Elucidating deformation pathways and interface characteristic of self-accommodated dual γ/ε phase microstructure in Fe–Mn–Si–Al alloy
There has been an intense scientific interest in investigating the phenomenon of deformation-induced ε-ε martensite (hcp) interaction owing to the thermodynamically paradoxical reverse transformation and mechanical twinning. In this study, detailed transmission electron microscopy has been employed...
Ausführliche Beschreibung
Autor*in: |
Singh, Digvijay [verfasserIn] Singh, Alok [verfasserIn] Sawaguchi, Takahiro [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Materials characterization - New York, NY : Science Direct, 1990, 207 |
---|---|
Übergeordnetes Werk: |
volume:207 |
DOI / URN: |
10.1016/j.matchar.2023.113521 |
---|
Katalog-ID: |
ELV066423899 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV066423899 | ||
003 | DE-627 | ||
005 | 20240219093034.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240106s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.matchar.2023.113521 |2 doi | |
035 | |a (DE-627)ELV066423899 | ||
035 | |a (ELSEVIER)S1044-5803(23)00880-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
084 | |a 51.30 |2 bkl | ||
100 | 1 | |a Singh, Digvijay |e verfasserin |4 aut | |
245 | 1 | 0 | |a Elucidating deformation pathways and interface characteristic of self-accommodated dual γ/ε phase microstructure in Fe–Mn–Si–Al alloy |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a There has been an intense scientific interest in investigating the phenomenon of deformation-induced ε-ε martensite (hcp) interaction owing to the thermodynamically paradoxical reverse transformation and mechanical twinning. In this study, detailed transmission electron microscopy has been employed to examine the crystallographic orientation relationship, phase stability and boundaries between the intersection phases on the ε-ε intersections in a 10% tensile deformed Fe–30Mn–4Si–2Al alloy. The transformation/twinning scheme is systematically summarized initiating from the austenite matrix (γ) and two deformation-induced ε-martensite variants. It involves diverse intersection reactions: mechanical ε-twins, a 90°-rotating γ-phase from the γ matrix (γR), and 90°-rotate ε-phase re-transformed from the intersection γ. All these phases share a common 〈101〉γ || < 2 1 ¯ 1 ¯ 0 >ε axis that is equivalent to the intersection axis of the crossing {111}< 1 2 ¯ 1 >γ shears and interrelated with rotational angles with respect to the axis. Electron diffraction, coupled with stereographic analysis, revealed the distinct orientation relationships between γ–ε and γR–ε phases. The boundaries between the intersection γR and neighboring ε-phase are inclined from the corresponding {111}γ||{ 10 1 ¯ 1 }ε planes. By means of the phenomenological theory of martensite crystallography (PTMC), the inclination of the boundary is rationalized by considering the lattice-invariant shear on the double {111}γ plane inside the intersection γ to satisfy the invariant plane condition of the boundary. | ||
650 | 4 | |a Martensite transformation | |
650 | 4 | |a Twinning | |
650 | 4 | |a TRIP steels | |
650 | 4 | |a Transmission electron microscopy (TEM) | |
650 | 4 | |a ε-Martensite | |
700 | 1 | |a Singh, Alok |e verfasserin |4 aut | |
700 | 1 | |a Sawaguchi, Takahiro |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Materials characterization |d New York, NY : Science Direct, 1990 |g 207 |h Online-Ressource |w (DE-627)302719288 |w (DE-600)1491951-5 |w (DE-576)259483966 |7 nnns |
773 | 1 | 8 | |g volume:207 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 51.30 |j Werkstoffprüfung |j Werkstoffuntersuchung |q VZ |
951 | |a AR | ||
952 | |d 207 |
author_variant |
d s ds a s as t s ts |
---|---|
matchkey_str |
singhdigvijaysinghaloksawaguchitakahiro:2023----:lcdtndfrainahasnitraehrceitcfefcomdtdulhsm |
hierarchy_sort_str |
2023 |
bklnumber |
51.30 |
publishDate |
2023 |
allfields |
