Medical decision support in the light of interactive granular computing: Lessons from the Ovufriend project
The main aim of the paper is to discuss the architecture for the future Intelligent Systems (IS's) and Decision Support Systems (DS's) dealing with complex phenomena such as supporting medical decisions (diagnosis and therapy) and to emphasize challenges in designing such systems. More pre...
Ausführliche Beschreibung
Autor*in: |
Dutta, Soma [verfasserIn] Skowron, Andrzej [verfasserIn] Sosnowski, Łukasz [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of approximate reasoning - Amsterdam [u.a.] : Elsevier Science, 1987, 165 |
---|---|
Übergeordnetes Werk: |
volume:165 |
DOI / URN: |
10.1016/j.ijar.2023.109103 |
---|
Katalog-ID: |
ELV066458188 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV066458188 | ||
003 | DE-627 | ||
005 | 20240110093109.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240110s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijar.2023.109103 |2 doi | |
035 | |a (DE-627)ELV066458188 | ||
035 | |a (ELSEVIER)S0888-613X(23)00234-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 54.72 |2 bkl | ||
100 | 1 | |a Dutta, Soma |e verfasserin |0 (orcid)0000-0002-7670-3154 |4 aut | |
245 | 1 | 0 | |a Medical decision support in the light of interactive granular computing: Lessons from the Ovufriend project |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The main aim of the paper is to discuss the architecture for the future Intelligent Systems (IS's) and Decision Support Systems (DS's) dealing with complex phenomena such as supporting medical decisions (diagnosis and therapy) and to emphasize challenges in designing such systems. More precisely, the paper presents arguments for developing a specialized computing model based on the interactive granular computing paradigm which can help to design IS's and DS's more close to the prototypes of real life decision making. In this regard, the paper brings to the fore different experiences faced during designing other medical IS's or DS's.As a starting step, the paper considers the experience of developing the OvuFriend platform and outlines some possible extension of it in the framework of the proposed architecture on the basis of Interactive Granular Computing (IGrC) model. Specifically, our attempt is to analyze a scheme, which is being used in the platform of OvuFriend for determining health risks and possibilities of a woman to conceive a child, from the perspective of IGrC. The target of the paper is two fold. Firstly, to show how the underlying AI algorithm of this scheme can be related with the notion of computing in the context of IGrC. Secondly, to identify possible extensions of the existing scheme so that it becomes more dynamic, interactive, and close to personalized medicine. | ||
650 | 4 | |a Interactions | |
650 | 4 | |a Intelligent system | |
650 | 4 | |a Medical decision system | |
650 | 4 | |a (Interactive) granular computing | |
650 | 4 | |a Complex granule | |
650 | 4 | |a Informational granule | |
700 | 1 | |a Skowron, Andrzej |e verfasserin |4 aut | |
700 | 1 | |a Sosnowski, Łukasz |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of approximate reasoning |d Amsterdam [u.a.] : Elsevier Science, 1987 |g 165 |h Online-Ressource |w (DE-627)320416763 |w (DE-600)2002042-9 |w (DE-576)114818037 |x 0888-613x |7 nnns |
773 | 1 | 8 | |g volume:165 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 54.72 |j Künstliche Intelligenz |q VZ |
951 | |a AR | ||
952 | |d 165 |
author_variant |
s d sd a s as ł s łs |
---|---|
matchkey_str |
article:0888613x:2023----::eiadcsospotnhlgtfneatvgauacmuigesn |
hierarchy_sort_str |
2023 |
bklnumber |
54.72 |
publishDate |
2023 |
allfields |
10.1016/j.ijar.2023.109103 doi (DE-627)ELV066458188 (ELSEVIER)S0888-613X(23)00234-7 DE-627 ger DE-627 rda eng 510 VZ 54.72 bkl Dutta, Soma verfasserin (orcid)0000-0002-7670-3154 aut Medical decision support in the light of interactive granular computing: Lessons from the Ovufriend project 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The main aim of the paper is to discuss the architecture for the future Intelligent Systems (IS's) and Decision Support Systems (DS's) dealing with complex phenomena such as supporting medical decisions (diagnosis and therapy) and to emphasize challenges in designing such systems. More precisely, the paper presents arguments for developing a specialized computing model based on the interactive granular computing paradigm which can help to design IS's and DS's more close to the prototypes of real life decision making. In this regard, the paper brings to the fore different experiences faced during designing other medical IS's or DS's.As a starting step, the paper considers the experience of developing the OvuFriend platform and outlines some possible extension of it in the framework of the proposed architecture