Hyperbolic graph convolutional neural network with contrastive learning for automated ICD coding
The International Classification of Diseases (ICD) is a widely used criterion for disease classification, health monitoring, and medical data analysis. Deep learning-based automated ICD coding has gained attention due to the time-consuming and costly nature of manual coding. The main challenges of a...
Ausführliche Beschreibung
Autor*in: |
Wu, Yuzhou [verfasserIn] Chen, Xuechen [verfasserIn] Yao, Xin [verfasserIn] Yu, Yongang [verfasserIn] Chen, Zhigang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Computers in biology and medicine - Amsterdam [u.a.] : Elsevier Science, 1970, 168 |
---|---|
Übergeordnetes Werk: |
volume:168 |
DOI / URN: |
10.1016/j.compbiomed.2023.107797 |
---|
Katalog-ID: |
ELV066414091 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV066414091 | ||
003 | DE-627 | ||
005 | 20240201093036.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240106s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.compbiomed.2023.107797 |2 doi | |
035 | |a (DE-627)ELV066414091 | ||
035 | |a (ELSEVIER)S0010-4825(23)01262-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |a 570 |q VZ |
084 | |a 42.00 |2 bkl | ||
084 | |a 44.09 |2 bkl | ||
100 | 1 | |a Wu, Yuzhou |e verfasserin |0 (orcid)0000-0003-0816-2197 |4 aut | |
245 | 1 | 0 | |a Hyperbolic graph convolutional neural network with contrastive learning for automated ICD coding |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The International Classification of Diseases (ICD) is a widely used criterion for disease classification, health monitoring, and medical data analysis. Deep learning-based automated ICD coding has gained attention due to the time-consuming and costly nature of manual coding. The main challenges of automated ICD coding include imbalanced label distribution, code hierarchy and noisy texts. Recent works have considered using code hierarchy or description for better label representation to solve the problem of imbalanced label distribution. However, these methods are still ineffective and redundant since they only interact with a constant label representation. In this work, we introduce a novel Hyperbolic Graph Convolutional Network with Contrastive Learning (HGCN-CL) to solve the above problems and the shortcomings of the previous methods. We adopt a Hyperbolic graph convolutional network on ICD coding to capture the hierarchical structure of codes, which can solve the problem of large distortions when embedding hierarchical structure with graph convolutional network. Besides, we introduce contrastive learning for automatic ICD coding by injecting code features into text encoder to generate hierarchical-aware positive samples to solve the problem of interacting with constant code features. We conduct experiments on the public MIMIC-III and MIMIC-II datasets. The results on MIMIC III show that HGCN-CL outperforms previous state-of-art methods for automatic ICD coding, which achieves a 2.7% and 3.6% improvement respectively compared to previous best results (Hypercore). We also provide ablation experiments and hierarchy visualization to verify the effectiveness of components in our model. | ||
650 | 4 | |a International classification of diseases | |
650 | 4 | |a Automatic ICD coding | |
650 | 4 | |a Code hierarchy | |
650 | 4 | |a Contrastive learning | |
650 | 4 | |a Imbalanced label distribution | |
700 | 1 | |a Chen, Xuechen |e verfasserin |0 (orcid)0000-0002-7683-2933 |4 aut | |
700 | 1 | |a Yao, Xin |e verfasserin |0 (orcid)0000-0001-7165-937X |4 aut | |
700 | 1 | |a Yu, Yongang |e verfasserin |4 aut | |
700 | 1 | |a Chen, Zhigang |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computers in biology and medicine |d Amsterdam [u.a.] : Elsevier Science, 1970 |g 168 |h Online-Ressource |w (DE-627)306356783 |w (DE-600)1496984-1 |w (DE-576)081952988 |x 1879-0534 |7 nnns |
773 | 1 | 8 | |g volume:168 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 42.00 |q VZ |
936 | b | k | |a 44.09 |j Medizintechnik |q VZ |
951 | |a AR | ||
952 | |d 168 |
author_variant |
y w yw x c xc x y xy y y yy z c zc |
---|---|
matchkey_str |
article:18790534:2023----::yeblcrpcnouinlerlewrwtcnrsieeri |
hierarchy_sort_str |
2023 |
bklnumber |
42.00 44.09 |
publishDate |
2023 |
allfields |
