Coupled dynamics of the moving Antarctic krill trawl structure and its hydrodynamics behavior using various catch sizes and door spreads based on wavelet-based and Fourier analysis
Antarctic krill is a key element of the complex ecology of the Antarctic Ocean and a target species for commercial fisheries for aquaculture supply, krill oil production, and as a major food source for various natural predators. Therefore, understanding the interaction between the fluid structures o...
Ausführliche Beschreibung
Autor*in: |
Tang, Hao [verfasserIn] Thierry, Nyatchouba Nsangue Bruno [verfasserIn] Achille, Njomoue Pandong [verfasserIn] Mouangue, Ruben [verfasserIn] Xu, Liuxiong [verfasserIn] Hu, Fuxiang [verfasserIn] Mbangue, Ekmon [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of fluids and structures - Orlando, Fla. : Elsevier, 1993, 124 |
---|---|
Übergeordnetes Werk: |
volume:124 |
DOI / URN: |
10.1016/j.jfluidstructs.2023.104037 |
---|
Katalog-ID: |
ELV066486238 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV066486238 | ||
003 | DE-627 | ||
005 | 20240111093152.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240111s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jfluidstructs.2023.104037 |2 doi | |
035 | |a (DE-627)ELV066486238 | ||
035 | |a (ELSEVIER)S0889-9746(23)00205-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 50.33 |2 bkl | ||
100 | 1 | |a Tang, Hao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Coupled dynamics of the moving Antarctic krill trawl structure and its hydrodynamics behavior using various catch sizes and door spreads based on wavelet-based and Fourier analysis |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Antarctic krill is a key element of the complex ecology of the Antarctic Ocean and a target species for commercial fisheries for aquaculture supply, krill oil production, and as a major food source for various natural predators. Therefore, understanding the interaction between the fluid structures of the Antarctic krill trawl structure is the key factor in solving problems such as selectivity, energy efficiency, catchability, and ecological sustainability in this fishery. Thus, this study experimentally investigated the influence of catch sizes, door spread, and inflow velocities on the bridle tension, trawl motions, trawl deformation, and flow field inside and around a scaled trawl model in flume tank based on the electromagnetic current velocity meter measurements. Fourier analysis using power spectrum density and the continuous wavelet transform is used to analyze the time-frequency contents of the instantaneous flow velocities, bridle tension, and trawl motions; and in the interaction between the unstable turbulent flows and the fluttering trawl motions, wavelet coherency analysis was employed to detect coherent structures. Results indicated that the bridle tension and trawl motions increased as the catch size, door spread, and inflow velocity increased. Owing to the significant trawl deformation, a complex fluid–structure interaction occurred and a strong positive correlation between the bridle tension and trawl motions was obtained. Furthermore, a significant decrease in the flow field occurred inside and outside different parts of the trawl. Fourier and wavelet analysis results showed that the trawl motions and bridle tension are mainly of a low-frequency activity and of another component related to the unsteady turbulent flow street, and decreased with the increasing catch size and door spread. A complex fluid–structure interaction is then demonstrated where the hydrodynamics of the moving Antarctic krill trawl structure are an intricate interplay between trawl fluttering motions and unsteady turbulent flow influenced by catch size and door spread. The knowledge of such trawl hydrodynamic behavior is of great importance to understand and design the optimal structure of trawl nets to maintain the sustainability of the Antarctic krill fishery. | ||
650 | 4 | |a Antarctic krill trawl | |
650 | 4 | |a Fluid–structure interaction | |
650 | 4 | |a Bridle tension | |
650 | 4 | |a Fluttering motions | |
650 | 4 | |a Unsteady turbulent flow | |
700 | 1 | |a Thierry, Nyatchouba Nsangue Bruno |e verfasserin |4 aut | |
700 | 1 | |a Achille, Njomoue Pandong |e verfasserin |4 aut | |
700 | 1 | |a Mouangue, Ruben |e verfasserin |4 aut | |
700 | 1 | |a Xu, Liuxiong |e verfasserin |4 aut | |
700 | 1 | |a Hu, Fuxiang |e verfasserin |4 aut | |
700 | 1 | |a Mbangue, Ekmon |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of fluids and structures |d Orlando, Fla. : Elsevier, 1993 |g 124 |h Online-Ressource |w (DE-627)26732667X |w (DE-600)1469614-9 |w (DE-576)253763266 |x 1095-8622 |7 nnns |
773 | 1 | 8 | |g volume:124 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.33 |j Technische Strömungsmechanik |q VZ |
951 | |a AR | ||
952 | |d 124 |
author_variant |
h t ht n n b t nnb nnbt n p a np npa r m rm l x lx f h fh e m em |
---|---|
matchkey_str |
article:10958622:2023----::opednmcoteoignacikilrwsrcuenisyrdnmcbhvouigaiucthieadorpe |
hierarchy_sort_str |
2023 |
bklnumber |
50.33 |
publishDate |
2023 |
allfields |
