IMoVR-Net: A robust interpretable network for multi-ocular lesion recognition from TAO facial images
Thyroid-associated ophthalmopathy (TAO) is an organ-specific autoimmune disease that seriously affects patient's life and health. However, the early diagnosis of TAO is highly dependent on the physician's subjective experience. Moreover, the currently proposed deep learning networks for ey...
Ausführliche Beschreibung
Autor*in: |
Zhu, Haipeng [verfasserIn] He, Hong [verfasserIn] Zhou, Huifang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
Multi-orientation visual cascaded encoder |
---|
Übergeordnetes Werk: |
Enthalten in: Computers in biology and medicine - Amsterdam [u.a.] : Elsevier Science, 1970, 168 |
---|---|
Übergeordnetes Werk: |
volume:168 |
DOI / URN: |
10.1016/j.compbiomed.2023.107771 |
---|
Katalog-ID: |
ELV066413877 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV066413877 | ||
003 | DE-627 | ||
005 | 20240201093036.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240106s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.compbiomed.2023.107771 |2 doi | |
035 | |a (DE-627)ELV066413877 | ||
035 | |a (ELSEVIER)S0010-4825(23)01236-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |a 570 |q VZ |
084 | |a 42.00 |2 bkl | ||
084 | |a 44.09 |2 bkl | ||
100 | 1 | |a Zhu, Haipeng |e verfasserin |4 aut | |
245 | 1 | 0 | |a IMoVR-Net: A robust interpretable network for multi-ocular lesion recognition from TAO facial images |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Thyroid-associated ophthalmopathy (TAO) is an organ-specific autoimmune disease that seriously affects patient's life and health. However, the early diagnosis of TAO is highly dependent on the physician's subjective experience. Moreover, the currently proposed deep learning networks for eye diseases do not provide robust interpretability concerning feature learning paradigm, model structure, and the number of neurons. But the mentioned components are very important for model interpretability and are key factors that severely affect the transparency of the model. Therefore, a robust interpretable multi-orientation visual recognition network (IMoVR-Net) for TAO multi-ocular lesion recognition is proposed in this paper. Firstly, a multi-orientation visual cascaded encoder composed of the DenseGabor module and the dilated Gabor convolution group is proposed to achieve the fine extraction of multi-directional TAO lesion features by using a novel feature learning paradigm called alternating filtering. Besides, combining information theory and topology tool, an optimization rule based on topological energy entropy is proposed to provide a solid interpretable theory for determining the model structure. Finally, a clustering correlation analysis method is developed to accomplish the determination of the number of convolutional hidden neurons, providing robust interpretability for the selection of the number of neurons. Compared to other advanced models, the IMoVR-Net achieved state-of-the-art performance on different TAO ocular datasets with an average accuracy, sensitivity, precision, and F1 score of 0.878, 87.27 %, 0.875, and 87.39 %, respectively. The IMoVR-Net has good clinical application prospects due to its strong recognition ability and robust interpretability in feature extraction paradigm, model structure, and number of convolutional neurons. | ||
650 | 4 | |a TAO | |
650 | 4 | |a Multi-orientation visual cascaded encoder | |
650 | 4 | |a Topological energy entropy | |
650 | 4 | |a Clustering correlation analysis | |
650 | 4 | |a Classification | |
700 | 1 | |a He, Hong |e verfasserin |0 (orcid)0000-0002-2584-2891 |4 aut | |
700 | 1 | |a Zhou, Huifang |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computers in biology and medicine |d Amsterdam [u.a.] : Elsevier Science, 1970 |g 168 |h Online-Ressource |w (DE-627)306356783 |w (DE-600)1496984-1 |w (DE-576)081952988 |x 1879-0534 |7 nnns |
773 | 1 | 8 | |g volume:168 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 42.00 |q VZ |
936 | b | k | |a 44.09 |j Medizintechnik |q VZ |
951 | |a AR | ||
952 | |d 168 |
author_variant |
h z hz h h hh h z hz |
---|---|
matchkey_str |
article:18790534:2023----::mvntrbsitrrtbeewrfrutoualsorcgi |
hierarchy_sort_str |
2023 |
bklnumber |
42.00 44.09 |
publishDate |
2023 |
allfields |
