Characterizing ramp events in floating offshore wind power through a fully coupled electrical-mechanical mathematical model
Floating Offshore Wind Turbines (FOWTs) exhibit a noteworthy nonlinear low-frequency dynamic response during rated and higher wind-wave scenarios, leading to a substantial exacerbation of its power characteristics, power stability, and wind energy forecast reliability. This study develops a fully co...
Ausführliche Beschreibung
Autor*in: |
Chen, Lingte [verfasserIn] Yang, Jin [verfasserIn] Lou, Chengwei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Renewable energy - Amsterdam [u.a.] : Elsevier Science, 1991, 221 |
---|---|
Übergeordnetes Werk: |
volume:221 |
DOI / URN: |
10.1016/j.renene.2023.119803 |
---|
Katalog-ID: |
ELV066597765 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV066597765 | ||
003 | DE-627 | ||
005 | 20240214093126.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240115s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.renene.2023.119803 |2 doi | |
035 | |a (DE-627)ELV066597765 | ||
035 | |a (ELSEVIER)S0960-1481(23)01718-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Chen, Lingte |e verfasserin |0 (orcid)0009-0000-5843-0466 |4 aut | |
245 | 1 | 0 | |a Characterizing ramp events in floating offshore wind power through a fully coupled electrical-mechanical mathematical model |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Floating Offshore Wind Turbines (FOWTs) exhibit a noteworthy nonlinear low-frequency dynamic response during rated and higher wind-wave scenarios, leading to a substantial exacerbation of its power characteristics, power stability, and wind energy forecast reliability. This study develops a fully coupled FOWT model to investigate the impact of wind and wave loads on wind power ramp events (WPREs), which integrates mechanical and electrical factors, including a spar buoy FOWT with generator, converter, and aero-hydro-servo-elastic (AHSE) dynamics. Results indicate that the floating structure enables periodic and significant WPREs of FOWTs, as wave load and platform natural motion causing low and ultra-low frequency response. In contrast to bottom-fixed offshore wind turbines (OWT), FOWTs exhibit a supplementary decline in rated power output ranging from 7.9 % to 40.5 % during WPREs. Moreover, ramp peak mainly depends on the aerodynamic loads, but become sensitive to wave loads characterized by wave heights over 2.52 m. FOWT power performance is highly unstable within the rated wind speed range, under WPREs within ultra short time period, resulting in failure to meet grid standards, emphasizing the external need for targeted power compensation and power signal processing. Overall, this study highlights the importance of pitch motion and wave load impact for WPRE study of FOWTs. | ||
650 | 4 | |a Floating offshore wind turbine | |
650 | 4 | |a Wind energy conversion system | |
650 | 4 | |a Wind power ramp event | |
650 | 4 | |a Power quality | |
700 | 1 | |a Yang, Jin |e verfasserin |0 (orcid)0000-0002-1026-8495 |4 aut | |
700 | 1 | |a Lou, Chengwei |e verfasserin |0 (orcid)0000-0002-6224-0312 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Renewable energy |d Amsterdam [u.a.] : Elsevier Science, 1991 |g 221 |h Online-Ressource |w (DE-627)320412091 |w (DE-600)2001449-1 |w (DE-576)252613937 |x 1879-0682 |7 nnns |
773 | 1 | 8 | |g volume:221 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |q VZ |
951 | |a AR | ||
952 | |d 221 |
author_variant |
l c lc j y jy c l cl |
---|---|
matchkey_str |
article:18790682:2023----::hrceiigapvnsnlaigfsoeidoetruhflyopeeetia |
hierarchy_sort_str |
2023 |
bklnumber |
52.56 |
publishDate |
2023 |
allfields |
10.1016/j.renene.2023.119803 doi (DE-627)ELV066597765 (ELSEVIER)S0960-1481(23)01718-4 DE-627 ger DE-627 rda eng 530 620 VZ 52.56 bkl Chen, Lingte verfasserin (orcid)0009-0000-5843-0466 aut Characterizing ramp events in floating offshore wind power through a fully coupled electrical-mechanical mathematical model 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Floating Offshore Wind Turbines (FOWTs) exhibit a noteworthy nonlinear low-frequency dynamic response during rated and higher wind-wave scenarios, leading to a substantial exacerbation of its power characteristics, power stability, and wind energy forecast reliability. This study develops a fully coupled FOWT model to investigate the impact of wind and wave loads on wind power ramp events (WPREs), which integrates mechanical and electrical factors, including a spar buoy FOWT with generator, converter, and aero-hydro-servo-elastic (AHSE) dynamics. Results indicate that the floating structure enables periodic and significant WPREs of FOWTs, as wave load and platform natural motion causing low and ultra-low frequency response. In contrast to bottom-fixed offshore wind turbines (OWT), FOWTs exhibit a supplementary decline in rated power output ranging from 7.9 % to 40.5 % during WPREs. Moreover, ramp peak mainly depends on the aerodynamic loads, but become sensitive to wave loads characterized by wave heights over 2.52 m. FOWT power performance is highly unstable within the rated wind speed range, under WPREs within ultra short time period, resulting in failure to meet grid standards, emphasizing the external need for targeted power compensation and power signal processing. Overall, this study highlights the importance of pitch motion and wave load impact for WPRE study of FOWTs. Floating offshore wind turbine Wind energy conversion system Wind power ramp event Power quality Yang, Jin verfasserin (orcid)0000-0002-1026-8495 aut Lou, Chengwei verfasserin (orcid)0000-0002-6224-0312 aut Enthalten in Renewable energy Amsterdam [u.a.] : Elsevier Science, 1991 221 Online-Ressource (DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 1879-0682 nnns volume:221 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 221 |
spelling |
10.1016/j.renene.2023.119803 doi (DE-627)ELV066597765 (ELSEVIER)S0960-1481(23)01718-4 DE-627 ger DE-627 rda eng 530 620 VZ 52.56 bkl Chen, Lingte verfasserin (orcid)0009-0000-5843-0466 aut Characterizing ramp events in floating offshore wind power through a fully coupled electrical-mechanical mathematical model 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Floating Offshore Wind Turbines (FOWTs) exhibit a noteworthy nonlinear low-frequency dynamic response during rated and higher wind-wave scenarios, leading to a substantial exacerbation of its power characteristics, power stability, and wind energy forecast reliability. This study develops a fully coupled FOWT model to investigate the impact of wind and wave loads on wind power ramp events (WPREs), which integrates mechanical and electrical factors, including a spar buoy FOWT with generator, converter, and aero-hydro-servo-elastic (AHSE) dynamics. Results indicate that the floating structure enables periodic and significant WPREs of FOWTs, as wave load and platform natural motion causing low and ultra-low frequency response. In contrast to bottom-fixed offshore wind turbines (OWT), FOWTs exhibit a supplementary decline in rated power output ranging from 7.9 % to 40.5 % during WPREs. Moreover, ramp peak mainly depends on the aerodynamic loads, but become sensitive to wave loads characterized by wave heights over 2.52 m. FOWT power performance is highly unstable within the rated wind speed range, under WPREs within ultra short time period, resulting in failure to meet grid standards, emphasizing the external need for targeted power compensation and power signal processing. Overall, this study highlights the importance of pitch motion and wave load impact for WPRE study of FOWTs. Floating offshore wind turbine Wind energy conversion system Wind power ramp event Power quality Yang, Jin verfasserin (orcid)0000-0002-1026-8495 aut Lou, Chengwei verfasserin (orcid)0000-0002-6224-0312 aut Enthalten in Renewable energy Amsterdam [u.a.] : Elsevier Science, 1991 221 Online-Ressource (DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 1879-0682 nnns volume:221 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 221 |
allfields_unstemmed |
10.1016/j.renene.2023.119803 doi (DE-627)ELV066597765 (ELSEVIER)S0960-1481(23)01718-4 DE-627 ger DE-627 rda eng 530 620 VZ 52.56 bkl Chen, Lingte verfasserin (orcid)0009-0000-5843-0466 aut Characterizing ramp events in floating offshore wind power through a fully coupled electrical-mechanical mathematical model 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Floating Offshore Wind Turbines (FOWTs) exhibit a noteworthy nonlinear low-frequency dynamic response during rated and higher wind-wave scenarios, leading to a substantial exacerbation of its power characteristics, power stability, and wind energy forecast reliability. This study develops a fully coupled FOWT model to investigate the impact of wind and wave loads on wind power ramp events (WPREs), which integrates mechanical and electrical factors, including a spar buoy FOWT with generator, converter, and aero-hydro-servo-elastic (AHSE) dynamics. Results indicate that the floating structure enables periodic and significant WPREs of FOWTs, as wave load and platform natural motion causing low and ultra-low frequency response. In contrast to bottom-fixed offshore wind turbines (OWT), FOWTs exhibit a supplementary decline in rated power output ranging from 7.9 % to 40.5 % during WPREs. Moreover, ramp peak mainly depends on the aerodynamic loads, but become sensitive to wave loads characterized by wave heights over 2.52 m. FOWT power performance is highly unstable within the rated wind speed range, under WPREs within ultra short time period, resulting in failure to meet grid standards, emphasizing the external need for targeted power compensation and power signal processing. Overall, this study highlights the importance of pitch motion and wave load impact for WPRE study of FOWTs. Floating offshore wind turbine Wind energy conversion system Wind power ramp event Power quality Yang, Jin verfasserin (orcid)0000-0002-1026-8495 aut Lou, Chengwei verfasserin (orcid)0000-0002-6224-0312 aut Enthalten in Renewable energy Amsterdam [u.a.] : Elsevier Science, 1991 221 Online-Ressource (DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 1879-0682 nnns volume:221 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 221 |