on the basis of Interactive Granular Computing (IGrC) model. Specifically, our attempt is to analyze a scheme, which is being used in the platform of OvuFriend for determining health risks and possibilities of a woman to conceive a child, from the perspective of IGrC. The target of the paper is two fold. Firstly, to show how the underlying AI algorithm of this scheme can be related with the notion of computing in the context of IGrC. Secondly, to identify possible extensions of the existing scheme so that it becomes more dynamic, interactive, and close to personalized medicine. Interactions Intelligent system Medical decision system (Interactive) granular computing Complex granule Informational granule Skowron, Andrzej verfasserin aut Sosnowski, Łukasz verfasserin aut Enthalten in International journal of approximate reasoning Amsterdam [u.a.] : Elsevier Science, 1987 165 Online-Ressource (DE-627)320416763 (DE-600)2002042-9 (DE-576)114818037 0888-613x nnns volume:165 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 165 |
spelling |
10.1016/j.ijar.2023.109103 doi (DE-627)ELV066458188 (ELSEVIER)S0888-613X(23)00234-7 DE-627 ger DE-627 rda eng 510 VZ 54.72 bkl Dutta, Soma verfasserin (orcid)0000-0002-7670-3154 aut Medical decision support in the light of interactive granular computing: Lessons from the Ovufriend project 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The main aim of the paper is to discuss the architecture for the future Intelligent Systems (IS's) and Decision Support Systems (DS's) dealing with complex phenomena such as supporting medical decisions (diagnosis and therapy) and to emphasize challenges in designing such systems. More precisely, the paper presents arguments for developing a specialized computing model based on the interactive granular computing paradigm which can help to design IS's and DS's more close to the prototypes of real life decision making. In this regard, the paper brings to the fore different experiences faced during designing other medical IS's or DS's.As a starting step, the paper considers the experience of developing the OvuFriend platform and outlines some possible extension of it in the framework of the proposed architecture on the basis of Interactive Granular Computing (IGrC) model. Specifically, our attempt is to analyze a scheme, which is being used in the platform of OvuFriend for determining health risks and possibilities of a woman to conceive a child, from the perspective of IGrC. The target of the paper is two fold. Firstly, to show how the underlying AI algorithm of this scheme can be related with the notion of computing in the context of IGrC. Secondly, to identify possible extensions of the existing scheme so that it becomes more dynamic, interactive, and close to personalized medicine. Interactions Intelligent system Medical decision system (Interactive) granular computing Complex granule Informational granule Skowron, Andrzej verfasserin aut Sosnowski, Łukasz verfasserin aut Enthalten in International journal of approximate reasoning Amsterdam [u.a.] : Elsevier Science, 1987 165 Online-Ressource (DE-627)320416763 (DE-600)2002042-9 (DE-576)114818037 0888-613x nnns volume:165 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 165 |
allfields_unstemmed |
10.1016/j.ijar.2023.109103 doi (DE-627)ELV066458188 (ELSEVIER)S0888-613X(23)00234-7 DE-627 ger DE-627 rda eng 510 VZ 54.72 bkl Dutta, Soma verfasserin (orcid)0000-0002-7670-3154 aut Medical decision support in the light of interactive granular computing: Lessons from the Ovufriend project 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The main aim of the paper is to discuss the architecture for the future Intelligent Systems (IS's) and Decision Support Systems (DS's) dealing with complex phenomena such as supporting medical decisions (diagnosis and therapy) and to emphasize challenges in designing such systems. More precisely, the paper presents arguments for developing a specialized computing model based on the interactive granular computing paradigm which can help to design IS's and DS's more close to the prototypes of real life decision making. In this regard, the paper brings to the fore different experiences faced during designing other medical IS's or DS's.As a starting step, the paper considers the experience of developing the OvuFriend platform and outlines some possible extension of it in the framework of the proposed architecture on the basis of Interactive Granular Computing (IGrC) model. Specifically, our attempt is to analyze a scheme, which is being used in the platform of OvuFriend for determining health risks and possibilities of a woman to conceive a child, from the perspective of IGrC. The target of the paper is two fold. Firstly, to show how the underlying AI algorithm of this scheme can be related with the notion of computing in the context of IGrC. Secondly, to identify possible extensions of the existing scheme so that it becomes more dynamic, interactive, and close to personalized medicine. Interactions Intelligent system Medical decision system (Interactive) granular computing Complex granule Informational granule Skowron, Andrzej verfasserin aut Sosnowski, Łukasz verfasserin aut Enthalten in International journal of approximate reasoning Amsterdam [u.a.] : Elsevier Science, 1987 165 Online-Ressource (DE-627)320416763 (DE-600)2002042-9 (DE-576)114818037 0888-613x nnns volume:165 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 165 |
