Improving thermal insulation and fire resistance of ceramifiable EVA/ceramic hybrid composites via low temperature sintering and foaming strategy
Energy efficient buildings, propulsion components and thermal protection systems require materials with high thermal protective properties. Traditional polymer composites or ceramic materials have limited comprehensive applications because of their poor thermal protective properties or poor processa...
Ausführliche Beschreibung
Autor*in: |
Liu, Tianming [verfasserIn] Yao, Yao [verfasserIn] Zhao, Dong [verfasserIn] Hu, Fangzhou [verfasserIn] Yun, Chen [verfasserIn] Jiang, Guodong [verfasserIn] Shen, Yucai [verfasserIn] Wang, Tingwei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Ceramics international - Amsterdam [u.a.] : Elsevier Science, 1995, 50, Seite 6207-6219 |
---|---|
Übergeordnetes Werk: |
volume:50 ; pages:6207-6219 |
DOI / URN: |
10.1016/j.ceramint.2023.11.339 |
---|
Katalog-ID: |
ELV066382173 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV066382173 | ||
003 | DE-627 | ||
005 | 20240104093842.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240104s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ceramint.2023.11.339 |2 doi | |
035 | |a (DE-627)ELV066382173 | ||
035 | |a (ELSEVIER)S0272-8842(23)03824-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
084 | |a 51.60 |2 bkl | ||
084 | |a 58.45 |2 bkl | ||
100 | 1 | |a Liu, Tianming |e verfasserin |4 aut | |
245 | 1 | 0 | |a Improving thermal insulation and fire resistance of ceramifiable EVA/ceramic hybrid composites via low temperature sintering and foaming strategy |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Energy efficient buildings, propulsion components and thermal protection systems require materials with high thermal protective properties. Traditional polymer composites or ceramic materials have limited comprehensive applications because of their poor thermal protective properties or poor processability. Herein, a novel fire resistant and thermally insulating polymer/ceramic hybrid ceramifiable composite was developed based on low temperature sintering principle and foaming on fire strategy. Specifically, the influences of raw materials of low temperature ceramics, such as glass frit, phosphate, etc, on the properties of ceramifiable ethylene-vinyl acetate (EVA) composites were investigated. Its fire resistance and thermal insulation properties were evaluated by simulating different sintering environments. The results show that the ceramifiable composite exhibits the highest improvement in fire resistance because a crystalline phase was formed at high temperatures. Gas evolution from the thermal decomposition of ammonium polyphosphate (APP) and EVA contributes to the formation of the porous structure in ceramic residues. The optimal system can resist above 1000 °C flame for 30 min without disintegration, and the temperature of the unfired side was maintained around 200 °C. The reliability of the strategy was verified by the effective medium theory model. | ||
650 | 4 | |a Glass frit | |
650 | 4 | |a Ceramifiable | |
650 | 4 | |a Sintering | |
650 | 4 | |a Phase transition | |
650 | 4 | |a Thermal properties | |
700 | 1 | |a Yao, Yao |e verfasserin |4 aut | |
700 | 1 | |a Zhao, Dong |e verfasserin |4 aut | |
700 | 1 | |a Hu, Fangzhou |e verfasserin |4 aut | |
700 | 1 | |a Yun, Chen |e verfasserin |4 aut | |
700 | 1 | |a Jiang, Guodong |e verfasserin |4 aut | |
700 | 1 | |a Shen, Yucai |e verfasserin |0 (orcid)0000-0003-2769-9301 |4 aut | |
700 | 1 | |a Wang, Tingwei |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Ceramics international |d Amsterdam [u.a.] : Elsevier Science, 1995 |g 50, Seite 6207-6219 |h Online-Ressource |w (DE-627)320584305 |w (DE-600)2018052-4 |w (DE-576)25523063X |x 0272-8842 |7 nnns |
773 | 1 | 8 | |g volume:50 |g pages:6207-6219 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 51.60 |j Keramische Werkstoffe |j Hartstoffe |x Werkstoffkunde |q VZ |
936 | b | k | |a 58.45 |j Gesteinshüttenkunde |q VZ |
951 | |a AR | ||
952 | |d 50 |h 6207-6219 |
author_variant |
t l tl y y yy d z dz f h fh c y cy g j gj y s ys t w tw |
---|---|
matchkey_str |
article:02728842:2023----::mrvntemlnuainnfrrssacocrmfaleaeaihbicmoievaotm |
hierarchy_sort_str |
2023 |
bklnumber |
51.60 58.45 |
publishDate |
2023 |
allfields |