10.1016/j.matchar.2023.113521 doi (DE-627)ELV066423899 (ELSEVIER)S1044-5803(23)00880-X DE-627 ger DE-627 rda eng 670 VZ 51.30 bkl Singh, Digvijay verfasserin aut Elucidating deformation pathways and interface characteristic of self-accommodated dual γ/ε phase microstructure in Fe–Mn–Si–Al alloy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier There has been an intense scientific interest in investigating the phenomenon of deformation-induced ε-ε martensite (hcp) interaction owing to the thermodynamically paradoxical reverse transformation and mechanical twinning. In this study, detailed transmission electron microscopy has been employed to examine the crystallographic orientation relationship, phase stability and boundaries between the intersection phases on the ε-ε intersections in a 10% tensile deformed Fe–30Mn–4Si–2Al alloy. The transformation/twinning scheme is systematically summarized initiating from the austenite matrix (γ) and two deformation-induced ε-martensite variants. It involves diverse intersection reactions: mechanical ε-twins, a 90°-rotating γ-phase from the γ matrix (γR), and 90°-rotate ε-phase re-transformed from the intersection γ. All these phases share a common 〈101〉γ || < 2 1 ¯ 1 ¯ 0 >ε axis that is equivalent to the intersection axis of the crossing {111}< 1 2 ¯ 1 >γ shears and interrelated with rotational angles with respect to the axis. Electron diffraction, coupled with stereographic analysis, revealed the distinct orientation relationships between γ–ε and γR–ε phases. The boundaries between the intersection γR and neighboring ε-phase are inclined from the corresponding {111}γ||{ 10 1 ¯ 1 }ε planes. By means of the phenomenological theory of martensite crystallography (PTMC), the inclination of the boundary is rationalized by considering the lattice-invariant shear on the double {111}γ plane inside the intersection γ to satisfy the invariant plane condition of the boundary. Martensite transformation Twinning TRIP steels Transmission electron microscopy (TEM) ε-Martensite Singh, Alok verfasserin aut Sawaguchi, Takahiro verfasserin aut Enthalten in Materials characterization New York, NY : Science Direct, 1990 207 Online-Ressource (DE-627)302719288 (DE-600)1491951-5 (DE-576)259483966 nnns volume:207 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.30 Werkstoffprüfung Werkstoffuntersuchung VZ AR 207 |
spelling |
10.1016/j.matchar.2023.113521 doi (DE-627)ELV066423899 (ELSEVIER)S1044-5803(23)00880-X DE-627 ger DE-627 rda eng 670 VZ 51.30 bkl Singh, Digvijay verfasserin aut Elucidating deformation pathways and interface characteristic of self-accommodated dual γ/ε phase microstructure in Fe–Mn–Si–Al alloy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier There has been an intense scientific interest in investigating the phenomenon of deformation-induced ε-ε martensite (hcp) interaction owing to the thermodynamically paradoxical reverse transformation and mechanical twinning. In this study, detailed transmission electron microscopy has been employed to examine the crystallographic orientation relationship, phase stability and boundaries between the intersection phases on the ε-ε intersections in a 10% tensile deformed Fe–30Mn–4Si–2Al alloy. The transformation/twinning scheme is systematically summarized initiating from the austenite matrix (γ) and two deformation-induced ε-martensite variants. It involves diverse intersection reactions: mechanical ε-twins, a 90°-rotating γ-phase from the γ matrix (γR), and 90°-rotate ε-phase re-transformed from the intersection γ. All these phases share a common 〈101〉γ || < 2 1 ¯ 1 ¯ 0 >ε axis that is equivalent to the intersection axis of the crossing {111}< 1 2 ¯ 1 >γ shears and interrelated with rotational angles with respect to the axis. Electron diffraction, coupled with stereographic analysis, revealed the distinct orientation relationships between γ–ε and γR–ε phases. The boundaries between the intersection γR and neighboring ε-phase are inclined from the corresponding {111}γ||{ 10 1 ¯ 1 }ε planes. By means of the phenomenological theory of martensite crystallography (PTMC), the inclination of the boundary is rationalized by considering the lattice-invariant shear on the double {111}γ plane inside the intersection γ to satisfy the invariant plane condition of the boundary. Martensite transformation Twinning TRIP steels Transmission electron microscopy (TEM) ε-Martensite Singh, Alok verfasserin aut Sawaguchi, Takahiro verfasserin aut Enthalten in Materials characterization New York, NY : Science Direct, 1990 207 Online-Ressource (DE-627)302719288 (DE-600)1491951-5 (DE-576)259483966 nnns volume:207 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.30 Werkstoffprüfung Werkstoffuntersuchung VZ AR 207 |
allfields_unstemmed |