10.1016/j.compbiomed.2023.107771 doi (DE-627)ELV066413877 (ELSEVIER)S0010-4825(23)01236-2 DE-627 ger DE-627 rda eng 610 570 VZ 42.00 bkl 44.09 bkl Zhu, Haipeng verfasserin aut IMoVR-Net: A robust interpretable network for multi-ocular lesion recognition from TAO facial images 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Thyroid-associated ophthalmopathy (TAO) is an organ-specific autoimmune disease that seriously affects patient's life and health. However, the early diagnosis of TAO is highly dependent on the physician's subjective experience. Moreover, the currently proposed deep learning networks for eye diseases do not provide robust interpretability concerning feature learning paradigm, model structure, and the number of neurons. But the mentioned components are very important for model interpretability and are key factors that severely affect the transparency of the model. Therefore, a robust interpretable multi-orientation visual recognition network (IMoVR-Net) for TAO multi-ocular lesion recognition is proposed in this paper. Firstly, a multi-orientation visual cascaded encoder composed of the DenseGabor module and the dilated Gabor convolution group is proposed to achieve the fine extraction of multi-directional TAO lesion features by using a novel feature learning paradigm called alternating filtering. Besides, combining information theory and topology tool, an optimization rule based on topological energy entropy is proposed to provide a solid interpretable theory for determining the model structure. Finally, a clustering correlation analysis method is developed to accomplish the determination of the number of convolutional hidden neurons, providing robust interpretability for the selection of the number of neurons. Compared to other advanced models, the IMoVR-Net achieved state-of-the-art performance on different TAO ocular datasets with an average accuracy, sensitivity, precision, and F1 score of 0.878, 87.27 %, 0.875, and 87.39 %, respectively. The IMoVR-Net has good clinical application prospects due to its strong recognition ability and robust interpretability in feature extraction paradigm, model structure, and number of convolutional neurons. TAO Multi-orientation visual cascaded encoder Topological energy entropy Clustering correlation analysis Classification He, Hong verfasserin (orcid)0000-0002-2584-2891 aut Zhou, Huifang verfasserin aut Enthalten in Computers in biology and medicine Amsterdam [u.a.] : Elsevier Science, 1970 168 Online-Ressource (DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 1879-0534 nnns volume:168 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.00 VZ 44.09 Medizintechnik VZ AR 168 |
spelling |
10.1016/j.compbiomed.2023.107771 doi (DE-627)ELV066413877 (ELSEVIER)S0010-4825(23)01236-2 DE-627 ger DE-627 rda eng 610 570 VZ 42.00 bkl 44.09 bkl Zhu, Haipeng verfasserin aut IMoVR-Net: A robust interpretable network for multi-ocular lesion recognition from TAO facial images 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Thyroid-associated ophthalmopathy (TAO) is an organ-specific autoimmune disease that seriously affects patient's life and health. However, the early diagnosis of TAO is highly dependent on the physician's subjective experience. Moreover, the currently proposed deep learning networks for eye diseases do not provide robust interpretability concerning feature learning paradigm, model structure, and the number of neurons. But the mentioned components are very important for model interpretability and are key factors that severely affect the transparency of the model. Therefore, a robust interpretable multi-orientation visual recognition network (IMoVR-Net) for TAO multi-ocular lesion recognition is proposed in this paper. Firstly, a multi-orientation visual cascaded encoder composed of the DenseGabor module and the dilated Gabor convolution group is proposed to achieve the fine extraction of multi-directional TAO lesion features by using a novel feature learning paradigm called alternating filtering. Besides, combining information theory and topology tool, an optimization rule based on topological energy entropy is proposed to provide a solid interpretable theory for determining the model structure. Finally, a clustering correlation analysis method is developed to accomplish the determination of the number of convolutional hidden neurons, providing robust interpretability for the selection of the number of neurons. Compared to other advanced models, the IMoVR-Net achieved state-of-the-art performance on different TAO ocular datasets with an average accuracy, sensitivity, precision, and F1 score of 0.878, 87.27 %, 0.875, and 87.39 %, respectively. The IMoVR-Net has good clinical application prospects due to its strong recognition ability and robust interpretability in feature extraction paradigm, model structure, and number of convolutional neurons. TAO Multi-orientation visual cascaded encoder Topological energy entropy Clustering correlation analysis Classification He, Hong verfasserin (orcid)0000-0002-2584-2891 aut Zhou, Huifang verfasserin aut Enthalten in Computers in biology and medicine Amsterdam [u.a.] : Elsevier Science, 1970 168 Online-Ressource (DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 1879-0534 nnns volume:168 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.00 VZ 44.09 Medizintechnik VZ AR 168 |
allfields_unstemmed |
