Investigation on local monitoring paradigms of in-situ conformally fabricated piezopolymer coating-based array transducers: Ultrasonic bulk waves and local ultrasonic resonances
Realistic structures with complex features have been intricate challenges for structural health monitoring (SHM) with permanently installed transducers. Poor conformability of conventional rigid and brittle piezoceramic wafers is a typical issue of applications on surfaces with complex geometry. Mor...
Ausführliche Beschreibung
Autor*in: |
Li, Yehai [verfasserIn] Yao, Zhijun [verfasserIn] Jiang, Chao [verfasserIn] Zhang, Zhen [verfasserIn] Feng, Wei [verfasserIn] Su, Zhongqing [verfasserIn] Guo, Shifeng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Mechanical systems and signal processing - Amsterdam [u.a.] : Elsevier, 1987, 208 |
---|---|
Übergeordnetes Werk: |
volume:208 |
DOI / URN: |
10.1016/j.ymssp.2023.110999 |
---|
Katalog-ID: |
ELV066441110 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV066441110 | ||
003 | DE-627 | ||
005 | 20240219093012.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240108s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ymssp.2023.110999 |2 doi | |
035 | |a (DE-627)ELV066441110 | ||
035 | |a (ELSEVIER)S0888-3270(23)00907-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 50.32 |2 bkl | ||
084 | |a 50.16 |2 bkl | ||
100 | 1 | |a Li, Yehai |e verfasserin |4 aut | |
245 | 1 | 0 | |a Investigation on local monitoring paradigms of in-situ conformally fabricated piezopolymer coating-based array transducers: Ultrasonic bulk waves and local ultrasonic resonances |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Realistic structures with complex features have been intricate challenges for structural health monitoring (SHM) with permanently installed transducers. Poor conformability of conventional rigid and brittle piezoceramic wafers is a typical issue of applications on surfaces with complex geometry. Moreover, the accompanied high-stress concentration requires high-sensitivity defect detection which is difficult to achieve with large-area monitoring methods like lamb waves at tens to hundreds kHz. Previously, in-situ conformally fabricated piezopolymer coating-based array transducers (PCATs) have been developed to build large-area, lightweight, flexible, and tunable Lamb wave networks. In this study, two novel local monitoring methods were investigated with PCATs, namely ultrasonic bulk wave array inspection and local ultrasonic resonance spectroscopy. For thick structures, ultrasonic bulk waves were generated and detected by PCATs with broadband operating frequencies (1–10 MHz) and flexible array parameters. Simulation tools and imaging algorithms of array inspection in non-destructive testing (NDT) were well implemented based on the analogous directivity pattern and normal-pressure coupling mechanism. As proof of concept, PCATs were applied on example structures with flat, concave, and convex surfaces for internal defect imaging. For thin-walled and/or multilayer structures, PCATs were used to measure local ultrasonic resonances, comparable to conventional non-contact methods. With negligible influence on local mechanical properties and broadband frequency response, multiple resonance peaks from 0 to 25 MHz were identified as zero group velocity (ZGV) Lamb modes and thickness vibration modes of host structures, which can be used as damage indices for local monitoring of corrosion, delamination, stiffness degradation, etc. Through embracing advanced NDT techniques with PCATs, high-sensitivity and quantitative local monitoring could be achieved with conformal networks, offering the possibility to integrate with large-area monitoring as multi-scale SHM for complex structures. | ||
650 | 4 | |a Structural health monitoring | |
650 | 4 | |a Piezopolymer coating | |
650 | 4 | |a Sensing network | |
650 | 4 | |a Ultrasonic wave | |
650 | 4 | |a Ultrasonic resonance | |
650 | 4 | |a Local monitoring | |
700 | 1 | |a Yao, Zhijun |e verfasserin |4 aut | |
700 | 1 | |a Jiang, Chao |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Zhen |e verfasserin |4 aut | |
700 | 1 | |a Feng, Wei |e verfasserin |0 (orcid)0000-0002-9845-999X |4 aut | |
700 | 1 | |a Su, Zhongqing |e verfasserin |0 (orcid)0000-0003-1524-0026 |4 aut | |
700 | 1 | |a Guo, Shifeng |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Mechanical systems and signal processing |d Amsterdam [u.a.] : Elsevier, 1987 |g 208 |h Online-Ressource |w (DE-627)267838670 |w (DE-600)1471003-1 |w (DE-576)253127629 |x 1096-1216 |7 nnns |
773 | 1 | 8 | |g volume:208 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.32 |j Dynamik |j Schwingungslehre |x Technische Mechanik |q VZ |
936 | b | k | |a 50.16 |j Technische Zuverlässigkeit |j Instandhaltung |q VZ |
951 | |a AR | ||
952 | |d 208 |
author_variant |
y l yl z y zy c j cj z z zz w f wf z s zs s g sg |
---|---|
matchkey_str |
article:10961216:2023----::netgtoolcloioigaaimoistcnomlyarctdizplmrotnbsdratasueslrs |
hierarchy_sort_str |
2023 |
bklnumber |
50.32 50.16 |
publishDate |
2023 |
allfields |