10.1016/j.compbiomed.2023.107797 doi (DE-627)ELV066414091 (ELSEVIER)S0010-4825(23)01262-3 DE-627 ger DE-627 rda eng 610 570 VZ 42.00 bkl 44.09 bkl Wu, Yuzhou verfasserin (orcid)0000-0003-0816-2197 aut Hyperbolic graph convolutional neural network with contrastive learning for automated ICD coding 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The International Classification of Diseases (ICD) is a widely used criterion for disease classification, health monitoring, and medical data analysis. Deep learning-based automated ICD coding has gained attention due to the time-consuming and costly nature of manual coding. The main challenges of automated ICD coding include imbalanced label distribution, code hierarchy and noisy texts. Recent works have considered using code hierarchy or description for better label representation to solve the problem of imbalanced label distribution. However, these methods are still ineffective and redundant since they only interact with a constant label representation. In this work, we introduce a novel Hyperbolic Graph Convolutional Network with Contrastive Learning (HGCN-CL) to solve the above problems and the shortcomings of the previous methods. We adopt a Hyperbolic graph convolutional network on ICD coding to capture the hierarchical structure of codes, which can solve the problem of large distortions when embedding hierarchical structure with graph convolutional network. Besides, we introduce contrastive learning for automatic ICD coding by injecting code features into text encoder to generate hierarchical-aware positive samples to solve the problem of interacting with constant code features. We conduct experiments on the public MIMIC-III and MIMIC-II datasets. The results on MIMIC III show that HGCN-CL outperforms previous state-of-art methods for automatic ICD coding, which achieves a 2.7% and 3.6% improvement respectively compared to previous best results (Hypercore). We also provide ablation experiments and hierarchy visualization to verify the effectiveness of components in our model. International classification of diseases Automatic ICD coding Code hierarchy Contrastive learning Imbalanced label distribution Chen, Xuechen verfasserin (orcid)0000-0002-7683-2933 aut Yao, Xin verfasserin (orcid)0000-0001-7165-937X aut Yu, Yongang verfasserin aut Chen, Zhigang verfasserin aut Enthalten in Computers in biology and medicine Amsterdam [u.a.] : Elsevier Science, 1970 168 Online-Ressource (DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 1879-0534 nnns volume:168 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.00 VZ 44.09 Medizintechnik VZ AR 168 |
spelling |
10.1016/j.compbiomed.2023.107797 doi (DE-627)ELV066414091 (ELSEVIER)S0010-4825(23)01262-3 DE-627 ger DE-627 rda eng 610 570 VZ 42.00 bkl 44.09 bkl Wu, Yuzhou verfasserin (orcid)0000-0003-0816-2197 aut Hyperbolic graph convolutional neural network with contrastive learning for automated ICD coding 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The International Classification of Diseases (ICD) is a widely used criterion for disease classification, health monitoring, and medical data analysis. Deep learning-based automated ICD coding has gained attention due to the time-consuming and costly nature of manual coding. The main challenges of automated ICD coding include imbalanced label distribution, code hierarchy and noisy texts. Recent works have considered using code hierarchy or description for better label representation to solve the problem of imbalanced label distribution. However, these methods are still ineffective and redundant since they only interact with a constant label representation. In this work, we introduce a novel Hyperbolic Graph Convolutional Network with Contrastive Learning (HGCN-CL) to solve the above problems and the shortcomings of the previous methods. We adopt a Hyperbolic graph convolutional network on ICD coding to capture the hierarchical structure of codes, which can solve the problem of large distortions when embedding hierarchical structure with graph convolutional network. Besides, we introduce contrastive learning for automatic ICD coding by injecting code features into text encoder to generate hierarchical-aware positive samples to solve the problem of interacting with constant code features. We conduct experiments on the public MIMIC-III and MIMIC-II datasets. The results on MIMIC III show that HGCN-CL outperforms previous state-of-art methods for automatic ICD coding, which achieves a 2.7% and 3.6% improvement respectively compared to previous best results (Hypercore). We also provide ablation experiments and hierarchy visualization to verify the effectiveness of components in our model. International classification of diseases Automatic ICD coding Code hierarchy Contrastive learning Imbalanced label distribution Chen, Xuechen verfasserin (orcid)0000-0002-7683-2933 aut Yao, Xin verfasserin (orcid)0000-0001-7165-937X aut Yu, Yongang verfasserin aut Chen, Zhigang verfasserin aut Enthalten in Computers in biology and medicine Amsterdam [u.a.] : Elsevier Science, 1970 168 Online-Ressource (DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 1879-0534 nnns volume:168 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.00 VZ 44.09 Medizintechnik VZ AR 168 |
allfields_unstemmed |