10.1016/j.jfluidstructs.2023.104037 doi (DE-627)ELV066486238 (ELSEVIER)S0889-9746(23)00205-0 DE-627 ger DE-627 rda eng 530 VZ 50.33 bkl Tang, Hao verfasserin aut Coupled dynamics of the moving Antarctic krill trawl structure and its hydrodynamics behavior using various catch sizes and door spreads based on wavelet-based and Fourier analysis 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Antarctic krill is a key element of the complex ecology of the Antarctic Ocean and a target species for commercial fisheries for aquaculture supply, krill oil production, and as a major food source for various natural predators. Therefore, understanding the interaction between the fluid structures of the Antarctic krill trawl structure is the key factor in solving problems such as selectivity, energy efficiency, catchability, and ecological sustainability in this fishery. Thus, this study experimentally investigated the influence of catch sizes, door spread, and inflow velocities on the bridle tension, trawl motions, trawl deformation, and flow field inside and around a scaled trawl model in flume tank based on the electromagnetic current velocity meter measurements. Fourier analysis using power spectrum density and the continuous wavelet transform is used to analyze the time-frequency contents of the instantaneous flow velocities, bridle tension, and trawl motions; and in the interaction between the unstable turbulent flows and the fluttering trawl motions, wavelet coherency analysis was employed to detect coherent structures. Results indicated that the bridle tension and trawl motions increased as the catch size, door spread, and inflow velocity increased. Owing to the significant trawl deformation, a complex fluid–structure interaction occurred and a strong positive correlation between the bridle tension and trawl motions was obtained. Furthermore, a significant decrease in the flow field occurred inside and outside different parts of the trawl. Fourier and wavelet analysis results showed that the trawl motions and bridle tension are mainly of a low-frequency activity and of another component related to the unsteady turbulent flow street, and decreased with the increasing catch size and door spread. A complex fluid–structure interaction is then demonstrated where the hydrodynamics of the moving Antarctic krill trawl structure are an intricate interplay between trawl fluttering motions and unsteady turbulent flow influenced by catch size and door spread. The knowledge of such trawl hydrodynamic behavior is of great importance to understand and design the optimal structure of trawl nets to maintain the sustainability of the Antarctic krill fishery. Antarctic krill trawl Fluid–structure interaction Bridle tension Fluttering motions Unsteady turbulent flow Thierry, Nyatchouba Nsangue Bruno verfasserin aut Achille, Njomoue Pandong verfasserin aut Mouangue, Ruben verfasserin aut Xu, Liuxiong verfasserin aut Hu, Fuxiang verfasserin aut Mbangue, Ekmon verfasserin aut Enthalten in Journal of fluids and structures Orlando, Fla. : Elsevier, 1993 124 Online-Ressource (DE-627)26732667X (DE-600)1469614-9 (DE-576)253763266 1095-8622 nnns volume:124 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.33 Technische Strömungsmechanik VZ AR 124 |
spelling |
10.1016/j.jfluidstructs.2023.104037 doi (DE-627)ELV066486238 (ELSEVIER)S0889-9746(23)00205-0 DE-627 ger DE-627 rda eng 530 VZ 50.33 bkl Tang, Hao verfasserin aut Coupled dynamics of the moving Antarctic krill trawl structure and its hydrodynamics behavior using various catch sizes and door spreads based on wavelet-based and Fourier analysis 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Antarctic krill is a key element of the complex ecology of the Antarctic Ocean and a target species for commercial fisheries for aquaculture supply, krill oil production, and as a major food source for various natural predators. Therefore, understanding the interaction between the fluid structures of the Antarctic krill trawl structure is the key factor in solving problems such as selectivity, energy efficiency, catchability, and ecological sustainability in this fishery. Thus, this study experimentally investigated the influence of catch sizes, door spread, and inflow velocities on the bridle tension, trawl motions, trawl deformation, and flow field inside and around a scaled trawl model in flume tank based on the electromagnetic current velocity meter measurements. Fourier analysis using power spectrum density and the continuous wavelet transform is used to analyze the time-frequency contents of the instantaneous flow velocities, bridle tension, and trawl motions; and in the interaction between the unstable turbulent flows and the fluttering trawl motions, wavelet coherency analysis was employed to detect coherent structures. Results indicated that the bridle tension and trawl motions increased as the catch size, door spread, and inflow velocity increased. Owing to the significant trawl deformation, a complex fluid–structure interaction occurred and a strong positive correlation between the bridle tension and trawl motions was obtained. Furthermore, a significant decrease in the flow field occurred inside and outside different parts of the trawl. Fourier and wavelet analysis results showed that the trawl motions and bridle tension are