10.1016/j.ymssp.2023.110999 doi (DE-627)ELV066441110 (ELSEVIER)S0888-3270(23)00907-X DE-627 ger DE-627 rda eng 004 VZ 50.32 bkl 50.16 bkl Li, Yehai verfasserin aut Investigation on local monitoring paradigms of in-situ conformally fabricated piezopolymer coating-based array transducers: Ultrasonic bulk waves and local ultrasonic resonances 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Realistic structures with complex features have been intricate challenges for structural health monitoring (SHM) with permanently installed transducers. Poor conformability of conventional rigid and brittle piezoceramic wafers is a typical issue of applications on surfaces with complex geometry. Moreover, the accompanied high-stress concentration requires high-sensitivity defect detection which is difficult to achieve with large-area monitoring methods like lamb waves at tens to hundreds kHz. Previously, in-situ conformally fabricated piezopolymer coating-based array transducers (PCATs) have been developed to build large-area, lightweight, flexible, and tunable Lamb wave networks. In this study, two novel local monitoring methods were investigated with PCATs, namely ultrasonic bulk wave array inspection and local ultrasonic resonance spectroscopy. For thick structures, ultrasonic bulk waves were generated and detected by PCATs with broadband operating frequencies (1–10 MHz) and flexible array parameters. Simulation tools and imaging algorithms of array inspection in non-destructive testing (NDT) were well implemented based on the analogous directivity pattern and normal-pressure coupling mechanism. As proof of concept, PCATs were applied on example structures with flat, concave, and convex surfaces for internal defect imaging. For thin-walled and/or multilayer structures, PCATs were used to measure local ultrasonic resonances, comparable to conventional non-contact methods. With negligible influence on local mechanical properties and broadband frequency response, multiple resonance peaks from 0 to 25 MHz were identified as zero group velocity (ZGV) Lamb modes and thickness vibration modes of host structures, which can be used as damage indices for local monitoring of corrosion, delamination, stiffness degradation, etc. Through embracing advanced NDT techniques with PCATs, high-sensitivity and quantitative local monitoring could be achieved with conformal networks, offering the possibility to integrate with large-area monitoring as multi-scale SHM for complex structures. Structural health monitoring Piezopolymer coating Sensing network Ultrasonic wave Ultrasonic resonance Local monitoring Yao, Zhijun verfasserin aut Jiang, Chao verfasserin aut Zhang, Zhen verfasserin aut Feng, Wei verfasserin (orcid)0000-0002-9845-999X aut Su, Zhongqing verfasserin (orcid)0000-0003-1524-0026 aut Guo, Shifeng verfasserin aut Enthalten in Mechanical systems and signal processing Amsterdam [u.a.] : Elsevier, 1987 208 Online-Ressource (DE-627)267838670 (DE-600)1471003-1 (DE-576)253127629 1096-1216 nnns volume:208 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.32 Dynamik Schwingungslehre Technische Mechanik VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 208 |
spelling |
10.1016/j.ymssp.2023.110999 doi (DE-627)ELV066441110 (ELSEVIER)S0888-3270(23)00907-X DE-627 ger DE-627 rda eng 004 VZ 50.32 bkl 50.16 bkl Li, Yehai verfasserin aut Investigation on local monitoring paradigms of in-situ conformally fabricated piezopolymer coating-based array transducers: Ultrasonic bulk waves and local ultrasonic resonances 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Realistic structures with complex features have been intricate challenges for structural health monitoring (SHM) with permanently installed transducers. Poor conformability of conventional rigid and brittle piezoceramic wafers is a typical issue of applications on surfaces with complex geometry. Moreover, the accompanied high-stress concentration requires high-sensitivity defect detection which is difficult to achieve with large-area monitoring methods like lamb waves at tens to hundreds kHz. Previously, in-situ conformally fabricated piezopolymer coating-based array transducers (PCATs) have been developed to build large-area, lightweight, flexible, and tunable Lamb wave networks. In this study, two novel local monitoring methods were investigated with PCATs, namely ultrasonic bulk wave array inspection and local ultrasonic resonance spectroscopy. For thick structures, ultrasonic bulk waves were generated and detected by PCATs with broadband operating frequencies (1–10 MHz) and flexible array parameters. Simulation tools and imaging algorithms of array inspection in non-destructive testing (NDT) were well implemented based on the analogous directivity pattern and normal-pressure coupling mechanism. As proof of concept, PCATs were applied on example structures with flat, concave, and convex surfaces for internal defect imaging. For thin-walled and/or multilayer structures, PCATs were used to measure local ultrasonic resonances, comparable to conventional non-contact methods. With negligible influence on local mechanical properties and broadband frequency response, multiple resonance peaks