10.1016/j.matchar.2023.113521 doi (DE-627)ELV066423899 (ELSEVIER)S1044-5803(23)00880-X DE-627 ger DE-627 rda eng 670 VZ 51.30 bkl Singh, Digvijay verfasserin aut Elucidating deformation pathways and interface characteristic of self-accommodated dual γ/ε phase microstructure in Fe–Mn–Si–Al alloy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier There has been an intense scientific interest in investigating the phenomenon of deformation-induced ε-ε martensite (hcp) interaction owing to the thermodynamically paradoxical reverse transformation and mechanical twinning. In this study, detailed transmission electron microscopy has been employed to examine the crystallographic orientation relationship, phase stability and boundaries between the intersection phases on the ε-ε intersections in a 10% tensile deformed Fe–30Mn–4Si–2Al alloy. The transformation/twinning scheme is systematically summarized initiating from the austenite matrix (γ) and two deformation-induced ε-martensite variants. It involves diverse intersection reactions: mechanical ε-twins, a 90°-rotating γ-phase from the γ matrix (γR), and 90°-rotate ε-phase re-transformed from the intersection γ. All these phases share a common 〈101〉γ || < 2 1 ¯ 1 ¯ 0 >ε axis that is equivalent to the intersection axis of the crossing {111}< 1 2 ¯ 1 >γ shears and interrelated with rotational angles with respect to the axis. Electron diffraction, coupled with stereographic analysis, revealed the distinct orientation relationships between γ–ε and γR–ε phases. The boundaries between the intersection γR and neighboring ε-phase are inclined from the corresponding {111}γ||{ 10 1 ¯ 1 }ε planes. By means of the phenomenological theory of martensite crystallography (PTMC), the inclination of the boundary is rationalized by considering the lattice-invariant shear on the double {111}γ plane inside the intersection γ to satisfy the invariant plane condition of the boundary. Martensite transformation Twinning TRIP steels Transmission electron microscopy (TEM) ε-Martensite Singh, Alok verfasserin aut Sawaguchi, Takahiro verfasserin aut Enthalten in Materials characterization New York, NY : Science Direct, 1990 207 Online-Ressource (DE-627)302719288 (DE-600)1491951-5 (DE-576)259483966 nnns volume:207 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.30 Werkstoffprüfung Werkstoffuntersuchung VZ AR 207 |
allfieldsGer |
10.1016/j.matchar.2023.113521 doi (DE-627)ELV066423899 (ELSEVIER)S1044-5803(23)00880-X DE-627 ger DE-627 rda eng 670 VZ 51.30 bkl Singh, Digvijay verfasserin aut Elucidating deformation pathways and interface characteristic of self-accommodated dual γ/ε phase microstructure in Fe–Mn–Si–Al alloy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier There has been an intense scientific interest in investigating the phenomenon of deformation-induced ε-ε martensite (hcp) interaction owing to the thermodynamically paradoxical reverse transformation and mechanical twinning. In this study, detailed transmission electron microscopy has been employed to examine the crystallographic orientation relationship, phase stability and boundaries between the intersection phases on the ε-ε intersections in a 10% tensile deformed Fe–30Mn–4Si–2Al alloy. The transformation/twinning scheme is systematically summarized initiating from the austenite matrix (γ) and two deformation-induced ε-martensite variants. It involves diverse intersection reactions: mechanical ε-twins, a 90°-rotating γ-phase from the γ matrix (γR), and 90°-rotate ε-phase re-transformed from the intersection γ. All these phases share a common 〈101〉γ || < 2 1 ¯ 1 ¯ 0 >ε axis that is equivalent to the intersection axis of the crossing {111}< 1 2 ¯ 1 >γ shears and interrelated with rotational angles with respect to the axis. Electron diffraction, coupled with stereographic analysis, revealed the distinct orientation relationships between γ–ε and γR–ε phases. The boundaries between the intersection γR and neighboring ε-phase are inclined from the corresponding {111}γ||{ 10 1 ¯ 1 }ε planes. By means of the phenomenological theory of martensite crystallography (PTMC), the inclination of the boundary is rationalized by considering the lattice-invariant shear on the double {111}γ plane inside the intersection γ to satisfy the invariant plane condition of the boundary. Martensite transformation Twinning TRIP steels Transmission electron microscopy (TEM) ε-Martensite Singh, Alok verfasserin aut Sawaguchi, Takahiro verfasserin aut Enthalten in Materials characterization New York, NY : Science Direct, 1990 207 Online-Ressource (DE-627)302719288 (DE-600)1491951-5 (DE-576)259483966 nnns volume:207 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.30 Werkstoffprüfung Werkstoffuntersuchung VZ AR 207 |