mainly of a low-frequency activity and of another component related to the unsteady turbulent flow street, and decreased with the increasing catch size and door spread. A complex fluid–structure interaction is then demonstrated where the hydrodynamics of the moving Antarctic krill trawl structure are an intricate interplay between trawl fluttering motions and unsteady turbulent flow influenced by catch size and door spread. The knowledge of such trawl hydrodynamic behavior is of great importance to understand and design the optimal structure of trawl nets to maintain the sustainability of the Antarctic krill fishery. Antarctic krill trawl Fluid–structure interaction Bridle tension Fluttering motions Unsteady turbulent flow Thierry, Nyatchouba Nsangue Bruno verfasserin aut Achille, Njomoue Pandong verfasserin aut Mouangue, Ruben verfasserin aut Xu, Liuxiong verfasserin aut Hu, Fuxiang verfasserin aut Mbangue, Ekmon verfasserin aut Enthalten in Journal of fluids and structures Orlando, Fla. : Elsevier, 1993 124 Online-Ressource (DE-627)26732667X (DE-600)1469614-9 (DE-576)253763266 1095-8622 nnns volume:124 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.33 Technische Strömungsmechanik VZ AR 124 |
allfields_unstemmed |
10.1016/j.jfluidstructs.2023.104037 doi (DE-627)ELV066486238 (ELSEVIER)S0889-9746(23)00205-0 DE-627 ger DE-627 rda eng 530 VZ 50.33 bkl Tang, Hao verfasserin aut Coupled dynamics of the moving Antarctic krill trawl structure and its hydrodynamics behavior using various catch sizes and door spreads based on wavelet-based and Fourier analysis 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Antarctic krill is a key element of the complex ecology of the Antarctic Ocean and a target species for commercial fisheries for aquaculture supply, krill oil production, and as a major food source for various natural predators. Therefore, understanding the interaction between the fluid structures of the Antarctic krill trawl structure is the key factor in solving problems such as selectivity, energy efficiency, catchability, and ecological sustainability in this fishery. Thus, this study experimentally investigated the influence of catch sizes, door spread, and inflow velocities on the bridle tension, trawl motions, trawl deformation, and flow field inside and around a scaled trawl model in flume tank based on the electromagnetic current velocity meter measurements. Fourier analysis using power spectrum density and the continuous wavelet transform is used to analyze the time-frequency contents of the instantaneous flow velocities, bridle tension, and trawl motions; and in the interaction between the unstable turbulent flows and the fluttering trawl motions, wavelet coherency analysis was employed to detect coherent structures. Results indicated that the bridle tension and trawl motions increased as the catch size, door spread, and inflow velocity increased. Owing to the significant trawl deformation, a complex fluid–structure interaction occurred and a strong positive correlation between the bridle tension and trawl motions was obtained. Furthermore, a significant decrease in the flow field occurred inside and outside different parts of the trawl. Fourier and wavelet analysis results showed that the trawl motions and bridle tension are mainly of a low-frequency activity and of another component related to the unsteady turbulent flow street, and decreased with the increasing catch size and door spread. A complex fluid–structure interaction is then demonstrated where the hydrodynamics of the moving Antarctic krill trawl structure are an intricate interplay between trawl fluttering motions and unsteady turbulent flow influenced by catch size and door spread. The knowledge of such trawl hydrodynamic behavior is of great importance to understand and design the optimal structure of trawl nets to maintain the sustainability of the Antarctic krill fishery. Antarctic krill trawl Fluid–structure interaction Bridle tension Fluttering motions Unsteady turbulent flow Thierry, Nyatchouba Nsangue Bruno verfasserin aut Achille, Njomoue Pandong verfasserin aut Mouangue, Ruben verfasserin aut Xu, Liuxiong verfasserin aut Hu, Fuxiang verfasserin aut Mbangue, Ekmon verfasserin aut Enthalten in Journal of fluids and structures Orlando, Fla. : Elsevier, 1993 124 Online-Ressource (DE-627)26732667X (DE-600)1469614-9 (DE-576)253763266 1095-8622 nnns volume:124 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.33 Technische Strömungsmechanik VZ AR 124 |
allfieldsGer |