from 0 to 25 MHz were identified as zero group velocity (ZGV) Lamb modes and thickness vibration modes of host structures, which can be used as damage indices for local monitoring of corrosion, delamination, stiffness degradation, etc. Through embracing advanced NDT techniques with PCATs, high-sensitivity and quantitative local monitoring could be achieved with conformal networks, offering the possibility to integrate with large-area monitoring as multi-scale SHM for complex structures. Structural health monitoring Piezopolymer coating Sensing network Ultrasonic wave Ultrasonic resonance Local monitoring Yao, Zhijun verfasserin aut Jiang, Chao verfasserin aut Zhang, Zhen verfasserin aut Feng, Wei verfasserin (orcid)0000-0002-9845-999X aut Su, Zhongqing verfasserin (orcid)0000-0003-1524-0026 aut Guo, Shifeng verfasserin aut Enthalten in Mechanical systems and signal processing Amsterdam [u.a.] : Elsevier, 1987 208 Online-Ressource (DE-627)267838670 (DE-600)1471003-1 (DE-576)253127629 1096-1216 nnns volume:208 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.32 Dynamik Schwingungslehre Technische Mechanik VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 208 |
allfields_unstemmed |
10.1016/j.ymssp.2023.110999 doi (DE-627)ELV066441110 (ELSEVIER)S0888-3270(23)00907-X DE-627 ger DE-627 rda eng 004 VZ 50.32 bkl 50.16 bkl Li, Yehai verfasserin aut Investigation on local monitoring paradigms of in-situ conformally fabricated piezopolymer coating-based array transducers: Ultrasonic bulk waves and local ultrasonic resonances 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Realistic structures with complex features have been intricate challenges for structural health monitoring (SHM) with permanently installed transducers. Poor conformability of conventional rigid and brittle piezoceramic wafers is a typical issue of applications on surfaces with complex geometry. Moreover, the accompanied high-stress concentration requires high-sensitivity defect detection which is difficult to achieve with large-area monitoring methods like lamb waves at tens to hundreds kHz. Previously, in-situ conformally fabricated piezopolymer coating-based array transducers (PCATs) have been developed to build large-area, lightweight, flexible, and tunable Lamb wave networks. In this study, two novel local monitoring methods were investigated with PCATs, namely ultrasonic bulk wave array inspection and local ultrasonic resonance spectroscopy. For thick structures, ultrasonic bulk waves were generated and detected by PCATs with broadband operating frequencies (1–10 MHz) and flexible array parameters. Simulation tools and imaging algorithms of array inspection in non-destructive testing (NDT) were well implemented based on the analogous directivity pattern and normal-pressure coupling mechanism. As proof of concept, PCATs were applied on example structures with flat, concave, and convex surfaces for internal defect imaging. For thin-walled and/or multilayer structures, PCATs were used to measure local ultrasonic resonances, comparable to conventional non-contact methods. With negligible influence on local mechanical properties and broadband frequency response, multiple resonance peaks from 0 to 25 MHz were identified as zero group velocity (ZGV) Lamb modes and thickness vibration modes of host structures, which can be used as damage indices for local monitoring of corrosion, delamination, stiffness degradation, etc. Through embracing advanced NDT techniques with PCATs, high-sensitivity and quantitative local monitoring could be achieved with conformal networks, offering the possibility to integrate with large-area monitoring as multi-scale SHM for complex structures. Structural health monitoring Piezopolymer coating Sensing network Ultrasonic wave Ultrasonic resonance Local monitoring Yao, Zhijun verfasserin aut Jiang, Chao verfasserin aut Zhang, Zhen verfasserin aut Feng, Wei verfasserin (orcid)0000-0002-9845-999X aut Su, Zhongqing verfasserin (orcid)0000-0003-1524-0026 aut Guo, Shifeng verfasserin aut Enthalten in Mechanical systems and signal processing Amsterdam [u.a.] : Elsevier, 1987 208 Online-Ressource (DE-627)267838670 (DE-600)1471003-1 (DE-576)253127629 1096-1216 nnns volume:208 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.32 Dynamik Schwingungslehre Technische Mechanik VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 208 |
allfieldsGer |
