Constructing the large-scale collimating solar simulator with a light half-divergence angle <1° using only collimating radiation modules
Large-scale collimating solar simulators (CSSs) with a light half divergence angle (HDA) of less than 1° have been developed. The small HDA ensures that the CSS can effectively simulate the optical behavior between natural sunlight and optical devices. However, the construction of large-scale CSSs s...
Ausführliche Beschreibung
Autor*in: |
Gao, Yuan [verfasserIn] Zhu, Xuan [verfasserIn] Chen, Jiangfeng [verfasserIn] Xie, Yin [verfasserIn] Hong, Jianan [verfasserIn] Jin, Junyu [verfasserIn] Han, Junchou [verfasserIn] Zhang, Xuhan [verfasserIn] Xu, Chenyu [verfasserIn] Zhang, Yanwei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Renewable energy - Amsterdam [u.a.] : Elsevier Science, 1991, 221 |
---|---|
Übergeordnetes Werk: |
volume:221 |
DOI / URN: |
10.1016/j.renene.2023.119675 |
---|
Katalog-ID: |
ELV066596963 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV066596963 | ||
003 | DE-627 | ||
005 | 20240214093125.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240115s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.renene.2023.119675 |2 doi | |
035 | |a (DE-627)ELV066596963 | ||
035 | |a (ELSEVIER)S0960-1481(23)01590-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Gao, Yuan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Constructing the large-scale collimating solar simulator with a light half-divergence angle <1° using only collimating radiation modules |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Large-scale collimating solar simulators (CSSs) with a light half divergence angle (HDA) of less than 1° have been developed. The small HDA ensures that the CSS can effectively simulate the optical behavior between natural sunlight and optical devices. However, the construction of large-scale CSSs still has a strict threshold because additional optical modules (AOMs), such as large-area collimating mirrors, are usually required to correct the light into collimated light. The manufacturing, installation, and adjustment of these precision optical devices pose significant challenges. An excellent scheme to avoid AOMs is to use the collimating radiation module (CRM), which can directly produce collimated light. Unfortunately, CRM can only produce light with an HDA of more than 3° at present, far larger than that of CSS with AOMs. Here, we report a CRM that can directly produce light with excellent collimation (an HDA<0.955°) and uniformity (>90 %). We accomplished this by analyzing the deviations between an idealized geometric optical model and actual CRMs and eliminating them with high-precision parts and a high-resolution adjustment method. We further used 24 CRMs to prove that the single-module collimating solar simulator (SMCSS, a radiation area of 2.55 m × 1.57 m) could be modularly constructed by them. Experimental investigations involving light-concentrating experiments on a parabolic trough collector demonstrated the superior collimation and simulation capabilities of the SMCSS. By eliminating the need for AOMs, the CRM and SMCSS significantly reduce system complexity and cost and lower the construction threshold for large-scale CSSs. It will benefit all experimental scenarios that need large-area collimated light and greatly promote the application of large-scale CSS in civilian solar research. | ||
650 | 4 | |a Collimating solar simulator | |
650 | 4 | |a Large scale | |
650 | 4 | |a Divergence angle | |
650 | 4 | |a Collimation | |
650 | 4 | |a Energy efficiency | |
650 | 4 | |a Cost | |
700 | 1 | |a Zhu, Xuan |e verfasserin |4 aut | |
700 | 1 | |a Chen, Jiangfeng |e verfasserin |4 aut | |
700 | 1 | |a Xie, Yin |e verfasserin |4 aut | |
700 | 1 | |a Hong, Jianan |e verfasserin |4 aut | |
700 | 1 | |a Jin, Junyu |e verfasserin |4 aut | |
700 | 1 | |a Han, Junchou |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Xuhan |e verfasserin |4 aut | |
700 | 1 | |a Xu, Chenyu |e verfasserin |0 (orcid)0000-0001-5240-7599 |4 aut | |
700 | 1 | |a Zhang, Yanwei |e verfasserin |0 (orcid)0000-0002-1055-2680 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Renewable energy |d Amsterdam [u.a.] : Elsevier Science, 1991 |g 221 |h Online-Ressource |w (DE-627)320412091 |w (DE-600)2001449-1 |w (DE-576)252613937 |x 1879-0682 |7 nnns |
773 | 1 | 8 | |g volume:221 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |q VZ |
951 | |a AR | ||
952 | |d 221 |
author_variant |
y g yg x z xz j c jc y x yx j h jh j j jj j h jh x z xz c x cx y z yz |
---|---|
matchkey_str |
article:18790682:2023----::osrcighlreclcliaigoasmltrihlgtafiegnenl1sno |
hierarchy_sort_str |
2023 |
bklnumber |
52.56 |
publishDate |
2023 |
allfields |