allfieldsGer |
10.1016/j.ijar.2023.109103 doi (DE-627)ELV066458188 (ELSEVIER)S0888-613X(23)00234-7 DE-627 ger DE-627 rda eng 510 VZ 54.72 bkl Dutta, Soma verfasserin (orcid)0000-0002-7670-3154 aut Medical decision support in the light of interactive granular computing: Lessons from the Ovufriend project 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The main aim of the paper is to discuss the architecture for the future Intelligent Systems (IS's) and Decision Support Systems (DS's) dealing with complex phenomena such as supporting medical decisions (diagnosis and therapy) and to emphasize challenges in designing such systems. More precisely, the paper presents arguments for developing a specialized computing model based on the interactive granular computing paradigm which can help to design IS's and DS's more close to the prototypes of real life decision making. In this regard, the paper brings to the fore different experiences faced during designing other medical IS's or DS's.As a starting step, the paper considers the experience of developing the OvuFriend platform and outlines some possible extension of it in the framework of the proposed architecture on the basis of Interactive Granular Computing (IGrC) model. Specifically, our attempt is to analyze a scheme, which is being used in the platform of OvuFriend for determining health risks and possibilities of a woman to conceive a child, from the perspective of IGrC. The target of the paper is two fold. Firstly, to show how the underlying AI algorithm of this scheme can be related with the notion of computing in the context of IGrC. Secondly, to identify possible extensions of the existing scheme so that it becomes more dynamic, interactive, and close to personalized medicine. Interactions Intelligent system Medical decision system (Interactive) granular computing Complex granule Informational granule Skowron, Andrzej verfasserin aut Sosnowski, Łukasz verfasserin aut Enthalten in International journal of approximate reasoning Amsterdam [u.a.] : Elsevier Science, 1987 165 Online-Ressource (DE-627)320416763 (DE-600)2002042-9 (DE-576)114818037 0888-613x nnns volume:165 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 165 |
allfieldsSound |
10.1016/j.ijar.2023.109103 doi (DE-627)ELV066458188 (ELSEVIER)S0888-613X(23)00234-7 DE-627 ger DE-627 rda eng 510 VZ 54.72 bkl Dutta, Soma verfasserin (orcid)0000-0002-7670-3154 aut Medical decision support in the light of interactive granular computing: Lessons from the Ovufriend project 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The main aim of the paper is to discuss the architecture for the future Intelligent Systems (IS's) and Decision Support Systems (DS's) dealing with complex phenomena such as supporting medical decisions (diagnosis and therapy) and to emphasize challenges in designing such systems. More precisely, the paper presents arguments for developing a specialized computing model based on the interactive granular computing paradigm which can help to design IS's and DS's more close to the prototypes of real life decision making. In this regard, the paper brings to the fore different experiences faced during designing other medical IS's or DS's.As a starting step, the paper considers the experience of developing the OvuFriend platform and outlines some possible extension of it in the framework of the proposed architecture on the basis of Interactive Granular Computing (IGrC) model. Specifically, our attempt is to analyze a scheme, which is being used in the platform of OvuFriend for determining health risks and possibilities of a woman to conceive a child, from the perspective of IGrC. The target of the paper is two fold. Firstly, to show how the underlying AI algorithm of this scheme can be related with the notion of computing in the context of IGrC. Secondly, to identify possible extensions of the existing scheme so that it becomes more dynamic, interactive, and close to personalized medicine. Interactions Intelligent system Medical decision system (Interactive) granular computing Complex granule Informational granule Skowron, Andrzej verfasserin aut Sosnowski, Łukasz verfasserin aut Enthalten in International journal of approximate reasoning Amsterdam [u.a.] : Elsevier Science, 1987 165 Online-Ressource (DE-627)320416763 (DE-600)2002042-9 (DE-576)114818037 0888-613x nnns volume:165 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 165 |