10.1016/j.ymssp.2023.110999 doi (DE-627)ELV066441110 (ELSEVIER)S0888-3270(23)00907-X DE-627 ger DE-627 rda eng 004 VZ 50.32 bkl 50.16 bkl Li, Yehai verfasserin aut Investigation on local monitoring paradigms of in-situ conformally fabricated piezopolymer coating-based array transducers: Ultrasonic bulk waves and local ultrasonic resonances 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Realistic structures with complex features have been intricate challenges for structural health monitoring (SHM) with permanently installed transducers. Poor conformability of conventional rigid and brittle piezoceramic wafers is a typical issue of applications on surfaces with complex geometry. Moreover, the accompanied high-stress concentration requires high-sensitivity defect detection which is difficult to achieve with large-area monitoring methods like lamb waves at tens to hundreds kHz. Previously, in-situ conformally fabricated piezopolymer coating-based array transducers (PCATs) have been developed to build large-area, lightweight, flexible, and tunable Lamb wave networks. In this study, two novel local monitoring methods were investigated with PCATs, namely ultrasonic bulk wave array inspection and local ultrasonic resonance spectroscopy. For thick structures, ultrasonic bulk waves were generated and detected by PCATs with broadband operating frequencies (1–10 MHz) and flexible array parameters. Simulation tools and imaging algorithms of array inspection in non-destructive testing (NDT) were well implemented based on the analogous directivity pattern and normal-pressure coupling mechanism. As proof of concept, PCATs were applied on example structures with flat, concave, and convex surfaces for internal defect imaging. For thin-walled and/or multilayer structures, PCATs were used to measure local ultrasonic resonances, comparable to conventional non-contact methods. With negligible influence on local mechanical properties and broadband frequency response, multiple resonance peaks from 0 to 25 MHz were identified as zero group velocity (ZGV) Lamb modes and thickness vibration modes of host structures, which can be used as damage indices for local monitoring of corrosion, delamination, stiffness degradation, etc. Through embracing advanced NDT techniques with PCATs, high-sensitivity and quantitative local monitoring could be achieved with conformal networks, offering the possibility to integrate with large-area monitoring as multi-scale SHM for complex structures. Structural health monitoring Piezopolymer coating Sensing network Ultrasonic wave Ultrasonic resonance Local monitoring Yao, Zhijun verfasserin aut Jiang, Chao verfasserin aut Zhang, Zhen verfasserin aut Feng, Wei verfasserin (orcid)0000-0002-9845-999X aut Su, Zhongqing verfasserin (orcid)0000-0003-1524-0026 aut Guo, Shifeng verfasserin aut Enthalten in Mechanical systems and signal processing Amsterdam [u.a.] : Elsevier, 1987 208 Online-Ressource (DE-627)267838670 (DE-600)1471003-1 (DE-576)253127629 1096-1216 nnns volume:208 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.32 Dynamik Schwingungslehre Technische Mechanik VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 208 |
allfieldsSound |
10.1016/j.ymssp.2023.110999 doi (DE-627)ELV066441110 (ELSEVIER)S0888-3270(23)00907-X DE-627 ger DE-627 rda eng 004 VZ 50.32 bkl 50.16 bkl Li, Yehai verfasserin aut Investigation on local monitoring paradigms of in-situ conformally fabricated piezopolymer coating-based array transducers: Ultrasonic bulk waves and local ultrasonic resonances 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Realistic structures with complex features have been intricate challenges for structural health monitoring (SHM) with permanently installed transducers. Poor conformability of conventional rigid and brittle piezoceramic wafers is a typical issue of applications on surfaces with complex geometry. Moreover, the accompanied high-stress concentration requires high-sensitivity defect detection which is difficult to achieve with large-area monitoring methods like lamb waves at tens to hundreds kHz. Previously, in-situ conformally fabricated piezopolymer coating-based array transducers (PCATs) have been developed to build large-area, lightweight, flexible, and tunable Lamb wave networks. In this study, two novel local monitoring methods were investigated with PCATs, namely ultrasonic bulk wave array inspection and local ultrasonic resonance spectroscopy. For thick structures, ultrasonic bulk waves were generated and detected by PCATs with broadband operating frequencies (1–10 MHz) and flexible array parameters. Simulation tools and imaging algorithms of array inspection in non-destructive testing (NDT) were well implemented based on the analogous directivity pattern and normal-pressure coupling mechanism. As proof of concept, PCATs were applied on example structures with flat, concave, and convex surfaces for internal defect imaging. For thin-walled and/or multilayer structures, PCATs were used to measure local ultrasonic resonances, comparable to conventional non-contact methods. With negligible influence on local mechanical properties and broadband frequency response, multiple resonance peaks from 0 to 25 MHz were identified as zero group velocity (ZGV) Lamb modes and thickness vibration modes of host structures, which can be used as damage indices for local monitoring of corrosion, delamination, stiffness degradation, etc. Through embracing advanced NDT techniques with PCATs, high-sensitivity and quantitative local monitoring could be achieved with conformal networks, offering the possibility to integrate with large-area monitoring as multi-scale SHM for complex structures. Structural health monitoring Piezopolymer coating Sensing network Ultrasonic wave Ultrasonic resonance Local monitoring Yao, Zhijun verfasserin aut Jiang, Chao verfasserin aut Zhang, Zhen verfasserin aut Feng, Wei verfasserin (orcid)0000-0002-9845-999X aut Su, Zhongqing verfasserin (orcid)0000-0003-1524-0026 aut Guo, Shifeng verfasserin aut Enthalten in Mechanical systems and signal processing Amsterdam [u.a.] : Elsevier, 1987 208 Online-Ressource (DE-627)267838670 (DE-600)1471003-1 (DE-576)253127629 1096-1216 nnns volume:208 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.32 Dynamik Schwingungslehre Technische Mechanik VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 208 |