allfieldsSound |
10.1016/j.matchar.2023.113521 doi (DE-627)ELV066423899 (ELSEVIER)S1044-5803(23)00880-X DE-627 ger DE-627 rda eng 670 VZ 51.30 bkl Singh, Digvijay verfasserin aut Elucidating deformation pathways and interface characteristic of self-accommodated dual γ/ε phase microstructure in Fe–Mn–Si–Al alloy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier There has been an intense scientific interest in investigating the phenomenon of deformation-induced ε-ε martensite (hcp) interaction owing to the thermodynamically paradoxical reverse transformation and mechanical twinning. In this study, detailed transmission electron microscopy has been employed to examine the crystallographic orientation relationship, phase stability and boundaries between the intersection phases on the ε-ε intersections in a 10% tensile deformed Fe–30Mn–4Si–2Al alloy. The transformation/twinning scheme is systematically summarized initiating from the austenite matrix (γ) and two deformation-induced ε-martensite variants. It involves diverse intersection reactions: mechanical ε-twins, a 90°-rotating γ-phase from the γ matrix (γR), and 90°-rotate ε-phase re-transformed from the intersection γ. All these phases share a common 〈101〉γ || < 2 1 ¯ 1 ¯ 0 >ε axis that is equivalent to the intersection axis of the crossing {111}< 1 2 ¯ 1 >γ shears and interrelated with rotational angles with respect to the axis. Electron diffraction, coupled with stereographic analysis, revealed the distinct orientation relationships between γ–ε and γR–ε phases. The boundaries between the intersection γR and neighboring ε-phase are inclined from the corresponding {111}γ||{ 10 1 ¯ 1 }ε planes. By means of the phenomenological theory of martensite crystallography (PTMC), the inclination of the boundary is rationalized by considering the lattice-invariant shear on the double {111}γ plane inside the intersection γ to satisfy the invariant plane condition of the boundary. Martensite transformation Twinning TRIP steels Transmission electron microscopy (TEM) ε-Martensite Singh, Alok verfasserin aut Sawaguchi, Takahiro verfasserin aut Enthalten in Materials characterization New York, NY : Science Direct, 1990 207 Online-Ressource (DE-627)302719288 (DE-600)1491951-5 (DE-576)259483966 nnns volume:207 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.30 Werkstoffprüfung Werkstoffuntersuchung VZ AR 207 |
language |
English |
source |
Enthalten in Materials characterization 207 volume:207 |
sourceStr |
Enthalten in Materials characterization 207 volume:207 |
format_phy_str_mv |
Article |
bklname |
Werkstoffprüfung Werkstoffuntersuchung |
institution |
findex.gbv.de |
topic_facet |
Martensite transformation Twinning TRIP steels Transmission electron microscopy (TEM) ε-Martensite |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Materials characterization |
authorswithroles_txt_mv |
Singh, Digvijay @@aut@@ Singh, Alok @@aut@@ Sawaguchi, Takahiro @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
302719288 |
dewey-sort |
3670 |
id |
ELV066423899 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV066423899</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240219093034.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240106s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.matchar.2023.113521</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066423899</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1044-5803(23)00880-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Singh, Digvijay</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elucidating deformation pathways and interface characteristic of self-accommodated dual γ/ε phase microstructure in Fe–Mn–Si–Al alloy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">There has been an intense scientific interest in investigating the phenomenon of deformation-induced ε-ε martensite (hcp) interaction owing to the thermodynamically paradoxical reverse transformation and mechanical twinning. In this study, detailed transmission electron microscopy has been employed to examine the crystallographic orientation relationship, phase stability and boundaries between the intersection phases on the ε-ε intersections in a 10% tensile deformed Fe–30Mn–4Si–2Al alloy. The transformation/twinning scheme is systematically summarized initiating from the austenite matrix (γ) and two deformation-induced