10.1016/j.jfluidstructs.2023.104037 doi (DE-627)ELV066486238 (ELSEVIER)S0889-9746(23)00205-0 DE-627 ger DE-627 rda eng 530 VZ 50.33 bkl Tang, Hao verfasserin aut Coupled dynamics of the moving Antarctic krill trawl structure and its hydrodynamics behavior using various catch sizes and door spreads based on wavelet-based and Fourier analysis 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Antarctic krill is a key element of the complex ecology of the Antarctic Ocean and a target species for commercial fisheries for aquaculture supply, krill oil production, and as a major food source for various natural predators. Therefore, understanding the interaction between the fluid structures of the Antarctic krill trawl structure is the key factor in solving problems such as selectivity, energy efficiency, catchability, and ecological sustainability in this fishery. Thus, this study experimentally investigated the influence of catch sizes, door spread, and inflow velocities on the bridle tension, trawl motions, trawl deformation, and flow field inside and around a scaled trawl model in flume tank based on the electromagnetic current velocity meter measurements. Fourier analysis using power spectrum density and the continuous wavelet transform is used to analyze the time-frequency contents of the instantaneous flow velocities, bridle tension, and trawl motions; and in the interaction between the unstable turbulent flows and the fluttering trawl motions, wavelet coherency analysis was employed to detect coherent structures. Results indicated that the bridle tension and trawl motions increased as the catch size, door spread, and inflow velocity increased. Owing to the significant trawl deformation, a complex fluid–structure interaction occurred and a strong positive correlation between the bridle tension and trawl motions was obtained. Furthermore, a significant decrease in the flow field occurred inside and outside different parts of the trawl. Fourier and wavelet analysis results showed that the trawl motions and bridle tension are mainly of a low-frequency activity and of another component related to the unsteady turbulent flow street, and decreased with the increasing catch size and door spread. A complex fluid–structure interaction is then demonstrated where the hydrodynamics of the moving Antarctic krill trawl structure are an intricate interplay between trawl fluttering motions and unsteady turbulent flow influenced by catch size and door spread. The knowledge of such trawl hydrodynamic behavior is of great importance to understand and design the optimal structure of trawl nets to maintain the sustainability of the Antarctic krill fishery. Antarctic krill trawl Fluid–structure interaction Bridle tension Fluttering motions Unsteady turbulent flow Thierry, Nyatchouba Nsangue Bruno verfasserin aut Achille, Njomoue Pandong verfasserin aut Mouangue, Ruben verfasserin aut Xu, Liuxiong verfasserin aut Hu, Fuxiang verfasserin aut Mbangue, Ekmon verfasserin aut Enthalten in Journal of fluids and structures Orlando, Fla. : Elsevier, 1993 124 Online-Ressource (DE-627)26732667X (DE-600)1469614-9 (DE-576)253763266 1095-8622 nnns volume:124 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.33 Technische Strömungsmechanik VZ AR 124 |
allfieldsSound |
10.1016/j.jfluidstructs.2023.104037 doi (DE-627)ELV066486238 (ELSEVIER)S0889-9746(23)00205-0 DE-627 ger DE-627 rda eng 530 VZ 50.33 bkl Tang, Hao verfasserin aut Coupled dynamics of the moving Antarctic krill trawl structure and its hydrodynamics behavior using various catch sizes and door spreads based on wavelet-based and Fourier analysis 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Antarctic krill is a key element of the complex ecology of the Antarctic Ocean and a target species for commercial fisheries for aquaculture supply, krill oil production, and as a major food source for various natural predators. Therefore, understanding the interaction between the fluid structures of the Antarctic krill trawl structure is the key factor in solving problems such as selectivity, energy efficiency, catchability, and ecological sustainability in this fishery. Thus, this study experimentally investigated the influence of catch sizes, door spread, and inflow velocities on the bridle tension, trawl motions, trawl deformation, and flow field inside and around a scaled trawl model in flume tank based on the electromagnetic current velocity meter measurements. Fourier analysis using power spectrum density and the continuous wavelet transform is used to analyze the time-frequency contents of the instantaneous flow velocities, bridle tension, and trawl motions; and in the interaction between the unstable turbulent flows and the fluttering trawl motions, wavelet coherency analysis was employed to detect coherent structures. Results indicated that the bridle tension and trawl motions increased as the catch size, door spread, and inflow velocity increased. Owing to the significant trawl deformation, a complex fluid–structure interaction occurred and a strong positive correlation between the bridle tension and trawl motions was obtained. Furthermore, a significant decrease in the flow field occurred inside and outside different parts of the trawl. Fourier and wavelet analysis results showed that the trawl motions and bridle tension are mainly of a low-frequency activity and of another component related to the unsteady turbulent flow street, and decreased with the increasing catch size and door spread. A complex fluid–structure interaction is then demonstrated where the hydrodynamics of the moving Antarctic krill trawl structure are an intricate interplay between trawl fluttering motions and unsteady turbulent flow influenced by catch size and door spread. The knowledge of such trawl hydrodynamic behavior is of great importance to understand and design the optimal structure of trawl nets to maintain the sustainability of the Antarctic krill fishery. Antarctic krill trawl Fluid–structure interaction Bridle tension Fluttering motions Unsteady turbulent flow Thierry, Nyatchouba Nsangue Bruno verfasserin aut Achille, Njomoue Pandong verfasserin aut Mouangue, Ruben verfasserin aut Xu, Liuxiong verfasserin aut Hu, Fuxiang verfasserin aut Mbangue, Ekmon verfasserin aut Enthalten in Journal of fluids and structures Orlando, Fla. : Elsevier, 1993 124 Online-Ressource (DE-627)26732667X (DE-600)1469614-9 (DE-576)253763266 1095-8622 nnns volume:124 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.33 Technische Strömungsmechanik VZ AR 124 |