language |
English |
source |
Enthalten in Mechanical systems and signal processing 208 volume:208 |
sourceStr |
Enthalten in Mechanical systems and signal processing 208 volume:208 |
format_phy_str_mv |
Article |
bklname |
Dynamik Schwingungslehre Technische Zuverlässigkeit Instandhaltung |
institution |
findex.gbv.de |
topic_facet |
Structural health monitoring Piezopolymer coating Sensing network Ultrasonic wave Ultrasonic resonance Local monitoring |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Mechanical systems and signal processing |
authorswithroles_txt_mv |
Li, Yehai @@aut@@ Yao, Zhijun @@aut@@ Jiang, Chao @@aut@@ Zhang, Zhen @@aut@@ Feng, Wei @@aut@@ Su, Zhongqing @@aut@@ Guo, Shifeng @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
267838670 |
dewey-sort |
14 |
id |
ELV066441110 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV066441110</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240219093012.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240108s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ymssp.2023.110999</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066441110</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0888-3270(23)00907-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Yehai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Investigation on local monitoring paradigms of in-situ conformally fabricated piezopolymer coating-based array transducers: Ultrasonic bulk waves and local ultrasonic resonances</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Realistic structures with complex features have been intricate challenges for structural health monitoring (SHM) with permanently installed transducers. Poor conformability of conventional rigid and brittle piezoceramic wafers is a typical issue of applications on surfaces with complex geometry. Moreover, the accompanied high-stress concentration requires high-sensitivity defect detection which is difficult to achieve with large-area monitoring methods like lamb waves at tens to hundreds kHz. Previously, in-situ conformally fabricated piezopolymer coating-based array transducers (PCATs) have been developed to build large-area, lightweight, flexible, and tunable Lamb wave networks. In this study, two novel local monitoring methods were investigated with PCATs, namely ultrasonic bulk wave array inspection and local ultrasonic resonance spectroscopy. For thick structures, ultrasonic bulk waves were generated and detected by PCATs with broadband operating frequencies (1–10 MHz) and flexible array parameters. Simulation tools and imaging algorithms of array inspection in non-destructive testing (NDT) were well implemented based on the analogous directivity pattern and normal-pressure coupling mechanism. As proof of concept, PCATs were applied on example structures with flat, concave, and convex surfaces for internal defect imaging. For thin-walled and/or multilayer structures, PCATs were used to measure local ultrasonic resonances, comparable to conventional non-contact methods. With negligible influence on local mechanical properties and broadband frequency response, multiple resonance peaks from 0 to 25 MHz were identified as zero group velocity (ZGV) Lamb modes and thickness vibration modes of host structures, which can be used as damage indices for local monitoring of corrosion, delamination, stiffness degradation, etc. Through embracing advanced NDT techniques with PCATs, high-sensitivity and quantitative local monitoring could be achieved with conformal networks, offering the possibility to integrate with large-area monitoring as multi-scale SHM for complex structures.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structural health monitoring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Piezopolymer coating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensing network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrasonic wave</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrasonic resonance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local monitoring</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Zhijun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Chao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feng, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9845-999X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, Zhongqing</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1524-0026</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Shifeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mechanical systems and signal processing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1987</subfield><subfield code="g">208</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)267838670</subfield><subfield code="w">(DE-600)1471003-1</subfield><subfield code="w">(DE-576)253127629</subfield><subfield code="x">1096-1216</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:208</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.32</subfield><subfield code="j">Dynamik</subfield><subfield code="j">Schwingungslehre</subfield><subfield code="x">Technische Mechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="j">Technische Zuverlässigkeit</subfield><subfield code="j">Instandhaltung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">208</subfield></datafield></record></collection>