10.1016/j.ceramint.2023.11.339 doi (DE-627)ELV066382173 (ELSEVIER)S0272-8842(23)03824-5 DE-627 ger DE-627 rda eng 670 VZ 51.60 bkl 58.45 bkl Liu, Tianming verfasserin aut Improving thermal insulation and fire resistance of ceramifiable EVA/ceramic hybrid composites via low temperature sintering and foaming strategy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Energy efficient buildings, propulsion components and thermal protection systems require materials with high thermal protective properties. Traditional polymer composites or ceramic materials have limited comprehensive applications because of their poor thermal protective properties or poor processability. Herein, a novel fire resistant and thermally insulating polymer/ceramic hybrid ceramifiable composite was developed based on low temperature sintering principle and foaming on fire strategy. Specifically, the influences of raw materials of low temperature ceramics, such as glass frit, phosphate, etc, on the properties of ceramifiable ethylene-vinyl acetate (EVA) composites were investigated. Its fire resistance and thermal insulation properties were evaluated by simulating different sintering environments. The results show that the ceramifiable composite exhibits the highest improvement in fire resistance because a crystalline phase was formed at high temperatures. Gas evolution from the thermal decomposition of ammonium polyphosphate (APP) and EVA contributes to the formation of the porous structure in ceramic residues. The optimal system can resist above 1000 °C flame for 30 min without disintegration, and the temperature of the unfired side was maintained around 200 °C. The reliability of the strategy was verified by the effective medium theory model. Glass frit Ceramifiable Sintering Phase transition Thermal properties Yao, Yao verfasserin aut Zhao, Dong verfasserin aut Hu, Fangzhou verfasserin aut Yun, Chen verfasserin aut Jiang, Guodong verfasserin aut Shen, Yucai verfasserin (orcid)0000-0003-2769-9301 aut Wang, Tingwei verfasserin aut Enthalten in Ceramics international Amsterdam [u.a.] : Elsevier Science, 1995 50, Seite 6207-6219 Online-Ressource (DE-627)320584305 (DE-600)2018052-4 (DE-576)25523063X 0272-8842 nnns volume:50 pages:6207-6219 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 58.45 Gesteinshüttenkunde VZ AR 50 6207-6219 |
spelling |
10.1016/j.ceramint.2023.11.339 doi (DE-627)ELV066382173 (ELSEVIER)S0272-8842(23)03824-5 DE-627 ger DE-627 rda eng 670 VZ 51.60 bkl 58.45 bkl Liu, Tianming verfasserin aut Improving thermal insulation and fire resistance of ceramifiable EVA/ceramic hybrid composites via low temperature sintering and foaming strategy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Energy efficient buildings, propulsion components and thermal protection systems require materials with high thermal protective properties. Traditional polymer composites or ceramic materials have limited comprehensive applications because of their poor thermal protective properties or poor processability. Herein, a novel fire resistant and thermally insulating polymer/ceramic hybrid ceramifiable composite was developed based on low temperature sintering principle and foaming on fire strategy. Specifically, the influences of raw materials of low temperature ceramics, such as glass frit, phosphate, etc, on the properties of ceramifiable ethylene-vinyl acetate (EVA) composites were investigated. Its fire resistance and thermal insulation properties were evaluated by simulating different sintering environments. The results show that the ceramifiable composite exhibits the highest improvement in fire resistance because a crystalline phase was formed at high temperatures. Gas evolution from the thermal decomposition of ammonium polyphosphate (APP) and EVA contributes to the formation of the porous structure in ceramic residues. The optimal system can resist above 1000 °C flame for 30 min without disintegration, and the temperature of the unfired side was maintained around 200 °C. The reliability of the strategy was verified by the effective medium theory model. Glass frit Ceramifiable Sintering Phase transition Thermal properties Yao, Yao verfasserin aut Zhao, Dong verfasserin aut Hu, Fangzhou verfasserin aut Yun, Chen verfasserin aut Jiang, Guodong verfasserin aut Shen, Yucai verfasserin (orcid)0000-0003-2769-9301 aut Wang, Tingwei verfasserin aut Enthalten in Ceramics international Amsterdam [u.a.] : Elsevier Science, 1995 50, Seite 6207-6219 Online-Ressource (DE-627)320584305 (DE-600)2018052-4 (DE-576)25523063X 0272-8842 nnns volume:50 pages:6207-6219 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 58.45 Gesteinshüttenkunde VZ AR 50 6207-6219 |
allfields_unstemmed |