ε-martensite variants. It involves diverse intersection reactions: mechanical ε-twins, a 90°-rotating γ-phase from the γ matrix (γR), and 90°-rotate ε-phase re-transformed from the intersection γ. All these phases share a common 〈101〉γ || < 2 1 ¯ 1 ¯ 0 >ε axis that is equivalent to the intersection axis of the crossing {111}< 1 2 ¯ 1 >γ shears and interrelated with rotational angles with respect to the axis. Electron diffraction, coupled with stereographic analysis, revealed the distinct orientation relationships between γ–ε and γR–ε phases. The boundaries between the intersection γR and neighboring ε-phase are inclined from the corresponding {111}γ||{ 10 1 ¯ 1 }ε planes. By means of the phenomenological theory of martensite crystallography (PTMC), the inclination of the boundary is rationalized by considering the lattice-invariant shear on the double {111}γ plane inside the intersection γ to satisfy the invariant plane condition of the boundary.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Martensite transformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Twinning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TRIP steels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transmission electron microscopy (TEM)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ε-Martensite</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, Alok</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sawaguchi, Takahiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Materials characterization</subfield><subfield code="d">New York, NY : Science Direct, 1990</subfield><subfield code="g">207</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302719288</subfield><subfield code="w">(DE-600)1491951-5</subfield><subfield code="w">(DE-576)259483966</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:207</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.30</subfield><subfield code="j">Werkstoffprüfung</subfield><subfield code="j">Werkstoffuntersuchung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">207</subfield></datafield></record></collection>
|
author |
Singh, Digvijay |
spellingShingle |
Singh, Digvijay ddc 670 bkl 51.30 misc Martensite transformation misc Twinning misc TRIP steels misc Transmission electron microscopy (TEM) misc ε-Martensite Elucidating deformation pathways and interface characteristic of self-accommodated dual γ/ε phase microstructure in Fe–Mn–Si–Al alloy |
authorStr |
Singh, Digvijay |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)302719288 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
670 VZ 51.30 bkl Elucidating deformation pathways and interface characteristic of self-accommodated dual γ/ε phase microstructure in Fe–Mn–Si–Al alloy Martensite transformation Twinning TRIP steels Transmission electron microscopy (TEM) ε-Martensite |
topic |
ddc 670 bkl 51.30 misc Martensite transformation misc Twinning misc TRIP steels misc Transmission electron microscopy (TEM) misc ε-Martensite |
topic_unstemmed |
ddc 670 bkl 51.30 misc Martensite transformation misc Twinning misc TRIP steels misc Transmission electron microscopy (TEM) misc ε-Martensite |
topic_browse |
ddc 670 bkl 51.30 misc Martensite transformation misc Twinning misc TRIP steels misc Transmission electron microscopy (TEM) misc ε-Martensite |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Materials characterization |
hierarchy_parent_id |
302719288 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Materials characterization |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)302719288 (DE-600)1491951-5 (DE-576)259483966 |
title |
Elucidating deformation pathways and interface characteristic of self-accommodated dual γ/ε phase microstructure in Fe–Mn–Si–Al alloy |
ctrlnum |
(DE-627)ELV066423899 (ELSEVIER)S1044-5803(23)00880-X |
title_full |
Elucidating deformation pathways and interface characteristic of self-accommodated dual γ/ε phase microstructure in Fe–Mn–Si–Al alloy |
author_sort |
Singh, Digvijay |
journal |
Materials characterization |
journalStr |
Materials characterization |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Singh, Digvijay Singh, Alok Sawaguchi, Takahiro |
container_volume |
207 |
class |
670 VZ 51.30 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Singh, Digvijay |
doi_str_mv |
10.1016/j.matchar.2023.113521 |
dewey-full |
670 |
author2-role |
verfasserin |
title_sort |
elucidating deformation pathways and interface characteristic of self-accommodated dual γ/ε phase microstructure in fe–mn–si–al alloy |