language |
English |
source |
Enthalten in International journal of approximate reasoning 165 volume:165 |
sourceStr |
Enthalten in International journal of approximate reasoning 165 volume:165 |
format_phy_str_mv |
Article |
bklname |
Künstliche Intelligenz |
institution |
findex.gbv.de |
topic_facet |
Interactions Intelligent system Medical decision system (Interactive) granular computing Complex granule Informational granule |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
International journal of approximate reasoning |
authorswithroles_txt_mv |
Dutta, Soma @@aut@@ Skowron, Andrzej @@aut@@ Sosnowski, Łukasz @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320416763 |
dewey-sort |
3510 |
id |
ELV066458188 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066458188</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240110093109.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240110s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijar.2023.109103</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066458188</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0888-613X(23)00234-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dutta, Soma</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7670-3154</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Medical decision support in the light of interactive granular computing: Lessons from the Ovufriend project</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The main aim of the paper is to discuss the architecture for the future Intelligent Systems (IS's) and Decision Support Systems (DS's) dealing with complex phenomena such as supporting medical decisions (diagnosis and therapy) and to emphasize challenges in designing such systems. More precisely, the paper presents arguments for developing a specialized computing model based on the interactive granular computing paradigm which can help to design IS's and DS's more close to the prototypes of real life decision making. In this regard, the paper brings to the fore different experiences faced during designing other medical IS's or DS's.As a starting step, the paper considers the experience of developing the OvuFriend platform and outlines some possible extension of it in the framework of the proposed architecture on the basis of Interactive Granular Computing (IGrC) model. Specifically, our attempt is to analyze a scheme, which is being used in the platform of OvuFriend for determining health risks and possibilities of a woman to conceive a child, from the perspective of IGrC. The target of the paper is two fold. Firstly, to show how the underlying AI algorithm of this scheme can be related with the notion of computing in the context of IGrC. Secondly, to identify possible extensions of the existing scheme so that it becomes more dynamic, interactive, and close to personalized medicine.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interactions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligent system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medical decision system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">(Interactive) granular computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex granule</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informational granule</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Skowron, Andrzej</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sosnowski, Łukasz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of approximate reasoning</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1987</subfield><subfield code="g">165</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320416763</subfield><subfield code="w">(DE-600)2002042-9</subfield><subfield code="w">(DE-576)114818037</subfield><subfield code="x">0888-613x</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">165</subfield></datafield></record></collection>
|
author |
Dutta, Soma |
spellingShingle |
Dutta, Soma ddc 510 bkl 54.72 misc Interactions misc Intelligent system misc Medical decision system misc (Interactive) granular computing misc Complex granule misc Informational granule Medical decision support in the light of interactive granular computing: Lessons from the Ovufriend project |
authorStr |
Dutta, Soma |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320416763 |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0888-613x |
topic_title |
510 VZ 54.72 bkl Medical decision support in the light of interactive granular computing: Lessons from the Ovufriend project Interactions Intelligent system Medical decision system (Interactive) granular computing Complex granule Informational granule |
topic |