language |
English |
source |
Enthalten in Journal of fluids and structures 124 volume:124 |
sourceStr |
Enthalten in Journal of fluids and structures 124 volume:124 |
format_phy_str_mv |
Article |
bklname |
Technische Strömungsmechanik |
institution |
findex.gbv.de |
topic_facet |
Antarctic krill trawl Fluid–structure interaction Bridle tension Fluttering motions Unsteady turbulent flow |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of fluids and structures |
authorswithroles_txt_mv |
Tang, Hao @@aut@@ Thierry, Nyatchouba Nsangue Bruno @@aut@@ Achille, Njomoue Pandong @@aut@@ Mouangue, Ruben @@aut@@ Xu, Liuxiong @@aut@@ Hu, Fuxiang @@aut@@ Mbangue, Ekmon @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
26732667X |
dewey-sort |
3530 |
id |
ELV066486238 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066486238</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240111093152.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240111s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jfluidstructs.2023.104037</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066486238</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0889-9746(23)00205-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.33</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tang, Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Coupled dynamics of the moving Antarctic krill trawl structure and its hydrodynamics behavior using various catch sizes and door spreads based on wavelet-based and Fourier analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Antarctic krill is a key element of the complex ecology of the Antarctic Ocean and a target species for commercial fisheries for aquaculture supply, krill oil production, and as a major food source for various natural predators. Therefore, understanding the interaction between the fluid structures of the Antarctic krill trawl structure is the key factor in solving problems such as selectivity, energy efficiency, catchability, and ecological sustainability in this fishery. Thus, this study experimentally investigated the influence of catch sizes, door spread, and inflow velocities on the bridle tension, trawl motions, trawl deformation, and flow field inside and around a scaled trawl model in flume tank based on the electromagnetic current velocity meter measurements. Fourier analysis using power spectrum density and the continuous wavelet transform is used to analyze the time-frequency contents of the instantaneous flow velocities, bridle tension, and trawl motions; and in the interaction between the unstable turbulent flows and the fluttering trawl motions, wavelet coherency analysis was employed to detect coherent structures. Results indicated that the bridle tension and trawl motions increased as the catch size, door spread, and inflow velocity increased. Owing to the significant trawl deformation, a complex fluid–structure interaction occurred and a strong positive correlation between the bridle tension and trawl motions was obtained. Furthermore, a significant decrease in the flow field occurred inside and outside different parts of the trawl. Fourier and wavelet analysis results showed that the trawl motions and bridle tension are mainly of a low-frequency activity and of another component related to the unsteady turbulent flow street, and decreased with the increasing catch size and door spread. A complex fluid–structure interaction is then demonstrated where the hydrodynamics of the moving Antarctic krill trawl structure are an intricate interplay between trawl fluttering motions and unsteady turbulent flow influenced by catch size and door spread. The knowledge of such trawl hydrodynamic behavior is of great importance to understand and design the optimal structure of trawl nets to maintain the sustainability of the Antarctic krill fishery.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Antarctic krill trawl</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid–structure interaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bridle tension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluttering motions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unsteady turbulent flow</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thierry, Nyatchouba Nsangue Bruno</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Achille, Njomoue Pandong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mouangue, Ruben</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Liuxiong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Fuxiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mbangue, Ekmon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of fluids and structures</subfield><subfield code="d">Orlando, Fla. : Elsevier, 1993</subfield><subfield code="g">124</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)26732667X</subfield><subfield code="w">(DE-600)1469614-9</subfield><subfield code="w">(DE-576)253763266</subfield><subfield code="x">1095-8622</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:124</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.33</subfield><subfield code="j">Technische Strömungsmechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">124</subfield></datafield></record></collection>