10.1016/j.compbiomed.2023.107797 doi (DE-627)ELV066414091 (ELSEVIER)S0010-4825(23)01262-3 DE-627 ger DE-627 rda eng 610 570 VZ 42.00 bkl 44.09 bkl Wu, Yuzhou verfasserin (orcid)0000-0003-0816-2197 aut Hyperbolic graph convolutional neural network with contrastive learning for automated ICD coding 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The International Classification of Diseases (ICD) is a widely used criterion for disease classification, health monitoring, and medical data analysis. Deep learning-based automated ICD coding has gained attention due to the time-consuming and costly nature of manual coding. The main challenges of automated ICD coding include imbalanced label distribution, code hierarchy and noisy texts. Recent works have considered using code hierarchy or description for better label representation to solve the problem of imbalanced label distribution. However, these methods are still ineffective and redundant since they only interact with a constant label representation. In this work, we introduce a novel Hyperbolic Graph Convolutional Network with Contrastive Learning (HGCN-CL) to solve the above problems and the shortcomings of the previous methods. We adopt a Hyperbolic graph convolutional network on ICD coding to capture the hierarchical structure of codes, which can solve the problem of large distortions when embedding hierarchical structure with graph convolutional network. Besides, we introduce contrastive learning for automatic ICD coding by injecting code features into text encoder to generate hierarchical-aware positive samples to solve the problem of interacting with constant code features. We conduct experiments on the public MIMIC-III and MIMIC-II datasets. The results on MIMIC III show that HGCN-CL outperforms previous state-of-art methods for automatic ICD coding, which achieves a 2.7% and 3.6% improvement respectively compared to previous best results (Hypercore). We also provide ablation experiments and hierarchy visualization to verify the effectiveness of components in our model. International classification of diseases Automatic ICD coding Code hierarchy Contrastive learning Imbalanced label distribution Chen, Xuechen verfasserin (orcid)0000-0002-7683-2933 aut Yao, Xin verfasserin (orcid)0000-0001-7165-937X aut Yu, Yongang verfasserin aut Chen, Zhigang verfasserin aut Enthalten in Computers in biology and medicine Amsterdam [u.a.] : Elsevier Science, 1970 168 Online-Ressource (DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 1879-0534 nnns volume:168 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.00 VZ 44.09 Medizintechnik VZ AR 168 |
allfieldsGer |
10.1016/j.compbiomed.2023.107797 doi (DE-627)ELV066414091 (ELSEVIER)S0010-4825(23)01262-3 DE-627 ger DE-627 rda eng 610 570 VZ 42.00 bkl 44.09 bkl Wu, Yuzhou verfasserin (orcid)0000-0003-0816-2197 aut Hyperbolic graph convolutional neural network with contrastive learning for automated ICD coding 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The International Classification of Diseases (ICD) is a widely used criterion for disease classification, health monitoring, and medical data analysis. Deep learning-based automated ICD coding has gained attention due to the time-consuming and costly nature of manual coding. The main challenges of automated ICD coding include imbalanced label distribution, code hierarchy and noisy texts. Recent works have considered using code hierarchy or description for better label representation to solve the problem of imbalanced label distribution. However, these methods are still ineffective and redundant since they only interact with a constant label representation. In this work, we introduce a novel Hyperbolic Graph Convolutional Network with Contrastive Learning (HGCN-CL) to solve the above problems and the shortcomings of the previous methods. We adopt a Hyperbolic graph convolutional network on ICD coding to capture the hierarchical structure of codes, which can solve the problem of large distortions when embedding hierarchical structure with graph convolutional network. Besides, we introduce contrastive learning for automatic ICD coding by injecting code features into text encoder to generate hierarchical-aware positive samples to solve the problem of interacting with constant code features. We conduct experiments on the public MIMIC-III and MIMIC-II datasets. The results on MIMIC III show that HGCN-CL outperforms previous state-of-art methods for automatic ICD coding, which achieves a 2.7% and 3.6% improvement respectively compared to previous best results (Hypercore). We also provide ablation experiments and hierarchy visualization to verify the effectiveness of components in our model. International classification of diseases Automatic ICD coding Code hierarchy Contrastive learning Imbalanced label distribution Chen, Xuechen verfasserin (orcid)0000-0002-7683-2933 aut Yao, Xin verfasserin (orcid)0000-0001-7165-937X aut Yu, Yongang verfasserin aut Chen, Zhigang verfasserin aut Enthalten in Computers in biology and medicine Amsterdam [u.a.] : Elsevier Science, 1970 168 Online-Ressource (DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 1879-0534 nnns volume:168 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.00 VZ 44.09 Medizintechnik VZ AR 168 |