ddc 510 bkl 54.72 misc Interactions misc Intelligent system misc Medical decision system misc (Interactive) granular computing misc Complex granule misc Informational granule |
topic_unstemmed |
ddc 510 bkl 54.72 misc Interactions misc Intelligent system misc Medical decision system misc (Interactive) granular computing misc Complex granule misc Informational granule |
topic_browse |
ddc 510 bkl 54.72 misc Interactions misc Intelligent system misc Medical decision system misc (Interactive) granular computing misc Complex granule misc Informational granule |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of approximate reasoning |
hierarchy_parent_id |
320416763 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
International journal of approximate reasoning |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320416763 (DE-600)2002042-9 (DE-576)114818037 |
title |
Medical decision support in the light of interactive granular computing: Lessons from the Ovufriend project |
ctrlnum |
(DE-627)ELV066458188 (ELSEVIER)S0888-613X(23)00234-7 |
title_full |
Medical decision support in the light of interactive granular computing: Lessons from the Ovufriend project |
author_sort |
Dutta, Soma |
journal |
International journal of approximate reasoning |
journalStr |
International journal of approximate reasoning |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Dutta, Soma Skowron, Andrzej Sosnowski, Łukasz |
container_volume |
165 |
class |
510 VZ 54.72 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Dutta, Soma |
doi_str_mv |
10.1016/j.ijar.2023.109103 |
normlink |
(ORCID)0000-0002-7670-3154 |
normlink_prefix_str_mv |
(orcid)0000-0002-7670-3154 |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
medical decision support in the light of interactive granular computing: lessons from the ovufriend project |
title_auth |
Medical decision support in the light of interactive granular computing: Lessons from the Ovufriend project |
abstract |
The main aim of the paper is to discuss the architecture for the future Intelligent Systems (IS's) and Decision Support Systems (DS's) dealing with complex phenomena such as supporting medical decisions (diagnosis and therapy) and to emphasize challenges in designing such systems. More precisely, the paper presents arguments for developing a specialized computing model based on the interactive granular computing paradigm which can help to design IS's and DS's more close to the prototypes of real life decision making. In this regard, the paper brings to the fore different experiences faced during designing other medical IS's or DS's.As a starting step, the paper considers the experience of developing the OvuFriend platform and outlines some possible extension of it in the framework of the proposed architecture on the basis of Interactive Granular Computing (IGrC) model. Specifically, our attempt is to analyze a scheme, which is being used in the platform of OvuFriend for determining health risks and possibilities of a woman to conceive a child, from the perspective of IGrC. The target of the paper is two fold. Firstly, to show how the underlying AI algorithm of this scheme can be related with the notion of computing in the context of IGrC. Secondly, to identify possible extensions of the existing scheme so that it becomes more dynamic, interactive, and close to personalized medicine. |
abstractGer |
The main aim of the paper is to discuss the architecture for the future Intelligent Systems (IS's) and Decision Support Systems (DS's) dealing with complex phenomena such as supporting medical decisions (diagnosis and therapy) and to emphasize challenges in designing such systems. More precisely, the paper presents arguments for developing a specialized computing model based on the interactive granular computing paradigm which can help to design IS's and DS's more close to the prototypes of real life decision making. In this regard, the paper brings to the fore different experiences faced during designing other medical IS's or DS's.As a starting step, the paper considers the experience of developing the OvuFriend platform and outlines some possible extension of it in the framework of the proposed architecture on the basis of Interactive Granular Computing (IGrC) model. Specifically, our attempt is to analyze a scheme, which is being used in the platform of OvuFriend for determining health risks and possibilities of a woman to conceive a child, from the perspective of IGrC. The target of the paper is two fold. Firstly, to show how the underlying AI algorithm of this scheme can be related with the notion of computing in the context of IGrC. Secondly, to identify possible extensions of the existing scheme so that it becomes more dynamic, interactive, and close to personalized medicine. |
abstract_unstemmed |