10.1016/j.ceramint.2023.11.339 doi (DE-627)ELV066382173 (ELSEVIER)S0272-8842(23)03824-5 DE-627 ger DE-627 rda eng 670 VZ 51.60 bkl 58.45 bkl Liu, Tianming verfasserin aut Improving thermal insulation and fire resistance of ceramifiable EVA/ceramic hybrid composites via low temperature sintering and foaming strategy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Energy efficient buildings, propulsion components and thermal protection systems require materials with high thermal protective properties. Traditional polymer composites or ceramic materials have limited comprehensive applications because of their poor thermal protective properties or poor processability. Herein, a novel fire resistant and thermally insulating polymer/ceramic hybrid ceramifiable composite was developed based on low temperature sintering principle and foaming on fire strategy. Specifically, the influences of raw materials of low temperature ceramics, such as glass frit, phosphate, etc, on the properties of ceramifiable ethylene-vinyl acetate (EVA) composites were investigated. Its fire resistance and thermal insulation properties were evaluated by simulating different sintering environments. The results show that the ceramifiable composite exhibits the highest improvement in fire resistance because a crystalline phase was formed at high temperatures. Gas evolution from the thermal decomposition of ammonium polyphosphate (APP) and EVA contributes to the formation of the porous structure in ceramic residues. The optimal system can resist above 1000 °C flame for 30 min without disintegration, and the temperature of the unfired side was maintained around 200 °C. The reliability of the strategy was verified by the effective medium theory model. Glass frit Ceramifiable Sintering Phase transition Thermal properties Yao, Yao verfasserin aut Zhao, Dong verfasserin aut Hu, Fangzhou verfasserin aut Yun, Chen verfasserin aut Jiang, Guodong verfasserin aut Shen, Yucai verfasserin (orcid)0000-0003-2769-9301 aut Wang, Tingwei verfasserin aut Enthalten in Ceramics international Amsterdam [u.a.] : Elsevier Science, 1995 50, Seite 6207-6219 Online-Ressource (DE-627)320584305 (DE-600)2018052-4 (DE-576)25523063X 0272-8842 nnns volume:50 pages:6207-6219 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 58.45 Gesteinshüttenkunde VZ AR 50 6207-6219 |
allfieldsGer |
10.1016/j.ceramint.2023.11.339 doi (DE-627)ELV066382173 (ELSEVIER)S0272-8842(23)03824-5 DE-627 ger DE-627 rda eng 670 VZ 51.60 bkl 58.45 bkl Liu, Tianming verfasserin aut Improving thermal insulation and fire resistance of ceramifiable EVA/ceramic hybrid composites via low temperature sintering and foaming strategy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Energy efficient buildings, propulsion components and thermal protection systems require materials with high thermal protective properties. Traditional polymer composites or ceramic materials have limited comprehensive applications because of their poor thermal protective properties or poor processability. Herein, a novel fire resistant and thermally insulating polymer/ceramic hybrid ceramifiable composite was developed based on low temperature sintering principle and foaming on fire strategy. Specifically, the influences of raw materials of low temperature ceramics, such as glass frit, phosphate, etc, on the properties of ceramifiable ethylene-vinyl acetate (EVA) composites were investigated. Its fire resistance and thermal insulation properties were evaluated by simulating different sintering environments. The results show that the ceramifiable composite exhibits the highest improvement in fire resistance because a crystalline phase was formed at high temperatures. Gas evolution from the thermal decomposition of ammonium polyphosphate (APP) and EVA contributes to the formation of the porous structure in ceramic residues. The optimal system can resist above 1000 °C flame for 30 min without disintegration, and the temperature of the unfired side was maintained around 200 °C. The reliability of the strategy was verified by the effective medium theory model. Glass frit Ceramifiable Sintering Phase transition Thermal properties Yao, Yao verfasserin aut Zhao, Dong verfasserin aut Hu, Fangzhou verfasserin aut Yun, Chen verfasserin aut Jiang, Guodong verfasserin aut Shen, Yucai verfasserin (orcid)0000-0003-2769-9301 aut Wang, Tingwei verfasserin aut Enthalten in Ceramics international Amsterdam [u.a.] : Elsevier Science, 1995 50, Seite 6207-6219 Online-Ressource (DE-627)320584305 (DE-600)2018052-4 (DE-576)25523063X 0272-8842 nnns volume:50 pages:6207-6219 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 58.45 Gesteinshüttenkunde VZ AR 50 6207-6219 |