allfieldsGer |
10.1016/j.renene.2023.119803 doi (DE-627)ELV066597765 (ELSEVIER)S0960-1481(23)01718-4 DE-627 ger DE-627 rda eng 530 620 VZ 52.56 bkl Chen, Lingte verfasserin (orcid)0009-0000-5843-0466 aut Characterizing ramp events in floating offshore wind power through a fully coupled electrical-mechanical mathematical model 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Floating Offshore Wind Turbines (FOWTs) exhibit a noteworthy nonlinear low-frequency dynamic response during rated and higher wind-wave scenarios, leading to a substantial exacerbation of its power characteristics, power stability, and wind energy forecast reliability. This study develops a fully coupled FOWT model to investigate the impact of wind and wave loads on wind power ramp events (WPREs), which integrates mechanical and electrical factors, including a spar buoy FOWT with generator, converter, and aero-hydro-servo-elastic (AHSE) dynamics. Results indicate that the floating structure enables periodic and significant WPREs of FOWTs, as wave load and platform natural motion causing low and ultra-low frequency response. In contrast to bottom-fixed offshore wind turbines (OWT), FOWTs exhibit a supplementary decline in rated power output ranging from 7.9 % to 40.5 % during WPREs. Moreover, ramp peak mainly depends on the aerodynamic loads, but become sensitive to wave loads characterized by wave heights over 2.52 m. FOWT power performance is highly unstable within the rated wind speed range, under WPREs within ultra short time period, resulting in failure to meet grid standards, emphasizing the external need for targeted power compensation and power signal processing. Overall, this study highlights the importance of pitch motion and wave load impact for WPRE study of FOWTs. Floating offshore wind turbine Wind energy conversion system Wind power ramp event Power quality Yang, Jin verfasserin (orcid)0000-0002-1026-8495 aut Lou, Chengwei verfasserin (orcid)0000-0002-6224-0312 aut Enthalten in Renewable energy Amsterdam [u.a.] : Elsevier Science, 1991 221 Online-Ressource (DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 1879-0682 nnns volume:221 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 221 |
allfieldsSound |
10.1016/j.renene.2023.119803 doi (DE-627)ELV066597765 (ELSEVIER)S0960-1481(23)01718-4 DE-627 ger DE-627 rda eng 530 620 VZ 52.56 bkl Chen, Lingte verfasserin (orcid)0009-0000-5843-0466 aut Characterizing ramp events in floating offshore wind power through a fully coupled electrical-mechanical mathematical model 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Floating Offshore Wind Turbines (FOWTs) exhibit a noteworthy nonlinear low-frequency dynamic response during rated and higher wind-wave scenarios, leading to a substantial exacerbation of its power characteristics, power stability, and wind energy forecast reliability. This study develops a fully coupled FOWT model to investigate the impact of wind and wave loads on wind power ramp events (WPREs), which integrates mechanical and electrical factors, including a spar buoy FOWT with generator, converter, and aero-hydro-servo-elastic (AHSE) dynamics. Results indicate that the floating structure enables periodic and significant WPREs of FOWTs, as wave load and platform natural motion causing low and ultra-low frequency response. In contrast to bottom-fixed offshore wind turbines (OWT), FOWTs exhibit a supplementary decline in rated power output ranging from 7.9 % to 40.5 % during WPREs. Moreover, ramp peak mainly depends on the aerodynamic loads, but become sensitive to wave loads characterized by wave heights over 2.52 m. FOWT power performance is highly unstable within the rated wind speed range, under WPREs within ultra short time period, resulting in failure to meet grid standards, emphasizing the external need for targeted power compensation and power signal processing. Overall, this study highlights the importance of pitch motion and wave load impact for WPRE study of FOWTs. Floating offshore wind turbine Wind energy conversion system Wind power ramp event Power quality Yang, Jin verfasserin (orcid)0000-0002-1026-8495 aut Lou, Chengwei verfasserin (orcid)0000-0002-6224-0312 aut Enthalten in Renewable energy Amsterdam [u.a.] : Elsevier Science, 1991 221 Online-Ressource (DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 1879-0682 nnns volume:221 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 221 |