10.1016/j.compbiomed.2023.107771 doi (DE-627)ELV066413877 (ELSEVIER)S0010-4825(23)01236-2 DE-627 ger DE-627 rda eng 610 570 VZ 42.00 bkl 44.09 bkl Zhu, Haipeng verfasserin aut IMoVR-Net: A robust interpretable network for multi-ocular lesion recognition from TAO facial images 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Thyroid-associated ophthalmopathy (TAO) is an organ-specific autoimmune disease that seriously affects patient's life and health. However, the early diagnosis of TAO is highly dependent on the physician's subjective experience. Moreover, the currently proposed deep learning networks for eye diseases do not provide robust interpretability concerning feature learning paradigm, model structure, and the number of neurons. But the mentioned components are very important for model interpretability and are key factors that severely affect the transparency of the model. Therefore, a robust interpretable multi-orientation visual recognition network (IMoVR-Net) for TAO multi-ocular lesion recognition is proposed in this paper. Firstly, a multi-orientation visual cascaded encoder composed of the DenseGabor module and the dilated Gabor convolution group is proposed to achieve the fine extraction of multi-directional TAO lesion features by using a novel feature learning paradigm called alternating filtering. Besides, combining information theory and topology tool, an optimization rule based on topological energy entropy is proposed to provide a solid interpretable theory for determining the model structure. Finally, a clustering correlation analysis method is developed to accomplish the determination of the number of convolutional hidden neurons, providing robust interpretability for the selection of the number of neurons. Compared to other advanced models, the IMoVR-Net achieved state-of-the-art performance on different TAO ocular datasets with an average accuracy, sensitivity, precision, and F1 score of 0.878, 87.27 %, 0.875, and 87.39 %, respectively. The IMoVR-Net has good clinical application prospects due to its strong recognition ability and robust interpretability in feature extraction paradigm, model structure, and number of convolutional neurons. TAO Multi-orientation visual cascaded encoder Topological energy entropy Clustering correlation analysis Classification He, Hong verfasserin (orcid)0000-0002-2584-2891 aut Zhou, Huifang verfasserin aut Enthalten in Computers in biology and medicine Amsterdam [u.a.] : Elsevier Science, 1970 168 Online-Ressource (DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 1879-0534 nnns volume:168 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.00 VZ 44.09 Medizintechnik VZ AR 168 |
allfieldsGer |
10.1016/j.compbiomed.2023.107771 doi (DE-627)ELV066413877 (ELSEVIER)S0010-4825(23)01236-2 DE-627 ger DE-627 rda eng 610 570 VZ 42.00 bkl 44.09 bkl Zhu, Haipeng verfasserin aut IMoVR-Net: A robust interpretable network for multi-ocular lesion recognition from TAO facial images 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Thyroid-associated ophthalmopathy (TAO) is an organ-specific autoimmune disease that seriously affects patient's life and health. However, the early diagnosis of TAO is highly dependent on the physician's subjective experience. Moreover, the currently proposed deep learning networks for eye diseases do not provide robust interpretability concerning feature learning paradigm, model structure, and the number of neurons. But the mentioned components are very important for model interpretability and are key factors that severely affect the transparency of the model. Therefore, a robust interpretable multi-orientation visual recognition network (IMoVR-Net) for TAO multi-ocular lesion recognition is proposed in this paper. Firstly, a multi-orientation visual cascaded encoder composed of the DenseGabor module and the dilated Gabor convolution group is proposed to achieve the fine extraction of multi-directional TAO lesion features by using a novel feature learning paradigm called alternating filtering. Besides, combining information theory and topology tool, an optimization rule based on topological energy entropy is proposed to provide a solid interpretable theory for determining the model structure. Finally, a clustering correlation analysis method is developed to accomplish the determination of the number of convolutional hidden neurons, providing robust interpretability for the selection of the number of neurons. Compared to other advanced models, the IMoVR-Net achieved state-of-the-art performance on different TAO ocular datasets with an average accuracy, sensitivity, precision, and F1 score of 0.878, 87.27 %, 0.875, and 87.39 %, respectively. The IMoVR-Net has good clinical application prospects due to its strong recognition ability and robust interpretability in feature extraction paradigm, model structure, and number of convolutional neurons. TAO Multi-orientation visual cascaded encoder Topological energy entropy Clustering correlation analysis Classification He, Hong verfasserin (orcid)0000-0002-2584-2891 aut Zhou, Huifang verfasserin aut Enthalten in Computers in biology and medicine Amsterdam [u.a.] : Elsevier Science, 1970 168 Online-Ressource (DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 1879-0534 nnns volume:168 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.00 VZ 44.09 Medizintechnik VZ AR 168 |