10.1016/j.renene.2023.119675 doi (DE-627)ELV066596963 (ELSEVIER)S0960-1481(23)01590-2 DE-627 ger DE-627 rda eng 530 620 VZ 52.56 bkl Gao, Yuan verfasserin aut Constructing the large-scale collimating solar simulator with a light half-divergence angle <1° using only collimating radiation modules 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Large-scale collimating solar simulators (CSSs) with a light half divergence angle (HDA) of less than 1° have been developed. The small HDA ensures that the CSS can effectively simulate the optical behavior between natural sunlight and optical devices. However, the construction of large-scale CSSs still has a strict threshold because additional optical modules (AOMs), such as large-area collimating mirrors, are usually required to correct the light into collimated light. The manufacturing, installation, and adjustment of these precision optical devices pose significant challenges. An excellent scheme to avoid AOMs is to use the collimating radiation module (CRM), which can directly produce collimated light. Unfortunately, CRM can only produce light with an HDA of more than 3° at present, far larger than that of CSS with AOMs. Here, we report a CRM that can directly produce light with excellent collimation (an HDA<0.955°) and uniformity (>90 %). We accomplished this by analyzing the deviations between an idealized geometric optical model and actual CRMs and eliminating them with high-precision parts and a high-resolution adjustment method. We further used 24 CRMs to prove that the single-module collimating solar simulator (SMCSS, a radiation area of 2.55 m × 1.57 m) could be modularly constructed by them. Experimental investigations involving light-concentrating experiments on a parabolic trough collector demonstrated the superior collimation and simulation capabilities of the SMCSS. By eliminating the need for AOMs, the CRM and SMCSS significantly reduce system complexity and cost and lower the construction threshold for large-scale CSSs. It will benefit all experimental scenarios that need large-area collimated light and greatly promote the application of large-scale CSS in civilian solar research. Collimating solar simulator Large scale Divergence angle Collimation Energy efficiency Cost Zhu, Xuan verfasserin aut Chen, Jiangfeng verfasserin aut Xie, Yin verfasserin aut Hong, Jianan verfasserin aut Jin, Junyu verfasserin aut Han, Junchou verfasserin aut Zhang, Xuhan verfasserin aut Xu, Chenyu verfasserin (orcid)0000-0001-5240-7599 aut Zhang, Yanwei verfasserin (orcid)0000-0002-1055-2680 aut Enthalten in Renewable energy Amsterdam [u.a.] : Elsevier Science, 1991 221 Online-Ressource (DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 1879-0682 nnns volume:221 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 221 |
spelling |
10.1016/j.renene.2023.119675 doi (DE-627)ELV066596963 (ELSEVIER)S0960-1481(23)01590-2 DE-627 ger DE-627 rda eng 530 620 VZ 52.56 bkl Gao, Yuan verfasserin aut Constructing the large-scale collimating solar simulator with a light half-divergence angle <1° using only collimating radiation modules 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Large-scale collimating solar simulators (CSSs) with a light half divergence angle (HDA) of less than 1° have been developed. The small HDA ensures that the CSS can effectively simulate the optical behavior between natural sunlight and optical devices. However, the construction of large-scale CSSs still has a strict threshold because additional optical modules (AOMs), such as large-area collimating mirrors, are usually required to correct the light into collimated light. The manufacturing, installation, and adjustment of these precision optical devices pose significant challenges. An excellent scheme to avoid AOMs is to use the collimating radiation module (CRM), which can directly produce collimated light. Unfortunately, CRM can only produce light with an HDA of more than 3° at present, far larger than that of CSS with AOMs. Here, we report a CRM that can directly produce light with excellent collimation (an HDA<0.955°) and uniformity (>90 %). We accomplished this by analyzing the deviations between an idealized geometric optical model and actual CRMs and eliminating them with high-precision parts and a high-resolution adjustment method. We further used 24 CRMs to prove that the single-module collimating solar simulator (SMCSS, a radiation area of 2.55 m × 1.57 m) could be modularly constructed by them. Experimental investigations involving light-concentrating experiments on a parabolic trough collector demonstrated the superior collimation and simulation capabilities of the SMCSS. By eliminating the need for AOMs, the CRM and SMCSS significantly reduce system complexity and cost and lower the construction threshold for large-scale CSSs. It will benefit all experimental scenarios that need large-area collimated light and greatly promote the application of large-scale CSS in civilian solar research. Collimating solar simulator Large scale Divergence angle Collimation Energy efficiency Cost Zhu, Xuan verfasserin aut Chen, Jiangfeng verfasserin aut Xie, Yin verfasserin aut Hong, Jianan verfasserin aut Jin, Junyu verfasserin aut Han, Junchou verfasserin aut Zhang, Xuhan verfasserin aut Xu, Chenyu verfasserin (orcid)0000-0001-5240-7599 aut Zhang, Yanwei verfasserin (orcid)0000-0002-1055-2680 aut Enthalten in Renewable energy Amsterdam [u.a.] : Elsevier Science, 1991 221 Online-Ressource (DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 1879-0682 nnns volume:221 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 221 |
allfields_unstemmed |