language |
English |
source |
Enthalten in Renewable energy 221 volume:221 |
sourceStr |
Enthalten in Renewable energy 221 volume:221 |
format_phy_str_mv |
Article |
bklname |
Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
topic_facet |
Floating offshore wind turbine Wind energy conversion system Wind power ramp event Power quality |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Renewable energy |
authorswithroles_txt_mv |
Chen, Lingte @@aut@@ Yang, Jin @@aut@@ Lou, Chengwei @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320412091 |
dewey-sort |
3530 |
id |
ELV066597765 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV066597765</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240214093126.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240115s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.renene.2023.119803</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066597765</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0960-1481(23)01718-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Lingte</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0009-0000-5843-0466</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characterizing ramp events in floating offshore wind power through a fully coupled electrical-mechanical mathematical model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Floating Offshore Wind Turbines (FOWTs) exhibit a noteworthy nonlinear low-frequency dynamic response during rated and higher wind-wave scenarios, leading to a substantial exacerbation of its power characteristics, power stability, and wind energy forecast reliability. This study develops a fully coupled FOWT model to investigate the impact of wind and wave loads on wind power ramp events (WPREs), which integrates mechanical and electrical factors, including a spar buoy FOWT with generator, converter, and aero-hydro-servo-elastic (AHSE) dynamics. Results indicate that the floating structure enables periodic and significant WPREs of FOWTs, as wave load and platform natural motion causing low and ultra-low frequency response. In contrast to bottom-fixed offshore wind turbines (OWT), FOWTs exhibit a supplementary decline in rated power output ranging from 7.9 % to 40.5 % during WPREs. Moreover, ramp peak mainly depends on the aerodynamic loads, but become sensitive to wave loads characterized by wave heights over 2.52 m. FOWT power performance is highly unstable within the rated wind speed range, under WPREs within ultra short time period, resulting in failure to meet grid standards, emphasizing the external need for targeted power compensation and power signal processing. Overall, this study highlights the importance of pitch motion and wave load impact for WPRE study of FOWTs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Floating offshore wind turbine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind energy conversion system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind power ramp event</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power quality</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1026-8495</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lou, Chengwei</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6224-0312</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Renewable energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1991</subfield><subfield code="g">221</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320412091</subfield><subfield code="w">(DE-600)2001449-1</subfield><subfield code="w">(DE-576)252613937</subfield><subfield code="x">1879-0682</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:221</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">221</subfield></datafield></record></collection>
|
author |
Chen, Lingte |
spellingShingle |
Chen, Lingte ddc 530 bkl 52.56 misc Floating offshore wind turbine misc Wind energy conversion system misc Wind power ramp event misc Power quality Characterizing ramp events in floating offshore wind power through a fully coupled electrical-mechanical mathematical model |
authorStr |
Chen, Lingte |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320412091 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-0682 |
topic_title |
530 620 VZ 52.56 bkl Characterizing ramp events in floating offshore wind power through a fully coupled electrical-mechanical mathematical model Floating offshore wind turbine Wind energy conversion system Wind power ramp event Power quality |
topic |
ddc 530 bkl 52.56 misc Floating offshore wind turbine misc Wind energy conversion system misc Wind power ramp event misc Power quality |