|
author |
Li, Yehai |
spellingShingle |
Li, Yehai ddc 004 bkl 50.32 bkl 50.16 misc Structural health monitoring misc Piezopolymer coating misc Sensing network misc Ultrasonic wave misc Ultrasonic resonance misc Local monitoring Investigation on local monitoring paradigms of in-situ conformally fabricated piezopolymer coating-based array transducers: Ultrasonic bulk waves and local ultrasonic resonances |
authorStr |
Li, Yehai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)267838670 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1096-1216 |
topic_title |
004 VZ 50.32 bkl 50.16 bkl Investigation on local monitoring paradigms of in-situ conformally fabricated piezopolymer coating-based array transducers: Ultrasonic bulk waves and local ultrasonic resonances Structural health monitoring Piezopolymer coating Sensing network Ultrasonic wave Ultrasonic resonance Local monitoring |
topic |
ddc 004 bkl 50.32 bkl 50.16 misc Structural health monitoring misc Piezopolymer coating misc Sensing network misc Ultrasonic wave misc Ultrasonic resonance misc Local monitoring |
topic_unstemmed |
ddc 004 bkl 50.32 bkl 50.16 misc Structural health monitoring misc Piezopolymer coating misc Sensing network misc Ultrasonic wave misc Ultrasonic resonance misc Local monitoring |
topic_browse |
ddc 004 bkl 50.32 bkl 50.16 misc Structural health monitoring misc Piezopolymer coating misc Sensing network misc Ultrasonic wave misc Ultrasonic resonance misc Local monitoring |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Mechanical systems and signal processing |
hierarchy_parent_id |
267838670 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Mechanical systems and signal processing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)267838670 (DE-600)1471003-1 (DE-576)253127629 |
title |
Investigation on local monitoring paradigms of in-situ conformally fabricated piezopolymer coating-based array transducers: Ultrasonic bulk waves and local ultrasonic resonances |
ctrlnum |
(DE-627)ELV066441110 (ELSEVIER)S0888-3270(23)00907-X |
title_full |
Investigation on local monitoring paradigms of in-situ conformally fabricated piezopolymer coating-based array transducers: Ultrasonic bulk waves and local ultrasonic resonances |
author_sort |
Li, Yehai |
journal |
Mechanical systems and signal processing |
journalStr |
Mechanical systems and signal processing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Li, Yehai Yao, Zhijun Jiang, Chao Zhang, Zhen Feng, Wei Su, Zhongqing Guo, Shifeng |
container_volume |
208 |
class |
004 VZ 50.32 bkl 50.16 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Yehai |
doi_str_mv |
10.1016/j.ymssp.2023.110999 |
normlink |
(ORCID)0000-0002-9845-999X (ORCID)0000-0003-1524-0026 |
normlink_prefix_str_mv |
(orcid)0000-0002-9845-999X (orcid)0000-0003-1524-0026 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
investigation on local monitoring paradigms of in-situ conformally fabricated piezopolymer coating-based array transducers: ultrasonic bulk waves and local ultrasonic resonances |
title_auth |
Investigation on local monitoring paradigms of in-situ conformally fabricated piezopolymer coating-based array transducers: Ultrasonic bulk waves and local ultrasonic resonances |
abstract |
Realistic structures with complex features have been intricate challenges for structural health monitoring (SHM) with permanently installed transducers. Poor conformability of conventional rigid and brittle piezoceramic wafers is a typical issue of applications on surfaces with complex geometry. Moreover, the accompanied high-stress concentration requires high-sensitivity defect detection which is difficult to achieve with large-area monitoring methods like lamb waves at tens to hundreds kHz. Previously, in-situ conformally fabricated piezopolymer coating-based array transducers (PCATs) have been developed to build large-area, lightweight, flexible, and tunable Lamb wave networks. In this study, two novel local monitoring methods were investigated with PCATs, namely ultrasonic bulk wave array inspection and local ultrasonic resonance spectroscopy. For thick structures, ultrasonic bulk waves were generated and detected by PCATs with broadband operating frequencies (1–10 MHz) and flexible array parameters. Simulation tools and imaging algorithms of array inspection in non-destructive testing (NDT) were well implemented based on the analogous directivity pattern and normal-pressure