10.1016/j.renene.2023.119675 doi (DE-627)ELV066596963 (ELSEVIER)S0960-1481(23)01590-2 DE-627 ger DE-627 rda eng 530 620 VZ 52.56 bkl Gao, Yuan verfasserin aut Constructing the large-scale collimating solar simulator with a light half-divergence angle <1° using only collimating radiation modules 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Large-scale collimating solar simulators (CSSs) with a light half divergence angle (HDA) of less than 1° have been developed. The small HDA ensures that the CSS can effectively simulate the optical behavior between natural sunlight and optical devices. However, the construction of large-scale CSSs still has a strict threshold because additional optical modules (AOMs), such as large-area collimating mirrors, are usually required to correct the light into collimated light. The manufacturing, installation, and adjustment of these precision optical devices pose significant challenges. An excellent scheme to avoid AOMs is to use the collimating radiation module (CRM), which can directly produce collimated light. Unfortunately, CRM can only produce light with an HDA of more than 3° at present, far larger than that of CSS with AOMs. Here, we report a CRM that can directly produce light with excellent collimation (an HDA<0.955°) and uniformity (>90 %). We accomplished this by analyzing the deviations between an idealized geometric optical model and actual CRMs and eliminating them with high-precision parts and a high-resolution adjustment method. We further used 24 CRMs to prove that the single-module collimating solar simulator (SMCSS, a radiation area of 2.55 m × 1.57 m) could be modularly constructed by them. Experimental investigations involving light-concentrating experiments on a parabolic trough collector demonstrated the superior collimation and simulation capabilities of the SMCSS. By eliminating the need for AOMs, the CRM and SMCSS significantly reduce system complexity and cost and lower the construction threshold for large-scale CSSs. It will benefit all experimental scenarios that need large-area collimated light and greatly promote the application of large-scale CSS in civilian solar research. Collimating solar simulator Large scale Divergence angle Collimation Energy efficiency Cost Zhu, Xuan verfasserin aut Chen, Jiangfeng verfasserin aut Xie, Yin verfasserin aut Hong, Jianan verfasserin aut Jin, Junyu verfasserin aut Han, Junchou verfasserin aut Zhang, Xuhan verfasserin aut Xu, Chenyu verfasserin (orcid)0000-0001-5240-7599 aut Zhang, Yanwei verfasserin (orcid)0000-0002-1055-2680 aut Enthalten in Renewable energy Amsterdam [u.a.] : Elsevier Science, 1991 221 Online-Ressource (DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 1879-0682 nnns volume:221 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 221 |
allfieldsGer |
10.1016/j.renene.2023.119675 doi (DE-627)ELV066596963 (ELSEVIER)S0960-1481(23)01590-2 DE-627 ger DE-627 rda eng 530 620 VZ 52.56 bkl Gao, Yuan verfasserin aut Constructing the large-scale collimating solar simulator with a light half-divergence angle <1° using only collimating radiation modules 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Large-scale collimating solar simulators (CSSs) with a light half divergence angle (HDA) of less than 1° have been developed. The small HDA ensures that the CSS can effectively simulate the optical behavior between natural sunlight and optical devices. However, the construction of large-scale CSSs still has a strict threshold because additional optical modules (AOMs), such as large-area collimating mirrors, are usually required to correct the light into collimated light. The manufacturing, installation, and adjustment of these precision optical devices pose significant challenges. An excellent scheme to avoid AOMs is to use the collimating radiation module (CRM), which can directly produce collimated light. Unfortunately, CRM can only produce light with an HDA of more than 3° at present, far larger than that of CSS with AOMs. Here, we report a CRM that can directly produce light with excellent collimation (an HDA<0.955°) and uniformity (>90 %). We accomplished this by analyzing the deviations between an idealized geometric optical model and actual CRMs and eliminating them with high-precision parts and a high-resolution adjustment method. We further used 24 CRMs to prove that the single-module collimating solar simulator (SMCSS, a radiation area of 2.55 m × 1.57 m) could be modularly constructed by them. Experimental investigations involving light-concentrating experiments on a parabolic trough collector demonstrated the superior collimation and simulation capabilities of the SMCSS. By eliminating the need for AOMs, the CRM and SMCSS significantly reduce system complexity and cost and lower the construction threshold for large-scale CSSs. It will benefit all experimental scenarios that need large-area collimated light and greatly promote the application of large-scale CSS in civilian solar research. Collimating solar simulator Large scale Divergence angle Collimation Energy efficiency Cost Zhu, Xuan verfasserin aut Chen, Jiangfeng verfasserin aut Xie, Yin verfasserin aut Hong, Jianan verfasserin aut Jin, Junyu verfasserin aut Han, Junchou verfasserin aut Zhang, Xuhan verfasserin aut Xu, Chenyu verfasserin (orcid)0000-0001-5240-7599 aut Zhang, Yanwei verfasserin (orcid)0000-0002-1055-2680 aut Enthalten in Renewable energy Amsterdam [u.a.] : Elsevier Science, 1991 221 Online-Ressource (DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 1879-0682 nnns volume:221 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 221 |