allfieldsSound |
10.1016/j.compbiomed.2023.107771 doi (DE-627)ELV066413877 (ELSEVIER)S0010-4825(23)01236-2 DE-627 ger DE-627 rda eng 610 570 VZ 42.00 bkl 44.09 bkl Zhu, Haipeng verfasserin aut IMoVR-Net: A robust interpretable network for multi-ocular lesion recognition from TAO facial images 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Thyroid-associated ophthalmopathy (TAO) is an organ-specific autoimmune disease that seriously affects patient's life and health. However, the early diagnosis of TAO is highly dependent on the physician's subjective experience. Moreover, the currently proposed deep learning networks for eye diseases do not provide robust interpretability concerning feature learning paradigm, model structure, and the number of neurons. But the mentioned components are very important for model interpretability and are key factors that severely affect the transparency of the model. Therefore, a robust interpretable multi-orientation visual recognition network (IMoVR-Net) for TAO multi-ocular lesion recognition is proposed in this paper. Firstly, a multi-orientation visual cascaded encoder composed of the DenseGabor module and the dilated Gabor convolution group is proposed to achieve the fine extraction of multi-directional TAO lesion features by using a novel feature learning paradigm called alternating filtering. Besides, combining information theory and topology tool, an optimization rule based on topological energy entropy is proposed to provide a solid interpretable theory for determining the model structure. Finally, a clustering correlation analysis method is developed to accomplish the determination of the number of convolutional hidden neurons, providing robust interpretability for the selection of the number of neurons. Compared to other advanced models, the IMoVR-Net achieved state-of-the-art performance on different TAO ocular datasets with an average accuracy, sensitivity, precision, and F1 score of 0.878, 87.27 %, 0.875, and 87.39 %, respectively. The IMoVR-Net has good clinical application prospects due to its strong recognition ability and robust interpretability in feature extraction paradigm, model structure, and number of convolutional neurons. TAO Multi-orientation visual cascaded encoder Topological energy entropy Clustering correlation analysis Classification He, Hong verfasserin (orcid)0000-0002-2584-2891 aut Zhou, Huifang verfasserin aut Enthalten in Computers in biology and medicine Amsterdam [u.a.] : Elsevier Science, 1970 168 Online-Ressource (DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 1879-0534 nnns volume:168 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.00 VZ 44.09 Medizintechnik VZ AR 168 |
language |
English |
source |
Enthalten in Computers in biology and medicine 168 volume:168 |
sourceStr |
Enthalten in Computers in biology and medicine 168 volume:168 |
format_phy_str_mv |
Article |
bklname |
Medizintechnik |
institution |
findex.gbv.de |
topic_facet |
TAO Multi-orientation visual cascaded encoder Topological energy entropy Clustering correlation analysis Classification |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Computers in biology and medicine |
authorswithroles_txt_mv |
Zhu, Haipeng @@aut@@ He, Hong @@aut@@ Zhou, Huifang @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
306356783 |
dewey-sort |
3610 |
id |
ELV066413877 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV066413877</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240201093036.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240106s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compbiomed.2023.107771</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066413877</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0010-4825(23)01236-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhu, Haipeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">IMoVR-Net: A robust interpretable network for multi-ocular lesion recognition from TAO facial images</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Thyroid-associated ophthalmopathy (TAO) is an organ-specific autoimmune disease that seriously affects patient's life and health. However, the early diagnosis of TAO is highly dependent on the physician's subjective experience. Moreover, the currently proposed deep learning networks for eye diseases do not provide robust interpretability concerning feature learning paradigm, model structure, and the number of neurons. But the mentioned components are very important for model interpretability and are key factors that severely affect the transparency of the model. Therefore, a robust interpretable