|
author |
Tang, Hao |
spellingShingle |
Tang, Hao ddc 530 bkl 50.33 misc Antarctic krill trawl misc Fluid–structure interaction misc Bridle tension misc Fluttering motions misc Unsteady turbulent flow Coupled dynamics of the moving Antarctic krill trawl structure and its hydrodynamics behavior using various catch sizes and door spreads based on wavelet-based and Fourier analysis |
authorStr |
Tang, Hao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)26732667X |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1095-8622 |
topic_title |
530 VZ 50.33 bkl Coupled dynamics of the moving Antarctic krill trawl structure and its hydrodynamics behavior using various catch sizes and door spreads based on wavelet-based and Fourier analysis Antarctic krill trawl Fluid–structure interaction Bridle tension Fluttering motions Unsteady turbulent flow |
topic |
ddc 530 bkl 50.33 misc Antarctic krill trawl misc Fluid–structure interaction misc Bridle tension misc Fluttering motions misc Unsteady turbulent flow |
topic_unstemmed |
ddc 530 bkl 50.33 misc Antarctic krill trawl misc Fluid–structure interaction misc Bridle tension misc Fluttering motions misc Unsteady turbulent flow |
topic_browse |
ddc 530 bkl 50.33 misc Antarctic krill trawl misc Fluid–structure interaction misc Bridle tension misc Fluttering motions misc Unsteady turbulent flow |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of fluids and structures |
hierarchy_parent_id |
26732667X |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of fluids and structures |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)26732667X (DE-600)1469614-9 (DE-576)253763266 |
title |
Coupled dynamics of the moving Antarctic krill trawl structure and its hydrodynamics behavior using various catch sizes and door spreads based on wavelet-based and Fourier analysis |
ctrlnum |
(DE-627)ELV066486238 (ELSEVIER)S0889-9746(23)00205-0 |
title_full |
Coupled dynamics of the moving Antarctic krill trawl structure and its hydrodynamics behavior using various catch sizes and door spreads based on wavelet-based and Fourier analysis |
author_sort |
Tang, Hao |
journal |
Journal of fluids and structures |
journalStr |
Journal of fluids and structures |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Tang, Hao Thierry, Nyatchouba Nsangue Bruno Achille, Njomoue Pandong Mouangue, Ruben Xu, Liuxiong Hu, Fuxiang Mbangue, Ekmon |
container_volume |
124 |
class |
530 VZ 50.33 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Tang, Hao |
doi_str_mv |
10.1016/j.jfluidstructs.2023.104037 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
coupled dynamics of the moving antarctic krill trawl structure and its hydrodynamics behavior using various catch sizes and door spreads based on wavelet-based and fourier analysis |
title_auth |
Coupled dynamics of the moving Antarctic krill trawl structure and its hydrodynamics behavior using various catch sizes and door spreads based on wavelet-based and Fourier analysis |
abstract |
Antarctic krill is a key element of the complex ecology of the Antarctic Ocean and a target species for commercial fisheries for aquaculture supply, krill oil production, and as a major food source for various natural predators. Therefore, understanding the interaction between the fluid structures of the Antarctic krill trawl structure is the key factor in solving problems such as selectivity, energy efficiency, catchability, and ecological sustainability in this fishery. Thus, this study experimentally investigated the influence of catch sizes, door spread, and inflow velocities on the bridle tension, trawl motions, trawl deformation, and flow field inside and around a scaled trawl model in flume tank based on the electromagnetic current velocity meter measurements. Fourier analysis using power spectrum density and the continuous wavelet transform is used to analyze the time-frequency contents of the instantaneous flow velocities, bridle tension, and trawl motions; and in the interaction between the unstable turbulent flows and the fluttering trawl motions, wavelet coherency analysis was employed to detect coherent structures. Results indicated that the bridle tension and trawl motions increased as the catch size, door spread, and inflow velocity increased. Owing to the significant trawl deformation, a complex fluid–structure interaction occurred and a strong positive correlation between the bridle tension and trawl motions was obtained. Furthermore, a significant decrease in the flow field occurred inside and outside different parts of the trawl. Fourier and wavelet analysis results showed that the trawl motions and bridle tension are mainly of a low-frequency activity and of another component related to the unsteady turbulent flow street, and decreased with the increasing catch size and door spread. A complex fluid–structure interaction is then demonstrated where the hydrodynamics of the moving Antarctic krill trawl structure are an intricate interplay between trawl fluttering motions and unsteady turbulent flow influenced by catch size and door spread. The knowledge of such trawl hydrodynamic behavior is of great importance to understand and design the optimal structure of trawl nets to maintain the sustainability of the Antarctic krill fishery. |