allfieldsSound |
10.1016/j.ceramint.2023.11.339 doi (DE-627)ELV066382173 (ELSEVIER)S0272-8842(23)03824-5 DE-627 ger DE-627 rda eng 670 VZ 51.60 bkl 58.45 bkl Liu, Tianming verfasserin aut Improving thermal insulation and fire resistance of ceramifiable EVA/ceramic hybrid composites via low temperature sintering and foaming strategy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Energy efficient buildings, propulsion components and thermal protection systems require materials with high thermal protective properties. Traditional polymer composites or ceramic materials have limited comprehensive applications because of their poor thermal protective properties or poor processability. Herein, a novel fire resistant and thermally insulating polymer/ceramic hybrid ceramifiable composite was developed based on low temperature sintering principle and foaming on fire strategy. Specifically, the influences of raw materials of low temperature ceramics, such as glass frit, phosphate, etc, on the properties of ceramifiable ethylene-vinyl acetate (EVA) composites were investigated. Its fire resistance and thermal insulation properties were evaluated by simulating different sintering environments. The results show that the ceramifiable composite exhibits the highest improvement in fire resistance because a crystalline phase was formed at high temperatures. Gas evolution from the thermal decomposition of ammonium polyphosphate (APP) and EVA contributes to the formation of the porous structure in ceramic residues. The optimal system can resist above 1000 °C flame for 30 min without disintegration, and the temperature of the unfired side was maintained around 200 °C. The reliability of the strategy was verified by the effective medium theory model. Glass frit Ceramifiable Sintering Phase transition Thermal properties Yao, Yao verfasserin aut Zhao, Dong verfasserin aut Hu, Fangzhou verfasserin aut Yun, Chen verfasserin aut Jiang, Guodong verfasserin aut Shen, Yucai verfasserin (orcid)0000-0003-2769-9301 aut Wang, Tingwei verfasserin aut Enthalten in Ceramics international Amsterdam [u.a.] : Elsevier Science, 1995 50, Seite 6207-6219 Online-Ressource (DE-627)320584305 (DE-600)2018052-4 (DE-576)25523063X 0272-8842 nnns volume:50 pages:6207-6219 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 58.45 Gesteinshüttenkunde VZ AR 50 6207-6219 |
language |
English |
source |
Enthalten in Ceramics international 50, Seite 6207-6219 volume:50 pages:6207-6219 |
sourceStr |
Enthalten in Ceramics international 50, Seite 6207-6219 volume:50 pages:6207-6219 |
format_phy_str_mv |
Article |
bklname |
Keramische Werkstoffe Hartstoffe Gesteinshüttenkunde |
institution |
findex.gbv.de |
topic_facet |
Glass frit Ceramifiable Sintering Phase transition Thermal properties |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Ceramics international |
authorswithroles_txt_mv |
Liu, Tianming @@aut@@ Yao, Yao @@aut@@ Zhao, Dong @@aut@@ Hu, Fangzhou @@aut@@ Yun, Chen @@aut@@ Jiang, Guodong @@aut@@ Shen, Yucai @@aut@@ Wang, Tingwei @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320584305 |
dewey-sort |
3670 |
id |
ELV066382173 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066382173</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240104093842.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240104s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ceramint.2023.11.339</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066382173</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0272-8842(23)03824-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Tianming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving thermal insulation and fire resistance of ceramifiable EVA/ceramic hybrid composites via low temperature sintering and foaming strategy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Energy efficient buildings, propulsion components and thermal protection systems require materials with high thermal protective properties. Traditional polymer composites or ceramic materials have limited comprehensive applications because of their poor thermal protective properties or poor processability. Herein, a novel fire resistant and thermally insulating polymer/ceramic hybrid ceramifiable composite was developed based on low temperature sintering principle and foaming on fire strategy. Specifically, the influences of raw