multi-orientation visual recognition network (IMoVR-Net) for TAO multi-ocular lesion recognition is proposed in this paper. Firstly, a multi-orientation visual cascaded encoder composed of the DenseGabor module and the dilated Gabor convolution group is proposed to achieve the fine extraction of multi-directional TAO lesion features by using a novel feature learning paradigm called alternating filtering. Besides, combining information theory and topology tool, an optimization rule based on topological energy entropy is proposed to provide a solid interpretable theory for determining the model structure. Finally, a clustering correlation analysis method is developed to accomplish the determination of the number of convolutional hidden neurons, providing robust interpretability for the selection of the number of neurons. Compared to other advanced models, the IMoVR-Net achieved state-of-the-art performance on different TAO ocular datasets with an average accuracy, sensitivity, precision, and F1 score of 0.878, 87.27 %, 0.875, and 87.39 %, respectively. The IMoVR-Net has good clinical application prospects due to its strong recognition ability and robust interpretability in feature extraction paradigm, model structure, and number of convolutional neurons.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TAO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-orientation visual cascaded encoder</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological energy entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clustering correlation analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classification</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2584-2891</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Huifang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers in biology and medicine</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1970</subfield><subfield code="g">168</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306356783</subfield><subfield code="w">(DE-600)1496984-1</subfield><subfield code="w">(DE-576)081952988</subfield><subfield code="x">1879-0534</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:168</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.09</subfield><subfield code="j">Medizintechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">168</subfield></datafield></record></collection>
|
author |
Zhu, Haipeng |
spellingShingle |
Zhu, Haipeng ddc 610 bkl 42.00 bkl 44.09 misc TAO misc Multi-orientation visual cascaded encoder misc Topological energy entropy misc Clustering correlation analysis misc Classification IMoVR-Net: A robust interpretable network for multi-ocular lesion recognition from TAO facial images |
authorStr |
Zhu, Haipeng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306356783 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-0534 |
topic_title |
610 570 VZ 42.00 bkl 44.09 bkl IMoVR-Net: A robust interpretable network for multi-ocular lesion recognition from TAO facial images TAO Multi-orientation visual cascaded encoder Topological energy entropy Clustering correlation analysis Classification |
topic |
ddc 610 bkl 42.00 bkl 44.09 misc TAO misc Multi-orientation visual cascaded encoder misc Topological energy entropy misc Clustering correlation analysis misc Classification |
topic_unstemmed |
ddc 610 bkl 42.00 bkl 44.09 misc TAO misc Multi-orientation visual cascaded encoder misc Topological energy entropy misc Clustering correlation analysis misc Classification |
topic_browse |
ddc 610 bkl 42.00 bkl 44.09 misc TAO misc Multi-orientation visual cascaded encoder misc Topological energy entropy misc Clustering correlation analysis misc Classification |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Computers in biology and medicine |
hierarchy_parent_id |
306356783 |
dewey-tens |
610 - Medicine & health 570 - Life sciences; biology |
hierarchy_top_title |
Computers in biology and medicine |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 |
title |
IMoVR-Net: A robust interpretable network for multi-ocular lesion recognition from TAO facial images |
ctrlnum |
(DE-627)ELV066413877 (ELSEVIER)S0010-4825(23)01236-2 |
title_full |
IMoVR-Net: A robust interpretable network for multi-ocular lesion recognition from TAO facial images |
author_sort |
Zhu, Haipeng |
journal |
Computers in biology and medicine |
journalStr |
Computers in biology and medicine |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Zhu, Haipeng He, Hong Zhou, Huifang |
container_volume |
168 |
class |
610 570 VZ 42.00 bkl 44.09 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhu, Haipeng |
doi_str_mv |
10.1016/j.compbiomed.2023.107771 |
normlink |
(ORCID)0000-0002-2584-2891 |
normlink_prefix_str_mv |
(orcid)0000-0002-2584-2891 |
dewey-full |
610 570 |
author2-role |
verfasserin |
title_sort |
imovr-net: a robust interpretable network for multi-ocular lesion recognition from tao facial images |