allfieldsSound |
10.1016/j.renene.2023.119675 doi (DE-627)ELV066596963 (ELSEVIER)S0960-1481(23)01590-2 DE-627 ger DE-627 rda eng 530 620 VZ 52.56 bkl Gao, Yuan verfasserin aut Constructing the large-scale collimating solar simulator with a light half-divergence angle <1° using only collimating radiation modules 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Large-scale collimating solar simulators (CSSs) with a light half divergence angle (HDA) of less than 1° have been developed. The small HDA ensures that the CSS can effectively simulate the optical behavior between natural sunlight and optical devices. However, the construction of large-scale CSSs still has a strict threshold because additional optical modules (AOMs), such as large-area collimating mirrors, are usually required to correct the light into collimated light. The manufacturing, installation, and adjustment of these precision optical devices pose significant challenges. An excellent scheme to avoid AOMs is to use the collimating radiation module (CRM), which can directly produce collimated light. Unfortunately, CRM can only produce light with an HDA of more than 3° at present, far larger than that of CSS with AOMs. Here, we report a CRM that can directly produce light with excellent collimation (an HDA<0.955°) and uniformity (>90 %). We accomplished this by analyzing the deviations between an idealized geometric optical model and actual CRMs and eliminating them with high-precision parts and a high-resolution adjustment method. We further used 24 CRMs to prove that the single-module collimating solar simulator (SMCSS, a radiation area of 2.55 m × 1.57 m) could be modularly constructed by them. Experimental investigations involving light-concentrating experiments on a parabolic trough collector demonstrated the superior collimation and simulation capabilities of the SMCSS. By eliminating the need for AOMs, the CRM and SMCSS significantly reduce system complexity and cost and lower the construction threshold for large-scale CSSs. It will benefit all experimental scenarios that need large-area collimated light and greatly promote the application of large-scale CSS in civilian solar research. Collimating solar simulator Large scale Divergence angle Collimation Energy efficiency Cost Zhu, Xuan verfasserin aut Chen, Jiangfeng verfasserin aut Xie, Yin verfasserin aut Hong, Jianan verfasserin aut Jin, Junyu verfasserin aut Han, Junchou verfasserin aut Zhang, Xuhan verfasserin aut Xu, Chenyu verfasserin (orcid)0000-0001-5240-7599 aut Zhang, Yanwei verfasserin (orcid)0000-0002-1055-2680 aut Enthalten in Renewable energy Amsterdam [u.a.] : Elsevier Science, 1991 221 Online-Ressource (DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 1879-0682 nnns volume:221 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 221 |
language |
English |
source |
Enthalten in Renewable energy 221 volume:221 |
sourceStr |
Enthalten in Renewable energy 221 volume:221 |
format_phy_str_mv |
Article |
bklname |
Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
topic_facet |
Collimating solar simulator Large scale Divergence angle Collimation Energy efficiency Cost |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Renewable energy |
authorswithroles_txt_mv |
Gao, Yuan @@aut@@ Zhu, Xuan @@aut@@ Chen, Jiangfeng @@aut@@ Xie, Yin @@aut@@ Hong, Jianan @@aut@@ Jin, Junyu @@aut@@ Han, Junchou @@aut@@ Zhang, Xuhan @@aut@@ Xu, Chenyu @@aut@@ Zhang, Yanwei @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320412091 |
dewey-sort |
3530 |
id |
ELV066596963 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV066596963</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240214093125.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240115s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.renene.2023.119675</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066596963</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0960-1481(23)01590-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gao, Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Constructing the large-scale collimating solar simulator with a light half-divergence angle <1° using only collimating radiation modules</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Large-scale collimating solar simulators (CSSs) with a light half divergence angle (HDA) of less than 1° have been developed. The small HDA ensures that the CSS can effectively simulate the optical behavior between natural sunlight and optical devices. However, the construction of large-scale CSSs still has a strict threshold because additional optical modules (AOMs), such as large-area collimating mirrors, are usually required to correct the light into collimated light. The manufacturing, installation, and adjustment of these precision optical devices pose significant challenges. An excellent scheme to avoid AOMs is to use the collimating radiation