allfieldsSound |
10.1016/j.compbiomed.2023.107797 doi (DE-627)ELV066414091 (ELSEVIER)S0010-4825(23)01262-3 DE-627 ger DE-627 rda eng 610 570 VZ 42.00 bkl 44.09 bkl Wu, Yuzhou verfasserin (orcid)0000-0003-0816-2197 aut Hyperbolic graph convolutional neural network with contrastive learning for automated ICD coding 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The International Classification of Diseases (ICD) is a widely used criterion for disease classification, health monitoring, and medical data analysis. Deep learning-based automated ICD coding has gained attention due to the time-consuming and costly nature of manual coding. The main challenges of automated ICD coding include imbalanced label distribution, code hierarchy and noisy texts. Recent works have considered using code hierarchy or description for better label representation to solve the problem of imbalanced label distribution. However, these methods are still ineffective and redundant since they only interact with a constant label representation. In this work, we introduce a novel Hyperbolic Graph Convolutional Network with Contrastive Learning (HGCN-CL) to solve the above problems and the shortcomings of the previous methods. We adopt a Hyperbolic graph convolutional network on ICD coding to capture the hierarchical structure of codes, which can solve the problem of large distortions when embedding hierarchical structure with graph convolutional network. Besides, we introduce contrastive learning for automatic ICD coding by injecting code features into text encoder to generate hierarchical-aware positive samples to solve the problem of interacting with constant code features. We conduct experiments on the public MIMIC-III and MIMIC-II datasets. The results on MIMIC III show that HGCN-CL outperforms previous state-of-art methods for automatic ICD coding, which achieves a 2.7% and 3.6% improvement respectively compared to previous best results (Hypercore). We also provide ablation experiments and hierarchy visualization to verify the effectiveness of components in our model. International classification of diseases Automatic ICD coding Code hierarchy Contrastive learning Imbalanced label distribution Chen, Xuechen verfasserin (orcid)0000-0002-7683-2933 aut Yao, Xin verfasserin (orcid)0000-0001-7165-937X aut Yu, Yongang verfasserin aut Chen, Zhigang verfasserin aut Enthalten in Computers in biology and medicine Amsterdam [u.a.] : Elsevier Science, 1970 168 Online-Ressource (DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 1879-0534 nnns volume:168 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.00 VZ 44.09 Medizintechnik VZ AR 168 |
language |
English |
source |
Enthalten in Computers in biology and medicine 168 volume:168 |
sourceStr |
Enthalten in Computers in biology and medicine 168 volume:168 |
format_phy_str_mv |
Article |
bklname |
Medizintechnik |
institution |
findex.gbv.de |
topic_facet |
International classification of diseases Automatic ICD coding Code hierarchy Contrastive learning Imbalanced label distribution |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Computers in biology and medicine |
authorswithroles_txt_mv |
Wu, Yuzhou @@aut@@ Chen, Xuechen @@aut@@ Yao, Xin @@aut@@ Yu, Yongang @@aut@@ Chen, Zhigang @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
306356783 |
dewey-sort |
3610 |
id |
ELV066414091 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV066414091</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240201093036.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240106s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compbiomed.2023.107797</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066414091</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0010-4825(23)01262-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Yuzhou</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0816-2197</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hyperbolic graph convolutional neural network with contrastive learning for automated ICD coding</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The International Classification of Diseases (ICD) is a widely used criterion for disease classification, health monitoring, and medical data analysis. Deep learning-based automated ICD coding has gained attention due to the time-consuming and costly nature of manual coding. The main challenges of automated ICD coding include imbalanced label distribution, code hierarchy and noisy texts. Recent works have considered using code hierarchy or description for better label representation to solve the problem of imbalanced label distribution. However, these methods are still ineffective and redundant since they only interact with a constant