abstractGer |
Antarctic krill is a key element of the complex ecology of the Antarctic Ocean and a target species for commercial fisheries for aquaculture supply, krill oil production, and as a major food source for various natural predators. Therefore, understanding the interaction between the fluid structures of the Antarctic krill trawl structure is the key factor in solving problems such as selectivity, energy efficiency, catchability, and ecological sustainability in this fishery. Thus, this study experimentally investigated the influence of catch sizes, door spread, and inflow velocities on the bridle tension, trawl motions, trawl deformation, and flow field inside and around a scaled trawl model in flume tank based on the electromagnetic current velocity meter measurements. Fourier analysis using power spectrum density and the continuous wavelet transform is used to analyze the time-frequency contents of the instantaneous flow velocities, bridle tension, and trawl motions; and in the interaction between the unstable turbulent flows and the fluttering trawl motions, wavelet coherency analysis was employed to detect coherent structures. Results indicated that the bridle tension and trawl motions increased as the catch size, door spread, and inflow velocity increased. Owing to the significant trawl deformation, a complex fluid–structure interaction occurred and a strong positive correlation between the bridle tension and trawl motions was obtained. Furthermore, a significant decrease in the flow field occurred inside and outside different parts of the trawl. Fourier and wavelet analysis results showed that the trawl motions and bridle tension are mainly of a low-frequency activity and of another component related to the unsteady turbulent flow street, and decreased with the increasing catch size and door spread. A complex fluid–structure interaction is then demonstrated where the hydrodynamics of the moving Antarctic krill trawl structure are an intricate interplay between trawl fluttering motions and unsteady turbulent flow influenced by catch size and door spread. The knowledge of such trawl hydrodynamic behavior is of great importance to understand and design the optimal structure of trawl nets to maintain the sustainability of the Antarctic krill fishery. |
abstract_unstemmed |
Antarctic krill is a key element of the complex ecology of the Antarctic Ocean and a target species for commercial fisheries for aquaculture supply, krill oil production, and as a major food source for various natural predators. Therefore, understanding the interaction between the fluid structures of the Antarctic krill trawl structure is the key factor in solving problems such as selectivity, energy efficiency, catchability, and ecological sustainability in this fishery. Thus, this study experimentally investigated the influence of catch sizes, door spread, and inflow velocities on the bridle tension, trawl motions, trawl deformation, and flow field inside and around a scaled trawl model in flume tank based on the electromagnetic current velocity meter measurements. Fourier analysis using power spectrum density and the continuous wavelet transform is used to analyze the time-frequency contents of the instantaneous flow velocities, bridle tension, and trawl motions; and in the interaction between the unstable turbulent flows and the fluttering trawl motions, wavelet coherency analysis was employed to detect coherent structures. Results indicated that the bridle tension and trawl motions increased as the catch size, door spread, and inflow velocity increased. Owing to the significant trawl deformation, a complex fluid–structure interaction occurred and a strong positive correlation between the bridle tension and trawl motions was obtained. Furthermore, a significant decrease in the flow field occurred inside and outside different parts of the trawl. Fourier and wavelet analysis results showed that the trawl motions and bridle tension are mainly of a low-frequency activity and of another component related to the unsteady turbulent flow street, and decreased with the increasing catch size and door spread. A complex fluid–structure interaction is then demonstrated where the hydrodynamics of the moving Antarctic krill trawl structure are an intricate interplay between trawl fluttering motions and unsteady turbulent flow influenced by catch size and door spread. The knowledge of such trawl hydrodynamic behavior is of great importance to understand and design the optimal structure of trawl nets to maintain the sustainability of the Antarctic krill fishery. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Coupled dynamics of the moving Antarctic krill trawl structure and its hydrodynamics behavior using various catch sizes and door spreads based on wavelet-based and Fourier analysis |