module (CRM), which can directly produce collimated light. Unfortunately, CRM can only produce light with an HDA of more than 3° at present, far larger than that of CSS with AOMs. Here, we report a CRM that can directly produce light with excellent collimation (an HDA<0.955°) and uniformity (>90 %). We accomplished this by analyzing the deviations between an idealized geometric optical model and actual CRMs and eliminating them with high-precision parts and a high-resolution adjustment method. We further used 24 CRMs to prove that the single-module collimating solar simulator (SMCSS, a radiation area of 2.55 m × 1.57 m) could be modularly constructed by them. Experimental investigations involving light-concentrating experiments on a parabolic trough collector demonstrated the superior collimation and simulation capabilities of the SMCSS. By eliminating the need for AOMs, the CRM and SMCSS significantly reduce system complexity and cost and lower the construction threshold for large-scale CSSs. It will benefit all experimental scenarios that need large-area collimated light and greatly promote the application of large-scale CSS in civilian solar research.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Collimating solar simulator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large scale</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Divergence angle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Collimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy efficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cost</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Xuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Jiangfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Yin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hong, Jianan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, Junyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Junchou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xuhan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Chenyu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5240-7599</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yanwei</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1055-2680</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Renewable energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1991</subfield><subfield code="g">221</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320412091</subfield><subfield code="w">(DE-600)2001449-1</subfield><subfield code="w">(DE-576)252613937</subfield><subfield code="x">1879-0682</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:221</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">221</subfield></datafield></record></collection>
|
author |
Gao, Yuan |
spellingShingle |
Gao, Yuan ddc 530 bkl 52.56 misc Collimating solar simulator misc Large scale misc Divergence angle misc Collimation misc Energy efficiency misc Cost Constructing the large-scale collimating solar simulator with a light half-divergence angle <1° using only collimating radiation modules |
authorStr |
Gao, Yuan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320412091 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-0682 |
topic_title |
530 620 VZ 52.56 bkl Constructing the large-scale collimating solar simulator with a light half-divergence angle <1° using only collimating radiation modules Collimating solar simulator Large scale Divergence angle Collimation Energy efficiency Cost |
topic |
ddc 530 bkl 52.56 misc Collimating solar simulator misc Large scale misc Divergence angle misc Collimation misc Energy efficiency misc Cost |
topic_unstemmed |
ddc 530 bkl 52.56 misc Collimating solar simulator misc Large scale misc Divergence angle misc Collimation misc Energy efficiency misc Cost |
topic_browse |
ddc 530 bkl 52.56 misc Collimating solar simulator misc Large scale misc Divergence angle misc Collimation misc Energy efficiency misc Cost |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Renewable energy |
hierarchy_parent_id |
320412091 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Renewable energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 |
title |
Constructing the large-scale collimating solar simulator with a light half-divergence angle <1° using only collimating radiation modules |
ctrlnum |
(DE-627)ELV066596963 (ELSEVIER)S0960-1481(23)01590-2 |
title_full |
Constructing the large-scale collimating solar simulator with a light half-divergence angle <1° using only collimating radiation modules |
author_sort |
Gao, Yuan |
journal |
Renewable energy |
journalStr |
Renewable energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Gao, Yuan Zhu, Xuan Chen, Jiangfeng Xie, Yin Hong, Jianan Jin, Junyu Han, Junchou Zhang, Xuhan Xu, Chenyu Zhang, Yanwei |
container_volume |
221 |
class |
530 620 VZ 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Gao, Yuan |
doi_str_mv |
10.1016/j.renene.2023.119675 |
normlink |
(ORCID)0000-0001-5240-7599 (ORCID)0000-0002-1055-2680 |
normlink_prefix_str_mv |
(orcid)0000-0001-5240-7599 (orcid)0000-0002-1055-2680 |
dewey-full |
530 620 |
author2-role |
verfasserin |
title_sort |
constructing the large-scale collimating solar simulator with a light half-divergence angle <1° using only collimating radiation modules |