materials of low temperature ceramics, such as glass frit, phosphate, etc, on the properties of ceramifiable ethylene-vinyl acetate (EVA) composites were investigated. Its fire resistance and thermal insulation properties were evaluated by simulating different sintering environments. The results show that the ceramifiable composite exhibits the highest improvement in fire resistance because a crystalline phase was formed at high temperatures. Gas evolution from the thermal decomposition of ammonium polyphosphate (APP) and EVA contributes to the formation of the porous structure in ceramic residues. The optimal system can resist above 1000 °C flame for 30 min without disintegration, and the temperature of the unfired side was maintained around 200 °C. The reliability of the strategy was verified by the effective medium theory model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glass frit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ceramifiable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sintering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase transition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal properties</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Yao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Fangzhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yun, Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Guodong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Yucai</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2769-9301</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Tingwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ceramics international</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1995</subfield><subfield code="g">50, Seite 6207-6219</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320584305</subfield><subfield code="w">(DE-600)2018052-4</subfield><subfield code="w">(DE-576)25523063X</subfield><subfield code="x">0272-8842</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">pages:6207-6219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.60</subfield><subfield code="j">Keramische Werkstoffe</subfield><subfield code="j">Hartstoffe</subfield><subfield code="x">Werkstoffkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.45</subfield><subfield code="j">Gesteinshüttenkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="h">6207-6219</subfield></datafield></record></collection>
|
author |
Liu, Tianming |
spellingShingle |
Liu, Tianming ddc 670 bkl 51.60 bkl 58.45 misc Glass frit misc Ceramifiable misc Sintering misc Phase transition misc Thermal properties Improving thermal insulation and fire resistance of ceramifiable EVA/ceramic hybrid composites via low temperature sintering and foaming strategy |
authorStr |
Liu, Tianming |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320584305 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0272-8842 |
topic_title |
670 VZ 51.60 bkl 58.45 bkl Improving thermal insulation and fire resistance of ceramifiable EVA/ceramic hybrid composites via low temperature sintering and foaming strategy Glass frit Ceramifiable Sintering Phase transition Thermal properties |
topic |
ddc 670 bkl 51.60 bkl 58.45 misc Glass frit misc Ceramifiable misc Sintering misc Phase transition misc Thermal properties |
topic_unstemmed |
ddc 670 bkl 51.60 bkl 58.45 misc Glass frit misc Ceramifiable misc Sintering misc Phase transition misc Thermal properties |
topic_browse |
ddc 670 bkl 51.60 bkl 58.45 misc Glass frit misc Ceramifiable misc Sintering misc Phase transition misc Thermal properties |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ceramics international |
hierarchy_parent_id |
320584305 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Ceramics international |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320584305 (DE-600)2018052-4 (DE-576)25523063X |
title |
Improving thermal insulation and fire resistance of ceramifiable EVA/ceramic hybrid composites via low temperature sintering and foaming strategy |
ctrlnum |
(DE-627)ELV066382173 (ELSEVIER)S0272-8842(23)03824-5 |
title_full |
Improving thermal insulation and fire resistance of ceramifiable EVA/ceramic hybrid composites via low temperature sintering and foaming strategy |
author_sort |
Liu, Tianming |
journal |
Ceramics international |
journalStr |
Ceramics international |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
container_start_page |
6207 |
author_browse |
Liu, Tianming Yao, Yao Zhao, Dong Hu, Fangzhou Yun, Chen Jiang, Guodong Shen, Yucai Wang, Tingwei |