title_auth |
IMoVR-Net: A robust interpretable network for multi-ocular lesion recognition from TAO facial images |
abstract |
Thyroid-associated ophthalmopathy (TAO) is an organ-specific autoimmune disease that seriously affects patient's life and health. However, the early diagnosis of TAO is highly dependent on the physician's subjective experience. Moreover, the currently proposed deep learning networks for eye diseases do not provide robust interpretability concerning feature learning paradigm, model structure, and the number of neurons. But the mentioned components are very important for model interpretability and are key factors that severely affect the transparency of the model. Therefore, a robust interpretable multi-orientation visual recognition network (IMoVR-Net) for TAO multi-ocular lesion recognition is proposed in this paper. Firstly, a multi-orientation visual cascaded encoder composed of the DenseGabor module and the dilated Gabor convolution group is proposed to achieve the fine extraction of multi-directional TAO lesion features by using a novel feature learning paradigm called alternating filtering. Besides, combining information theory and topology tool, an optimization rule based on topological energy entropy is proposed to provide a solid interpretable theory for determining the model structure. Finally, a clustering correlation analysis method is developed to accomplish the determination of the number of convolutional hidden neurons, providing robust interpretability for the selection of the number of neurons. Compared to other advanced models, the IMoVR-Net achieved state-of-the-art performance on different TAO ocular datasets with an average accuracy, sensitivity, precision, and F1 score of 0.878, 87.27 %, 0.875, and 87.39 %, respectively. The IMoVR-Net has good clinical application prospects due to its strong recognition ability and robust interpretability in feature extraction paradigm, model structure, and number of convolutional neurons. |
abstractGer |
Thyroid-associated ophthalmopathy (TAO) is an organ-specific autoimmune disease that seriously affects patient's life and health. However, the early diagnosis of TAO is highly dependent on the physician's subjective experience. Moreover, the currently proposed deep learning networks for eye diseases do not provide robust interpretability concerning feature learning paradigm, model structure, and the number of neurons. But the mentioned components are very important for model interpretability and are key factors that severely affect the transparency of the model. Therefore, a robust interpretable multi-orientation visual recognition network (IMoVR-Net) for TAO multi-ocular lesion recognition is proposed in this paper. Firstly, a multi-orientation visual cascaded encoder composed of the DenseGabor module and the dilated Gabor convolution group is proposed to achieve the fine extraction of multi-directional TAO lesion features by using a novel feature learning paradigm called alternating filtering. Besides, combining information theory and topology tool, an optimization rule based on topological energy entropy is proposed to provide a solid interpretable theory for determining the model structure. Finally, a clustering correlation analysis method is developed to accomplish the determination of the number of convolutional hidden neurons, providing robust interpretability for the selection of the number of neurons. Compared to other advanced models, the IMoVR-Net achieved state-of-the-art performance on different TAO ocular datasets with an average accuracy, sensitivity, precision, and F1 score of 0.878, 87.27 %, 0.875, and 87.39 %, respectively. The IMoVR-Net has good clinical application prospects due to its strong recognition ability and robust interpretability in feature extraction paradigm, model structure, and number of convolutional neurons. |
abstract_unstemmed |
Thyroid-associated ophthalmopathy (TAO) is an organ-specific autoimmune disease that seriously affects patient's life and health. However, the early diagnosis of TAO is highly dependent on the physician's subjective experience. Moreover, the currently proposed deep learning networks for eye diseases do not provide robust interpretability concerning feature learning paradigm, model structure, and the number of neurons. But the mentioned components are very important for model interpretability and are key factors that severely affect the transparency of the model. Therefore, a robust interpretable multi-orientation visual recognition network (IMoVR-Net) for TAO multi-ocular lesion recognition is proposed in this paper. Firstly, a multi-orientation visual cascaded encoder composed of the DenseGabor module and the dilated Gabor convolution group is proposed to achieve the fine extraction of multi-directional TAO lesion features by using a novel feature learning paradigm called alternating filtering. Besides, combining