title_auth |
Constructing the large-scale collimating solar simulator with a light half-divergence angle <1° using only collimating radiation modules |
abstract |
Large-scale collimating solar simulators (CSSs) with a light half divergence angle (HDA) of less than 1° have been developed. The small HDA ensures that the CSS can effectively simulate the optical behavior between natural sunlight and optical devices. However, the construction of large-scale CSSs still has a strict threshold because additional optical modules (AOMs), such as large-area collimating mirrors, are usually required to correct the light into collimated light. The manufacturing, installation, and adjustment of these precision optical devices pose significant challenges. An excellent scheme to avoid AOMs is to use the collimating radiation module (CRM), which can directly produce collimated light. Unfortunately, CRM can only produce light with an HDA of more than 3° at present, far larger than that of CSS with AOMs. Here, we report a CRM that can directly produce light with excellent collimation (an HDA<0.955°) and uniformity (>90 %). We accomplished this by analyzing the deviations between an idealized geometric optical model and actual CRMs and eliminating them with high-precision parts and a high-resolution adjustment method. We further used 24 CRMs to prove that the single-module collimating solar simulator (SMCSS, a radiation area of 2.55 m × 1.57 m) could be modularly constructed by them. Experimental investigations involving light-concentrating experiments on a parabolic trough collector demonstrated the superior collimation and simulation capabilities of the SMCSS. By eliminating the need for AOMs, the CRM and SMCSS significantly reduce system complexity and cost and lower the construction threshold for large-scale CSSs. It will benefit all experimental scenarios that need large-area collimated light and greatly promote the application of large-scale CSS in civilian solar research. |
abstractGer |
Large-scale collimating solar simulators (CSSs) with a light half divergence angle (HDA) of less than 1° have been developed. The small HDA ensures that the CSS can effectively simulate the optical behavior between natural sunlight and optical devices. However, the construction of large-scale CSSs still has a strict threshold because additional optical modules (AOMs), such as large-area collimating mirrors, are usually required to correct the light into collimated light. The manufacturing, installation, and adjustment of these precision optical devices pose significant challenges. An excellent scheme to avoid AOMs is to use the collimating radiation module (CRM), which can directly produce collimated light. Unfortunately, CRM can only produce light with an HDA of more than 3° at present, far larger than that of CSS with AOMs. Here, we report a CRM that can directly produce light with excellent collimation (an HDA<0.955°) and uniformity (>90 %). We accomplished this by analyzing the deviations between an idealized geometric optical model and actual CRMs and eliminating them with high-precision parts and a high-resolution adjustment method. We further used 24 CRMs to prove that the single-module collimating solar simulator (SMCSS, a radiation area of 2.55 m × 1.57 m) could be modularly constructed by them. Experimental investigations involving light-concentrating experiments on a parabolic trough collector demonstrated the superior collimation and simulation capabilities of the SMCSS. By eliminating the need for AOMs, the CRM and SMCSS significantly reduce system complexity and cost and lower the construction threshold for large-scale CSSs. It will benefit all experimental scenarios that need large-area collimated light and greatly promote the application of large-scale CSS in civilian solar research. |
abstract_unstemmed |
Large-scale collimating solar simulators (CSSs) with a light half divergence angle (HDA) of less than 1° have been developed. The small HDA ensures that the CSS can effectively simulate the optical behavior between natural sunlight and optical devices. However, the construction of large-scale CSSs still has a strict threshold because additional optical modules (AOMs), such as large-area collimating mirrors, are usually required to correct the light into collimated light. The manufacturing, installation, and adjustment of these precision optical devices pose significant challenges. An excellent scheme to avoid AOMs is to use the collimating radiation module (CRM), which can directly produce collimated light. Unfortunately, CRM can only produce light with an HDA of more than 3° at present, far larger than that of CSS with AOMs. Here, we report a CRM that can directly produce light with excellent collimation (an HDA<0.955°) and uniformity (>90 %). We accomplished this by analyzing the deviations between an idealized geometric optical model and actual CRMs and eliminating them with high-precision parts and a high-resolution adjustment method. We further used 24 CRMs to prove that the single-module collimating solar simulator (SMCSS, a radiation area of 2.55 m × 1.57 m) could be modularly constructed by them. Experimental investigations involving light-concentrating experiments on a parabolic trough collector demonstrated the superior collimation and simulation capabilities of the SMCSS. By eliminating the need for AOMs, the CRM and SMCSS significantly reduce system complexity and cost and lower the construction threshold for large-scale CSSs. It will benefit all experimental scenarios that need large-area collimated light and greatly promote the application of large-scale CSS in civilian solar research. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Constructing the large-scale collimating solar simulator with a light half-divergence angle <1° using only collimating radiation modules |