container_volume |
50 |
class |
670 VZ 51.60 bkl 58.45 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Tianming |
doi_str_mv |
10.1016/j.ceramint.2023.11.339 |
normlink |
(ORCID)0000-0003-2769-9301 |
normlink_prefix_str_mv |
(orcid)0000-0003-2769-9301 |
dewey-full |
670 |
author2-role |
verfasserin |
title_sort |
improving thermal insulation and fire resistance of ceramifiable eva/ceramic hybrid composites via low temperature sintering and foaming strategy |
title_auth |
Improving thermal insulation and fire resistance of ceramifiable EVA/ceramic hybrid composites via low temperature sintering and foaming strategy |
abstract |
Energy efficient buildings, propulsion components and thermal protection systems require materials with high thermal protective properties. Traditional polymer composites or ceramic materials have limited comprehensive applications because of their poor thermal protective properties or poor processability. Herein, a novel fire resistant and thermally insulating polymer/ceramic hybrid ceramifiable composite was developed based on low temperature sintering principle and foaming on fire strategy. Specifically, the influences of raw materials of low temperature ceramics, such as glass frit, phosphate, etc, on the properties of ceramifiable ethylene-vinyl acetate (EVA) composites were investigated. Its fire resistance and thermal insulation properties were evaluated by simulating different sintering environments. The results show that the ceramifiable composite exhibits the highest improvement in fire resistance because a crystalline phase was formed at high temperatures. Gas evolution from the thermal decomposition of ammonium polyphosphate (APP) and EVA contributes to the formation of the porous structure in ceramic residues. The optimal system can resist above 1000 °C flame for 30 min without disintegration, and the temperature of the unfired side was maintained around 200 °C. The reliability of the strategy was verified by the effective medium theory model. |
abstractGer |
Energy efficient buildings, propulsion components and thermal protection systems require materials with high thermal protective properties. Traditional polymer composites or ceramic materials have limited comprehensive applications because of their poor thermal protective properties or poor processability. Herein, a novel fire resistant and thermally insulating polymer/ceramic hybrid ceramifiable composite was developed based on low temperature sintering principle and foaming on fire strategy. Specifically, the influences of raw materials of low temperature ceramics, such as glass frit, phosphate, etc, on the properties of ceramifiable ethylene-vinyl acetate (EVA) composites were investigated. Its fire resistance and thermal insulation properties were evaluated by simulating different sintering environments. The results show that the ceramifiable composite exhibits the highest improvement in fire resistance because a crystalline phase was formed at high temperatures. Gas evolution from the thermal decomposition of ammonium polyphosphate (APP) and EVA contributes to the formation of the porous structure in ceramic residues. The optimal system can resist above 1000 °C flame for 30 min without disintegration, and the temperature of the unfired side was maintained around 200 °C. The reliability of the strategy was verified by the effective medium theory model. |
abstract_unstemmed |
Energy efficient buildings, propulsion components and thermal protection systems require materials with high thermal protective properties. Traditional polymer composites or ceramic materials have limited comprehensive applications because of their poor thermal protective properties or poor processability. Herein, a novel fire resistant and thermally insulating polymer/ceramic hybrid ceramifiable composite was developed based on low temperature sintering principle and foaming on fire strategy. Specifically, the influences of raw materials of low temperature ceramics, such as glass frit, phosphate, etc, on the properties of ceramifiable ethylene-vinyl acetate (EVA) composites were investigated. Its fire resistance and thermal insulation properties were evaluated by simulating different sintering environments. The results show that the ceramifiable composite exhibits the highest improvement in fire resistance because a crystalline phase was formed at high temperatures. Gas evolution from the thermal decomposition of ammonium polyphosphate (APP) and EVA contributes to the formation of the porous structure in ceramic residues. The optimal system can resist above 1000 °C flame for 30 min without disintegration, and the temperature of the unfired side was maintained around 200 °C. The reliability of the strategy was verified by the effective medium theory model. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Improving thermal insulation and fire resistance of ceramifiable EVA/ceramic hybrid composites via low temperature sintering and foaming strategy |