information theory and topology tool, an optimization rule based on topological energy entropy is proposed to provide a solid interpretable theory for determining the model structure. Finally, a clustering correlation analysis method is developed to accomplish the determination of the number of convolutional hidden neurons, providing robust interpretability for the selection of the number of neurons. Compared to other advanced models, the IMoVR-Net achieved state-of-the-art performance on different TAO ocular datasets with an average accuracy, sensitivity, precision, and F1 score of 0.878, 87.27 %, 0.875, and 87.39 %, respectively. The IMoVR-Net has good clinical application prospects due to its strong recognition ability and robust interpretability in feature extraction paradigm, model structure, and number of convolutional neurons. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
IMoVR-Net: A robust interpretable network for multi-ocular lesion recognition from TAO facial images |
remote_bool |
true |
author2 |
He, Hong Zhou, Huifang |
author2Str |
He, Hong Zhou, Huifang |
ppnlink |
306356783 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.compbiomed.2023.107771 |
up_date |
2024-07-06T17:40:22.424Z |
_version_ |
1803852313972965376 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV066413877</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240201093036.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240106s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compbiomed.2023.107771</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066413877</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0010-4825(23)01236-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhu, Haipeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">IMoVR-Net: A robust interpretable network for multi-ocular lesion recognition from TAO facial images</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Thyroid-associated ophthalmopathy (TAO) is an organ-specific autoimmune disease that seriously affects patient's life and health. However, the early diagnosis of TAO is highly dependent on the physician's subjective experience. Moreover, the currently proposed deep learning networks for eye diseases do not provide robust interpretability concerning feature learning paradigm, model structure, and the number of neurons. But the mentioned components are very important for model interpretability and are key factors that severely affect the transparency of the model. Therefore, a robust interpretable multi-orientation visual recognition network (IMoVR-Net) for TAO multi-ocular lesion recognition is proposed in this paper. Firstly, a multi-orientation visual cascaded encoder composed of the DenseGabor module and the dilated Gabor convolution group is proposed to achieve the fine extraction of multi-directional TAO lesion features by using a novel feature learning paradigm called alternating filtering. Besides, combining information theory and topology tool, an optimization rule based on topological energy entropy is proposed to provide a solid interpretable theory for determining the model structure. Finally, a clustering correlation analysis method is developed to accomplish the determination of the number of convolutional hidden neurons, providing robust interpretability for the selection of the number of neurons. Compared to other advanced models, the IMoVR-Net achieved state-of-the-art performance on different TAO ocular datasets with an average accuracy, sensitivity, precision, and F1 score of 0.878, 87.27 %, 0.875, and 87.39 %, respectively. The IMoVR-Net has good clinical application prospects due to its strong recognition ability and robust interpretability in feature extraction paradigm, model structure, and number of convolutional neurons.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TAO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-orientation visual cascaded encoder</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological energy entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clustering correlation analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classification</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2584-2891</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Huifang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers in biology and medicine</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1970</subfield><subfield code="g">168</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306356783</subfield><subfield code="w">(DE-600)1496984-1</subfield><subfield code="w">(DE-576)081952988</subfield><subfield code="x">1879-0534</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:168</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.09</subfield><subfield code="j">Medizintechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">168</subfield></datafield></record></collection>
|
score |
7.4013624 |