The main aim of the paper is to discuss the architecture for the future Intelligent Systems (IS's) and Decision Support Systems (DS's) dealing with complex phenomena such as supporting medical decisions (diagnosis and therapy) and to emphasize challenges in designing such systems. More precisely, the paper presents arguments for developing a specialized computing model based on the interactive granular computing paradigm which can help to design IS's and DS's more close to the prototypes of real life decision making. In this regard, the paper brings to the fore different experiences faced during designing other medical IS's or DS's.As a starting step, the paper considers the experience of developing the OvuFriend platform and outlines some possible extension of it in the framework of the proposed architecture on the basis of Interactive Granular Computing (IGrC) model. Specifically, our attempt is to analyze a scheme, which is being used in the platform of OvuFriend for determining health risks and possibilities of a woman to conceive a child, from the perspective of IGrC. The target of the paper is two fold. Firstly, to show how the underlying AI algorithm of this scheme can be related with the notion of computing in the context of IGrC. Secondly, to identify possible extensions of the existing scheme so that it becomes more dynamic, interactive, and close to personalized medicine. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Medical decision support in the light of interactive granular computing: Lessons from the Ovufriend project |
remote_bool |
true |
author2 |
Skowron, Andrzej Sosnowski, Łukasz |
author2Str |
Skowron, Andrzej Sosnowski, Łukasz |
ppnlink |
320416763 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijar.2023.109103 |
up_date |
2024-07-06T17:49:50.933Z |
_version_ |
1803852910098907136 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066458188</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240110093109.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240110s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijar.2023.109103</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066458188</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0888-613X(23)00234-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dutta, Soma</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7670-3154</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Medical decision support in the light of interactive granular computing: Lessons from the Ovufriend project</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The main aim of the paper is to discuss the architecture for the future Intelligent Systems (IS's) and Decision Support Systems (DS's) dealing with complex phenomena such as supporting medical decisions (diagnosis and therapy) and to emphasize challenges in designing such systems. More precisely, the paper presents arguments for developing a specialized computing model based on the interactive granular computing paradigm which can help to design IS's and DS's more close to the prototypes of real life decision making. In this regard, the paper brings to the fore different experiences faced during designing other medical IS's or DS's.As a starting step, the paper considers the experience of developing the OvuFriend platform and outlines some possible extension of it in the framework of the proposed architecture on the basis of Interactive Granular Computing (IGrC) model. Specifically, our attempt is to analyze a scheme, which is being used in the platform of OvuFriend for determining health risks and possibilities of a woman to conceive a child, from the perspective of IGrC. The target of the paper is two fold. Firstly, to show how the underlying AI algorithm of this scheme can be related with the notion of computing in the context of IGrC. Secondly, to identify possible extensions of the existing scheme so that it becomes more dynamic, interactive, and close to personalized medicine.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interactions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligent system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medical decision system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">(Interactive) granular computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex granule</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informational granule</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Skowron, Andrzej</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sosnowski, Łukasz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of approximate reasoning</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1987</subfield><subfield code="g">165</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320416763</subfield><subfield code="w">(DE-600)2002042-9</subfield><subfield code="w">(DE-576)114818037</subfield><subfield code="x">0888-613x</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">165</subfield></datafield></record></collection>
|
score |
7.4013615 |