label representation. In this work, we introduce a novel Hyperbolic Graph Convolutional Network with Contrastive Learning (HGCN-CL) to solve the above problems and the shortcomings of the previous methods. We adopt a Hyperbolic graph convolutional network on ICD coding to capture the hierarchical structure of codes, which can solve the problem of large distortions when embedding hierarchical structure with graph convolutional network. Besides, we introduce contrastive learning for automatic ICD coding by injecting code features into text encoder to generate hierarchical-aware positive samples to solve the problem of interacting with constant code features. We conduct experiments on the public MIMIC-III and MIMIC-II datasets. The results on MIMIC III show that HGCN-CL outperforms previous state-of-art methods for automatic ICD coding, which achieves a 2.7% and 3.6% improvement respectively compared to previous best results (Hypercore). We also provide ablation experiments and hierarchy visualization to verify the effectiveness of components in our model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">International classification of diseases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automatic ICD coding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Code hierarchy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Contrastive learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Imbalanced label distribution</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Xuechen</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7683-2933</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Xin</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7165-937X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Yongang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Zhigang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers in biology and medicine</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1970</subfield><subfield code="g">168</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306356783</subfield><subfield code="w">(DE-600)1496984-1</subfield><subfield code="w">(DE-576)081952988</subfield><subfield code="x">1879-0534</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:168</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.09</subfield><subfield code="j">Medizintechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">168</subfield></datafield></record></collection>
|
author |
Wu, Yuzhou |
spellingShingle |
Wu, Yuzhou ddc 610 bkl 42.00 bkl 44.09 misc International classification of diseases misc Automatic ICD coding misc Code hierarchy misc Contrastive learning misc Imbalanced label distribution Hyperbolic graph convolutional neural network with contrastive learning for automated ICD coding |
authorStr |
Wu, Yuzhou |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306356783 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-0534 |
topic_title |
610 570 VZ 42.00 bkl 44.09 bkl Hyperbolic graph convolutional neural network with contrastive learning for automated ICD coding International classification of diseases Automatic ICD coding Code hierarchy Contrastive learning Imbalanced label distribution |
topic |
ddc 610 bkl 42.00 bkl 44.09 misc International classification of diseases misc Automatic ICD coding misc Code hierarchy misc Contrastive learning misc Imbalanced label distribution |
topic_unstemmed |
ddc 610 bkl 42.00 bkl 44.09 misc International classification of diseases misc Automatic ICD coding misc Code hierarchy misc Contrastive learning misc Imbalanced label distribution |
topic_browse |
ddc 610 bkl 42.00 bkl 44.09 misc International classification of diseases misc Automatic ICD coding misc Code hierarchy misc Contrastive learning misc Imbalanced label distribution |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Computers in biology and medicine |
hierarchy_parent_id |
306356783 |
dewey-tens |
610 - Medicine & health 570 - Life sciences; biology |
hierarchy_top_title |
Computers in biology and medicine |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 |
title |
Hyperbolic graph convolutional neural network with contrastive learning for automated ICD coding |
ctrlnum |
(DE-627)ELV066414091 (ELSEVIER)S0010-4825(23)01262-3 |
title_full |
Hyperbolic graph convolutional neural network with contrastive learning for automated ICD coding |
author_sort |
Wu, Yuzhou |
journal |
Computers in biology and medicine |
journalStr |
Computers in biology and medicine |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Wu, Yuzhou Chen, Xuechen Yao, Xin Yu, Yongang Chen, Zhigang |
container_volume |
168 |
class |
610 570 VZ 42.00 bkl 44.09 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wu, Yuzhou |
doi_str_mv |
10.1016/j.compbiomed.2023.107797 |
normlink |
(ORCID)0000-0003-0816-2197 (ORCID)0000-0002-7683-2933 (ORCID)0000-0001-7165-937X |
normlink_prefix_str_mv |