title_auth |
Elucidating deformation pathways and interface characteristic of self-accommodated dual γ/ε phase microstructure in Fe–Mn–Si–Al alloy |
abstract |
There has been an intense scientific interest in investigating the phenomenon of deformation-induced ε-ε martensite (hcp) interaction owing to the thermodynamically paradoxical reverse transformation and mechanical twinning. In this study, detailed transmission electron microscopy has been employed to examine the crystallographic orientation relationship, phase stability and boundaries between the intersection phases on the ε-ε intersections in a 10% tensile deformed Fe–30Mn–4Si–2Al alloy. The transformation/twinning scheme is systematically summarized initiating from the austenite matrix (γ) and two deformation-induced ε-martensite variants. It involves diverse intersection reactions: mechanical ε-twins, a 90°-rotating γ-phase from the γ matrix (γR), and 90°-rotate ε-phase re-transformed from the intersection γ. All these phases share a common 〈101〉γ || < 2 1 ¯ 1 ¯ 0 >ε axis that is equivalent to the intersection axis of the crossing {111}< 1 2 ¯ 1 >γ shears and interrelated with rotational angles with respect to the axis. Electron diffraction, coupled with stereographic analysis, revealed the distinct orientation relationships between γ–ε and γR–ε phases. The boundaries between the intersection γR and neighboring ε-phase are inclined from the corresponding {111}γ||{ 10 1 ¯ 1 }ε planes. By means of the phenomenological theory of martensite crystallography (PTMC), the inclination of the boundary is rationalized by considering the lattice-invariant shear on the double {111}γ plane inside the intersection γ to satisfy the invariant plane condition of the boundary. |
abstractGer |
There has been an intense scientific interest in investigating the phenomenon of deformation-induced ε-ε martensite (hcp) interaction owing to the thermodynamically paradoxical reverse transformation and mechanical twinning. In this study, detailed transmission electron microscopy has been employed to examine the crystallographic orientation relationship, phase stability and boundaries between the intersection phases on the ε-ε intersections in a 10% tensile deformed Fe–30Mn–4Si–2Al alloy. The transformation/twinning scheme is systematically summarized initiating from the austenite matrix (γ) and two deformation-induced ε-martensite variants. It involves diverse intersection reactions: mechanical ε-twins, a 90°-rotating γ-phase from the γ matrix (γR), and 90°-rotate ε-phase re-transformed from the intersection γ. All these phases share a common 〈101〉γ || < 2 1 ¯ 1 ¯ 0 >ε axis that is equivalent to the intersection axis of the crossing {111}< 1 2 ¯ 1 >γ shears and interrelated with rotational angles with respect to the axis. Electron diffraction, coupled with stereographic analysis, revealed the distinct orientation relationships between γ–ε and γR–ε phases. The boundaries between the intersection γR and neighboring ε-phase are inclined from the corresponding {111}γ||{ 10 1 ¯ 1 }ε planes. By means of the phenomenological theory of martensite crystallography (PTMC), the inclination of the boundary is rationalized by considering the lattice-invariant shear on the double {111}γ plane inside the intersection γ to satisfy the invariant plane condition of the boundary. |
abstract_unstemmed |
There has been an intense scientific interest in investigating the phenomenon of deformation-induced ε-ε martensite (hcp) interaction owing to the thermodynamically paradoxical reverse transformation and mechanical twinning. In this study, detailed transmission electron microscopy has been employed to examine the crystallographic orientation relationship, phase stability and boundaries between the intersection phases on the ε-ε intersections in a 10% tensile deformed Fe–30Mn–4Si–2Al alloy. The transformation/twinning scheme is systematically summarized initiating from the austenite matrix (γ) and two deformation-induced ε-martensite variants. It involves diverse intersection reactions: mechanical ε-twins, a 90°-rotating γ-phase from the γ matrix (γR), and 90°-rotate ε-phase re-transformed from the intersection γ. All these phases share a common 〈101〉γ || < 2 1 ¯ 1 ¯ 0 >ε axis that is equivalent to the intersection axis of the crossing {111}< 1 2 ¯ 1 >γ shears and interrelated with rotational angles with respect to the axis. Electron diffraction, coupled with stereographic analysis, revealed the distinct orientation relationships between γ–ε and γR–ε phases. The boundaries between the intersection γR and neighboring ε-phase are inclined from the corresponding {111}γ||{ 10 1 ¯ 1 }ε planes. By means of the phenomenological theory of martensite crystallography (PTMC), the inclination of the boundary is rationalized by considering the lattice-invariant shear on the double {111}γ plane inside the intersection γ to satisfy the invariant plane condition of the boundary. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Elucidating deformation pathways and interface characteristic of self-accommodated dual γ/ε phase microstructure in Fe–Mn–Si–Al alloy |
remote_bool |
true |
author2 |
Singh, Alok Sawaguchi, Takahiro |
author2Str |
Singh, Alok Sawaguchi, Takahiro |
ppnlink |
302719288 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.matchar.2023.113521 |
up_date |
2024-07-06T17:42:35.930Z |
_version_ |
1803852453965201408 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV066423899</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240219093034.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240106s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.matchar.2023.113521</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066423899</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1044-5803(23)00880-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Singh, Digvijay</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elucidating deformation pathways and interface characteristic of self-accommodated dual γ/ε phase microstructure in Fe–Mn–Si–Al alloy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">There has been an intense scientific interest in investigating the phenomenon of deformation-induced ε-ε martensite (hcp) interaction owing to the thermodynamically paradoxical reverse transformation and mechanical twinning. In this study, detailed transmission electron microscopy has been employed to examine the crystallographic orientation relationship, phase stability and boundaries between the intersection phases on the ε-ε intersections in a 10% tensile deformed Fe–30Mn–4Si–2Al alloy. The transformation/twinning scheme is systematically summarized initiating from the austenite matrix (γ) and two deformation-induced ε-martensite variants. It involves diverse intersection reactions: mechanical ε-twins, a 90°-rotating γ-phase from the γ matrix (γR), and 90°-rotate ε-phase re-transformed from the intersection γ. All these phases share a common 〈101〉γ || < 2 1 ¯ 1 ¯ 0 >ε axis that is equivalent to the intersection axis of the crossing {111}< 1 2 ¯ 1 >γ shears and interrelated with rotational angles with respect to the axis. Electron diffraction, coupled with stereographic analysis, revealed the distinct orientation relationships between γ–ε and γR–ε phases. The boundaries between the intersection γR and neighboring ε-phase are inclined from the corresponding {111}γ||{ 10 1 ¯ 1 }ε planes. By means of the phenomenological theory of martensite crystallography (PTMC), the inclination of the boundary is rationalized by considering the lattice-invariant shear on the double {111}γ plane inside the intersection γ to satisfy the invariant plane condition of the boundary.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Martensite transformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Twinning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TRIP steels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transmission electron microscopy (TEM)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ε-Martensite</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, Alok</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sawaguchi, Takahiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Materials characterization</subfield><subfield code="d">New York, NY : Science Direct, 1990</subfield><subfield code="g">207</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302719288</subfield><subfield code="w">(DE-600)1491951-5</subfield><subfield code="w">(DE-576)259483966</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:207</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.30</subfield><subfield code="j">Werkstoffprüfung</subfield><subfield code="j">Werkstoffuntersuchung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">207</subfield></datafield></record></collection>
|
score |
7.4006968 |