coupling mechanism. As proof of concept, PCATs were applied on example structures with flat, concave, and convex surfaces for internal defect imaging. For thin-walled and/or multilayer structures, PCATs were used to measure local ultrasonic resonances, comparable to conventional non-contact methods. With negligible influence on local mechanical properties and broadband frequency response, multiple resonance peaks from 0 to 25 MHz were identified as zero group velocity (ZGV) Lamb modes and thickness vibration modes of host structures, which can be used as damage indices for local monitoring of corrosion, delamination, stiffness degradation, etc. Through embracing advanced NDT techniques with PCATs, high-sensitivity and quantitative local monitoring could be achieved with conformal networks, offering the possibility to integrate with large-area monitoring as multi-scale SHM for complex structures. |
abstractGer |
Realistic structures with complex features have been intricate challenges for structural health monitoring (SHM) with permanently installed transducers. Poor conformability of conventional rigid and brittle piezoceramic wafers is a typical issue of applications on surfaces with complex geometry. Moreover, the accompanied high-stress concentration requires high-sensitivity defect detection which is difficult to achieve with large-area monitoring methods like lamb waves at tens to hundreds kHz. Previously, in-situ conformally fabricated piezopolymer coating-based array transducers (PCATs) have been developed to build large-area, lightweight, flexible, and tunable Lamb wave networks. In this study, two novel local monitoring methods were investigated with PCATs, namely ultrasonic bulk wave array inspection and local ultrasonic resonance spectroscopy. For thick structures, ultrasonic bulk waves were generated and detected by PCATs with broadband operating frequencies (1–10 MHz) and flexible array parameters. Simulation tools and imaging algorithms of array inspection in non-destructive testing (NDT) were well implemented based on the analogous directivity pattern and normal-pressure coupling mechanism. As proof of concept, PCATs were applied on example structures with flat, concave, and convex surfaces for internal defect imaging. For thin-walled and/or multilayer structures, PCATs were used to measure local ultrasonic resonances, comparable to conventional non-contact methods. With negligible influence on local mechanical properties and broadband frequency response, multiple resonance peaks from 0 to 25 MHz were identified as zero group velocity (ZGV) Lamb modes and thickness vibration modes of host structures, which can be used as damage indices for local monitoring of corrosion, delamination, stiffness degradation, etc. Through embracing advanced NDT techniques with PCATs, high-sensitivity and quantitative local monitoring could be achieved with conformal networks, offering the possibility to integrate with large-area monitoring as multi-scale SHM for complex structures. |
abstract_unstemmed |
Realistic structures with complex features have been intricate challenges for structural health monitoring (SHM) with permanently installed transducers. Poor conformability of conventional rigid and brittle piezoceramic wafers is a typical issue of applications on surfaces with complex geometry. Moreover, the accompanied high-stress concentration requires high-sensitivity defect detection which is difficult to achieve with large-area monitoring methods like lamb waves at tens to hundreds kHz. Previously, in-situ conformally fabricated piezopolymer coating-based array transducers (PCATs) have been developed to build large-area, lightweight, flexible, and tunable Lamb wave networks. In this study, two novel local monitoring methods were investigated with PCATs, namely ultrasonic bulk wave array inspection and local ultrasonic resonance spectroscopy. For thick structures, ultrasonic bulk waves were generated and detected by PCATs with broadband operating frequencies (1–10 MHz) and flexible array parameters. Simulation tools and imaging algorithms of array inspection in non-destructive testing (NDT) were well implemented based on the analogous directivity pattern and normal-pressure coupling mechanism. As proof of concept, PCATs were applied on example structures with flat, concave, and convex surfaces for internal defect imaging. For thin-walled and/or multilayer structures, PCATs were used to measure local ultrasonic resonances, comparable to conventional non-contact methods. With negligible influence on local mechanical properties and broadband frequency response, multiple resonance peaks from 0 to 25 MHz were identified as zero group velocity (ZGV) Lamb modes and thickness vibration modes of host structures, which can be used as damage indices for local monitoring of corrosion, delamination, stiffness degradation, etc. Through embracing advanced NDT techniques with PCATs, high-sensitivity and quantitative local monitoring could be achieved with conformal networks, offering the possibility to integrate with large-area monitoring as multi-scale SHM for complex structures. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Investigation on local monitoring paradigms of in-situ conformally fabricated piezopolymer coating-based array transducers: Ultrasonic bulk waves and local ultrasonic resonances |