(orcid)0000-0003-0816-2197 (orcid)0000-0002-7683-2933 (orcid)0000-0001-7165-937X |
dewey-full |
610 570 |
author2-role |
verfasserin |
title_sort |
hyperbolic graph convolutional neural network with contrastive learning for automated icd coding |
title_auth |
Hyperbolic graph convolutional neural network with contrastive learning for automated ICD coding |
abstract |
The International Classification of Diseases (ICD) is a widely used criterion for disease classification, health monitoring, and medical data analysis. Deep learning-based automated ICD coding has gained attention due to the time-consuming and costly nature of manual coding. The main challenges of automated ICD coding include imbalanced label distribution, code hierarchy and noisy texts. Recent works have considered using code hierarchy or description for better label representation to solve the problem of imbalanced label distribution. However, these methods are still ineffective and redundant since they only interact with a constant label representation. In this work, we introduce a novel Hyperbolic Graph Convolutional Network with Contrastive Learning (HGCN-CL) to solve the above problems and the shortcomings of the previous methods. We adopt a Hyperbolic graph convolutional network on ICD coding to capture the hierarchical structure of codes, which can solve the problem of large distortions when embedding hierarchical structure with graph convolutional network. Besides, we introduce contrastive learning for automatic ICD coding by injecting code features into text encoder to generate hierarchical-aware positive samples to solve the problem of interacting with constant code features. We conduct experiments on the public MIMIC-III and MIMIC-II datasets. The results on MIMIC III show that HGCN-CL outperforms previous state-of-art methods for automatic ICD coding, which achieves a 2.7% and 3.6% improvement respectively compared to previous best results (Hypercore). We also provide ablation experiments and hierarchy visualization to verify the effectiveness of components in our model. |
abstractGer |
The International Classification of Diseases (ICD) is a widely used criterion for disease classification, health monitoring, and medical data analysis. Deep learning-based automated ICD coding has gained attention due to the time-consuming and costly nature of manual coding. The main challenges of automated ICD coding include imbalanced label distribution, code hierarchy and noisy texts. Recent works have considered using code hierarchy or description for better label representation to solve the problem of imbalanced label distribution. However, these methods are still ineffective and redundant since they only interact with a constant label representation. In this work, we introduce a novel Hyperbolic Graph Convolutional Network with Contrastive Learning (HGCN-CL) to solve the above problems and the shortcomings of the previous methods. We adopt a Hyperbolic graph convolutional network on ICD coding to capture the hierarchical structure of codes, which can solve the problem of large distortions when embedding hierarchical structure with graph convolutional network. Besides, we introduce contrastive learning for automatic ICD coding by injecting code features into text encoder to generate hierarchical-aware positive samples to solve the problem of interacting with constant code features. We conduct experiments on the public MIMIC-III and MIMIC-II datasets. The results on MIMIC III show that HGCN-CL outperforms previous state-of-art methods for automatic ICD coding, which achieves a 2.7% and 3.6% improvement respectively compared to previous best results (Hypercore). We also provide ablation experiments and hierarchy visualization to verify the effectiveness of components in our model. |
abstract_unstemmed |
The International Classification of Diseases (ICD) is a widely used criterion for disease classification, health monitoring, and medical data analysis. Deep learning-based automated ICD coding has gained attention due to the time-consuming and costly nature of manual coding. The main challenges of automated ICD coding include imbalanced label distribution, code hierarchy and noisy texts. Recent works have considered using code hierarchy or description for better label representation to solve the problem of imbalanced label distribution. However, these methods are still ineffective and redundant since they only interact with a constant label representation. In this work, we introduce a novel Hyperbolic Graph Convolutional Network with Contrastive Learning (HGCN-CL) to solve the above problems and the shortcomings of the previous methods. We adopt a Hyperbolic graph convolutional network on ICD coding to capture the hierarchical structure of codes, which can solve the problem of large distortions when embedding hierarchical structure with graph convolutional network. Besides, we introduce contrastive learning for automatic ICD coding by injecting code features into text encoder to generate hierarchical-aware positive samples to solve the problem of interacting with constant code features. We conduct experiments on the public MIMIC-III and MIMIC-II datasets. The results on MIMIC III show that HGCN-CL outperforms previous state-of-art methods for automatic ICD coding, which achieves a 2.7% and 3.6% improvement respectively compared to previous best results (Hypercore). We also provide ablation experiments and hierarchy visualization to verify the effectiveness of components in our model. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Hyperbolic graph convolutional neural network with contrastive learning for automated ICD coding |
remote_bool |
true |
author2 |
Chen, Xuechen Yao, Xin Yu, Yongang Chen, Zhigang |
author2Str |
Chen, Xuechen Yao, Xin Yu, Yongang Chen, Zhigang |
ppnlink |
306356783 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.compbiomed.2023.107797 |
up_date |
2024-07-06T17:40:25.474Z |
_version_ |
1803852317172170752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV066414091</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240201093036.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240106s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compbiomed.2023.107797</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066414091</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0010-4825(23)01262-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Yuzhou</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0816-2197</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hyperbolic graph convolutional neural network with contrastive learning for automated ICD coding</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The International Classification of Diseases (ICD) is a widely used criterion for disease classification, health monitoring, and medical data analysis. Deep learning-based automated ICD coding has gained attention due to the time-consuming and costly nature of manual coding. The main challenges of automated ICD coding include imbalanced label distribution, code hierarchy and noisy texts. Recent works have considered using code hierarchy or description for better label representation to solve the problem of imbalanced label distribution. However, these methods are still ineffective and redundant since they only interact with a constant label representation. In this work, we introduce a novel Hyperbolic Graph Convolutional Network with Contrastive Learning (HGCN-CL) to solve the above problems and the shortcomings of the previous methods. We adopt a Hyperbolic graph convolutional network on ICD coding to capture the hierarchical structure of codes, which can solve the problem of large distortions when embedding hierarchical structure with graph convolutional network. Besides, we introduce contrastive learning for automatic ICD coding by injecting code features into text encoder to generate hierarchical-aware positive samples to solve the problem of interacting with constant code features. We conduct experiments on the public MIMIC-III and MIMIC-II datasets. The results on MIMIC III show that HGCN-CL outperforms previous state-of-art methods for automatic ICD coding, which achieves a 2.7% and 3.6% improvement respectively compared to previous best results (Hypercore). We also provide ablation experiments and hierarchy visualization to verify the effectiveness of components in our model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">International classification of diseases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automatic ICD coding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Code hierarchy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Contrastive learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Imbalanced label distribution</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Xuechen</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7683-2933</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Xin</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7165-937X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Yongang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Zhigang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers in biology and medicine</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1970</subfield><subfield code="g">168</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306356783</subfield><subfield code="w">(DE-600)1496984-1</subfield><subfield code="w">(DE-576)081952988</subfield><subfield code="x">1879-0534</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:168</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.09</subfield><subfield code="j">Medizintechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">168</subfield></datafield></record></collection>
|
score |
7.4007463 |