231231093204.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231231s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.fuel.2023.130495</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066346746</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0016-2361(23)03109-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.21</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Jiaxin</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1143-802X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cavity effects on spontaneous ignition of pressurized hydrogen jets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The release of pressurized hydrogen jets can lead to spontaneous ignition, which poses a major challenge to the safe utilization of hydrogen energy. Previous studies have primarily focused on the spontaneous ignition of pressurized hydrogen released into tubes. However, in real industrial scenarios, pressurized hydrogen is usually released into the atmosphere or a complex equipment environment. Therefore, the effect of obstacles on spontaneous ignition needs to be considered. In this study, the spontaneous ignition of sudden releases of pressurized hydrogen entering various cavity shapes was modeled using the standard k-ω turbulence model, the eddy dissipation concept (EDC) model and a detailed 21-step chemistry model. The effects of the cavities on the jet flow fields and the spontaneous ignition were analyzed for various cavity shapes and release pressures. For the pressures considered in this study, the cylindrical cavity did not lead to ignition. The highest hydrogen jet temperature occurred in the contact region due to the shock wave reflection, after which spontaneous ignition could not occur due to the flow divergence. The pressurized hydrogen entering hemispherical and conical cavities enhanced the hydrogen-air mixing which led to combustible regions and the formation of multidimensional shock waves, which significantly increased the spontaneous ignition probability. The cavities created a high-temperature region inside the cavity that experienced ignition but the flames did not spread out of the cavity. The conical cavity produced lower flame temperatures than the hemispherical cavity but prolonged the flame lifetime. Higher initial hydrogen release pressures resulted in more violent multidimensional shock wave interactions and higher contact surface temperatures, which lead to earlier ignition times but with little impact on the initial location of the spontaneous ignition. The results of this study provide a scientific foundation for hydrogen safety codes, safe equipment designs and the development of industry codes and standards.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spontaneous ignition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cavities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen jet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen safety</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Jiaming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ba, Qingxin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Bo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Christopher, David M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Ming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xuefang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1846-5626</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Fuel</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1970</subfield><subfield code="g">359</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)300898584</subfield><subfield code="w">(DE-600)1483656-7</subfield><subfield code="w">(DE-576)09555176X</subfield><subfield code="x">0016-2361</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:359</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.21</subfield><subfield code="j">Brennstoffe</subfield><subfield code="j">Kraftstoffe</subfield><subfield code="j">Explosivstoffe</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">359</subfield></datafield></record></collection>
|
score |
7.401101 |