remote_bool |
true |
author2 |
Yao, Yao Zhao, Dong Hu, Fangzhou Yun, Chen Jiang, Guodong Shen, Yucai Wang, Tingwei |
author2Str |
Yao, Yao Zhao, Dong Hu, Fangzhou Yun, Chen Jiang, Guodong Shen, Yucai Wang, Tingwei |
ppnlink |
320584305 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ceramint.2023.11.339 |
up_date |
2024-07-06T17:33:35.482Z |
_version_ |
1803851887263350784 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066382173</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240104093842.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240104s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ceramint.2023.11.339</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066382173</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0272-8842(23)03824-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Tianming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving thermal insulation and fire resistance of ceramifiable EVA/ceramic hybrid composites via low temperature sintering and foaming strategy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Energy efficient buildings, propulsion components and thermal protection systems require materials with high thermal protective properties. Traditional polymer composites or ceramic materials have limited comprehensive applications because of their poor thermal protective properties or poor processability. Herein, a novel fire resistant and thermally insulating polymer/ceramic hybrid ceramifiable composite was developed based on low temperature sintering principle and foaming on fire strategy. Specifically, the influences of raw materials of low temperature ceramics, such as glass frit, phosphate, etc, on the properties of ceramifiable ethylene-vinyl acetate (EVA) composites were investigated. Its fire resistance and thermal insulation properties were evaluated by simulating different sintering environments. The results show that the ceramifiable composite exhibits the highest improvement in fire resistance because a crystalline phase was formed at high temperatures. Gas evolution from the thermal decomposition of ammonium polyphosphate (APP) and EVA contributes to the formation of the porous structure in ceramic residues. The optimal system can resist above 1000 °C flame for 30 min without disintegration, and the temperature of the unfired side was maintained around 200 °C. The reliability of the strategy was verified by the effective medium theory model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glass frit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ceramifiable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sintering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase transition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal properties</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Yao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Fangzhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yun, Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Guodong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Yucai</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2769-9301</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Tingwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ceramics international</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1995</subfield><subfield code="g">50, Seite 6207-6219</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320584305</subfield><subfield code="w">(DE-600)2018052-4</subfield><subfield code="w">(DE-576)25523063X</subfield><subfield code="x">0272-8842</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">pages:6207-6219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.60</subfield><subfield code="j">Keramische Werkstoffe</subfield><subfield code="j">Hartstoffe</subfield><subfield code="x">Werkstoffkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.45</subfield><subfield code="j">Gesteinshüttenkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="h">6207-6219</subfield></datafield></record></collection>
|
score |
7.4003134 |