topic_unstemmed |
ddc 530 bkl 52.56 misc Floating offshore wind turbine misc Wind energy conversion system misc Wind power ramp event misc Power quality |
topic_browse |
ddc 530 bkl 52.56 misc Floating offshore wind turbine misc Wind energy conversion system misc Wind power ramp event misc Power quality |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Renewable energy |
hierarchy_parent_id |
320412091 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Renewable energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 |
title |
Characterizing ramp events in floating offshore wind power through a fully coupled electrical-mechanical mathematical model |
ctrlnum |
(DE-627)ELV066597765 (ELSEVIER)S0960-1481(23)01718-4 |
title_full |
Characterizing ramp events in floating offshore wind power through a fully coupled electrical-mechanical mathematical model |
author_sort |
Chen, Lingte |
journal |
Renewable energy |
journalStr |
Renewable energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Chen, Lingte Yang, Jin Lou, Chengwei |
container_volume |
221 |
class |
530 620 VZ 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Chen, Lingte |
doi_str_mv |
10.1016/j.renene.2023.119803 |
normlink |
(ORCID)0009-0000-5843-0466 (ORCID)0000-0002-1026-8495 (ORCID)0000-0002-6224-0312 |
normlink_prefix_str_mv |
(orcid)0009-0000-5843-0466 (orcid)0000-0002-1026-8495 (orcid)0000-0002-6224-0312 |
dewey-full |
530 620 |
author2-role |
verfasserin |
title_sort |
characterizing ramp events in floating offshore wind power through a fully coupled electrical-mechanical mathematical model |
title_auth |
Characterizing ramp events in floating offshore wind power through a fully coupled electrical-mechanical mathematical model |
abstract |
Floating Offshore Wind Turbines (FOWTs) exhibit a noteworthy nonlinear low-frequency dynamic response during rated and higher wind-wave scenarios, leading to a substantial exacerbation of its power characteristics, power stability, and wind energy forecast reliability. This study develops a fully coupled FOWT model to investigate the impact of wind and wave loads on wind power ramp events (WPREs), which integrates mechanical and electrical factors, including a spar buoy FOWT with generator, converter, and aero-hydro-servo-elastic (AHSE) dynamics. Results indicate that the floating structure enables periodic and significant WPREs of FOWTs, as wave load and platform natural motion causing low and ultra-low frequency response. In contrast to bottom-fixed offshore wind turbines (OWT), FOWTs exhibit a supplementary decline in rated power output ranging from 7.9 % to 40.5 % during WPREs. Moreover, ramp peak mainly depends on the aerodynamic loads, but become sensitive to wave loads characterized by wave heights over 2.52 m. FOWT power performance is highly unstable within the rated wind speed range, under WPREs within ultra short time period, resulting in failure to meet grid standards, emphasizing the external need for targeted power compensation and power signal processing. Overall, this study highlights the importance of pitch motion and wave load impact for WPRE study of FOWTs. |
abstractGer |
Floating Offshore Wind Turbines (FOWTs) exhibit a noteworthy nonlinear low-frequency dynamic response during rated and higher wind-wave scenarios, leading to a substantial exacerbation of its power characteristics, power stability, and wind energy forecast reliability. This study develops a fully coupled FOWT model to investigate the impact of wind and wave loads on wind power ramp events (WPREs), which integrates mechanical and electrical factors, including a spar buoy FOWT with generator, converter, and aero-hydro-servo-elastic (AHSE) dynamics. Results indicate that the floating structure enables periodic and significant WPREs of FOWTs, as wave load and platform natural motion causing low and ultra-low frequency response. In contrast to bottom-fixed offshore wind turbines (OWT), FOWTs exhibit a supplementary decline in rated power output ranging from 7.9 % to 40.5 % during WPREs. Moreover, ramp peak mainly depends on the aerodynamic loads, but become sensitive to wave loads characterized by wave heights over 2.52 m. FOWT power performance is highly unstable within the rated wind speed range, under WPREs within ultra short time period, resulting in failure to meet grid standards, emphasizing the external need for targeted power compensation and power signal processing. Overall, this study highlights the importance of pitch motion and wave load impact for WPRE study of FOWTs. |
abstract_unstemmed |