remote_bool |
true |
author2 |
Thierry, Nyatchouba Nsangue Bruno Achille, Njomoue Pandong Mouangue, Ruben Xu, Liuxiong Hu, Fuxiang Mbangue, Ekmon |
author2Str |
Thierry, Nyatchouba Nsangue Bruno Achille, Njomoue Pandong Mouangue, Ruben Xu, Liuxiong Hu, Fuxiang Mbangue, Ekmon |
ppnlink |
26732667X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jfluidstructs.2023.104037 |
up_date |
2024-07-06T17:55:29.408Z |
_version_ |
1803853265014620160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066486238</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240111093152.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240111s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jfluidstructs.2023.104037</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066486238</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0889-9746(23)00205-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.33</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tang, Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Coupled dynamics of the moving Antarctic krill trawl structure and its hydrodynamics behavior using various catch sizes and door spreads based on wavelet-based and Fourier analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Antarctic krill is a key element of the complex ecology of the Antarctic Ocean and a target species for commercial fisheries for aquaculture supply, krill oil production, and as a major food source for various natural predators. Therefore, understanding the interaction between the fluid structures of the Antarctic krill trawl structure is the key factor in solving problems such as selectivity, energy efficiency, catchability, and ecological sustainability in this fishery. Thus, this study experimentally investigated the influence of catch sizes, door spread, and inflow velocities on the bridle tension, trawl motions, trawl deformation, and flow field inside and around a scaled trawl model in flume tank based on the electromagnetic current velocity meter measurements. Fourier analysis using power spectrum density and the continuous wavelet transform is used to analyze the time-frequency contents of the instantaneous flow velocities, bridle tension, and trawl motions; and in the interaction between the unstable turbulent flows and the fluttering trawl motions, wavelet coherency analysis was employed to detect coherent structures. Results indicated that the bridle tension and trawl motions increased as the catch size, door spread, and inflow velocity increased. Owing to the significant trawl deformation, a complex fluid–structure interaction occurred and a strong positive correlation between the bridle tension and trawl motions was obtained. Furthermore, a significant decrease in the flow field occurred inside and outside different parts of the trawl. Fourier and wavelet analysis results showed that the trawl motions and bridle tension are mainly of a low-frequency activity and of another component related to the unsteady turbulent flow street, and decreased with the increasing catch size and door spread. A complex fluid–structure interaction is then demonstrated where the hydrodynamics of the moving Antarctic krill trawl structure are an intricate interplay between trawl fluttering motions and unsteady turbulent flow influenced by catch size and door spread. The knowledge of such trawl hydrodynamic behavior is of great importance to understand and design the optimal structure of trawl nets to maintain the sustainability of the Antarctic krill fishery.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Antarctic krill trawl</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid–structure interaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bridle tension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluttering motions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unsteady turbulent flow</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thierry, Nyatchouba Nsangue Bruno</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Achille, Njomoue Pandong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mouangue, Ruben</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Liuxiong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Fuxiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mbangue, Ekmon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of fluids and structures</subfield><subfield code="d">Orlando, Fla. : Elsevier, 1993</subfield><subfield code="g">124</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)26732667X</subfield><subfield code="w">(DE-600)1469614-9</subfield><subfield code="w">(DE-576)253763266</subfield><subfield code="x">1095-8622</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:124</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.33</subfield><subfield code="j">Technische Strömungsmechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">124</subfield></datafield></record></collection>
|
score |
7.40082 |