remote_bool |
true |
author2 |
Zhu, Xuan Chen, Jiangfeng Xie, Yin Hong, Jianan Jin, Junyu Han, Junchou Zhang, Xuhan Xu, Chenyu Zhang, Yanwei |
author2Str |
Zhu, Xuan Chen, Jiangfeng Xie, Yin Hong, Jianan Jin, Junyu Han, Junchou Zhang, Xuhan Xu, Chenyu Zhang, Yanwei |
ppnlink |
320412091 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.renene.2023.119675 |
up_date |
2024-07-06T18:19:18.587Z |
_version_ |
1803854763617419264 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV066596963</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240214093125.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240115s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.renene.2023.119675</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066596963</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0960-1481(23)01590-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gao, Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Constructing the large-scale collimating solar simulator with a light half-divergence angle <1° using only collimating radiation modules</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Large-scale collimating solar simulators (CSSs) with a light half divergence angle (HDA) of less than 1° have been developed. The small HDA ensures that the CSS can effectively simulate the optical behavior between natural sunlight and optical devices. However, the construction of large-scale CSSs still has a strict threshold because additional optical modules (AOMs), such as large-area collimating mirrors, are usually required to correct the light into collimated light. The manufacturing, installation, and adjustment of these precision optical devices pose significant challenges. An excellent scheme to avoid AOMs is to use the collimating radiation module (CRM), which can directly produce collimated light. Unfortunately, CRM can only produce light with an HDA of more than 3° at present, far larger than that of CSS with AOMs. Here, we report a CRM that can directly produce light with excellent collimation (an HDA<0.955°) and uniformity (>90 %). We accomplished this by analyzing the deviations between an idealized geometric optical model and actual CRMs and eliminating them with high-precision parts and a high-resolution adjustment method. We further used 24 CRMs to prove that the single-module collimating solar simulator (SMCSS, a radiation area of 2.55 m × 1.57 m) could be modularly constructed by them. Experimental investigations involving light-concentrating experiments on a parabolic trough collector demonstrated the superior collimation and simulation capabilities of the SMCSS. By eliminating the need for AOMs, the CRM and SMCSS significantly reduce system complexity and cost and lower the construction threshold for large-scale CSSs. It will benefit all experimental scenarios that need large-area collimated light and greatly promote the application of large-scale CSS in civilian solar research.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Collimating solar simulator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large scale</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Divergence angle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Collimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy efficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cost</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Xuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Jiangfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Yin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hong, Jianan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, Junyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Junchou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xuhan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Chenyu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5240-7599</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yanwei</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1055-2680</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Renewable energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1991</subfield><subfield code="g">221</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320412091</subfield><subfield code="w">(DE-600)2001449-1</subfield><subfield code="w">(DE-576)252613937</subfield><subfield code="x">1879-0682</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:221</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">221</subfield></datafield></record></collection>
|
score |
7.399596 |