Floating Offshore Wind Turbines (FOWTs) exhibit a noteworthy nonlinear low-frequency dynamic response during rated and higher wind-wave scenarios, leading to a substantial exacerbation of its power characteristics, power stability, and wind energy forecast reliability. This study develops a fully coupled FOWT model to investigate the impact of wind and wave loads on wind power ramp events (WPREs), which integrates mechanical and electrical factors, including a spar buoy FOWT with generator, converter, and aero-hydro-servo-elastic (AHSE) dynamics. Results indicate that the floating structure enables periodic and significant WPREs of FOWTs, as wave load and platform natural motion causing low and ultra-low frequency response. In contrast to bottom-fixed offshore wind turbines (OWT), FOWTs exhibit a supplementary decline in rated power output ranging from 7.9 % to 40.5 % during WPREs. Moreover, ramp peak mainly depends on the aerodynamic loads, but become sensitive to wave loads characterized by wave heights over 2.52 m. FOWT power performance is highly unstable within the rated wind speed range, under WPREs within ultra short time period, resulting in failure to meet grid standards, emphasizing the external need for targeted power compensation and power signal processing. Overall, this study highlights the importance of pitch motion and wave load impact for WPRE study of FOWTs. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Characterizing ramp events in floating offshore wind power through a fully coupled electrical-mechanical mathematical model |
remote_bool |
true |
author2 |
Yang, Jin Lou, Chengwei |
author2Str |
Yang, Jin Lou, Chengwei |
ppnlink |
320412091 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.renene.2023.119803 |
up_date |
2024-07-06T18:19:28.756Z |
_version_ |
1803854774280388608 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV066597765</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240214093126.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240115s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.renene.2023.119803</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066597765</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0960-1481(23)01718-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Lingte</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0009-0000-5843-0466</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characterizing ramp events in floating offshore wind power through a fully coupled electrical-mechanical mathematical model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Floating Offshore Wind Turbines (FOWTs) exhibit a noteworthy nonlinear low-frequency dynamic response during rated and higher wind-wave scenarios, leading to a substantial exacerbation of its power characteristics, power stability, and wind energy forecast reliability. This study develops a fully coupled FOWT model to investigate the impact of wind and wave loads on wind power ramp events (WPREs), which integrates mechanical and electrical factors, including a spar buoy FOWT with generator, converter, and aero-hydro-servo-elastic (AHSE) dynamics. Results indicate that the floating structure enables periodic and significant WPREs of FOWTs, as wave load and platform natural motion causing low and ultra-low frequency response. In contrast to bottom-fixed offshore wind turbines (OWT), FOWTs exhibit a supplementary decline in rated power output ranging from 7.9 % to 40.5 % during WPREs. Moreover, ramp peak mainly depends on the aerodynamic loads, but become sensitive to wave loads characterized by wave heights over 2.52 m. FOWT power performance is highly unstable within the rated wind speed range, under WPREs within ultra short time period, resulting in failure to meet grid standards, emphasizing the external need for targeted power compensation and power signal processing. Overall, this study highlights the importance of pitch motion and wave load impact for WPRE study of FOWTs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Floating offshore wind turbine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind energy conversion system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind power ramp event</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power quality</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1026-8495</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lou, Chengwei</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6224-0312</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Renewable energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1991</subfield><subfield code="g">221</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320412091</subfield><subfield code="w">(DE-600)2001449-1</subfield><subfield code="w">(DE-576)252613937</subfield><subfield code="x">1879-0682</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:221</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">221</subfield></datafield></record></collection>
|
score |
7.401311 |