remote_bool |
true |
author2 |
Yao, Zhijun Jiang, Chao Zhang, Zhen Feng, Wei Su, Zhongqing Guo, Shifeng |
author2Str |
Yao, Zhijun Jiang, Chao Zhang, Zhen Feng, Wei Su, Zhongqing Guo, Shifeng |
ppnlink |
267838670 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ymssp.2023.110999 |
up_date |
2024-07-06T17:46:14.309Z |
_version_ |
1803852682951131136 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV066441110</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240219093012.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240108s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ymssp.2023.110999</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066441110</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0888-3270(23)00907-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Yehai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Investigation on local monitoring paradigms of in-situ conformally fabricated piezopolymer coating-based array transducers: Ultrasonic bulk waves and local ultrasonic resonances</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Realistic structures with complex features have been intricate challenges for structural health monitoring (SHM) with permanently installed transducers. Poor conformability of conventional rigid and brittle piezoceramic wafers is a typical issue of applications on surfaces with complex geometry. Moreover, the accompanied high-stress concentration requires high-sensitivity defect detection which is difficult to achieve with large-area monitoring methods like lamb waves at tens to hundreds kHz. Previously, in-situ conformally fabricated piezopolymer coating-based array transducers (PCATs) have been developed to build large-area, lightweight, flexible, and tunable Lamb wave networks. In this study, two novel local monitoring methods were investigated with PCATs, namely ultrasonic bulk wave array inspection and local ultrasonic resonance spectroscopy. For thick structures, ultrasonic bulk waves were generated and detected by PCATs with broadband operating frequencies (1–10 MHz) and flexible array parameters. Simulation tools and imaging algorithms of array inspection in non-destructive testing (NDT) were well implemented based on the analogous directivity pattern and normal-pressure coupling mechanism. As proof of concept, PCATs were applied on example structures with flat, concave, and convex surfaces for internal defect imaging. For thin-walled and/or multilayer structures, PCATs were used to measure local ultrasonic resonances, comparable to conventional non-contact methods. With negligible influence on local mechanical properties and broadband frequency response, multiple resonance peaks from 0 to 25 MHz were identified as zero group velocity (ZGV) Lamb modes and thickness vibration modes of host structures, which can be used as damage indices for local monitoring of corrosion, delamination, stiffness degradation, etc. Through embracing advanced NDT techniques with PCATs, high-sensitivity and quantitative local monitoring could be achieved with conformal networks, offering the possibility to integrate with large-area monitoring as multi-scale SHM for complex structures.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structural health monitoring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Piezopolymer coating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensing network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrasonic wave</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrasonic resonance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local monitoring</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Zhijun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Chao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feng, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9845-999X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, Zhongqing</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1524-0026</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Shifeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mechanical systems and signal processing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1987</subfield><subfield code="g">208</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)267838670</subfield><subfield code="w">(DE-600)1471003-1</subfield><subfield code="w">(DE-576)253127629</subfield><subfield code="x">1096-1216</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:208</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.32</subfield><subfield code="j">Dynamik</subfield><subfield code="j">Schwingungslehre</subfield><subfield code="x">Technische Mechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="j">Technische Zuverlässigkeit</subfield><subfield code="j">Instandhaltung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">208</subfield></datafield></record></collection>
|
score |
7.40211 |