Chemical expansion of La 3+ and Yb 3+ incorporated Zr-doped ceria ceramics for concentrated solar energy-driven thermochemical production of fuels
Redox studies on Zr, La, Yb doped ceria (Ce0.9M3+/4+ 0.1O2-x, M3+/4+ = Zr4+, La3+, Yb3+ and CeZr0.05 M3+ 0.05O1.95, M3+ = La3+, Yb3+) ceramics were performed using dilatometry and mass change measurements to analyze the chemical and thermal volume changes depending on red...
Ausführliche Beschreibung
Autor*in: |
Knoblauch, Nicole [verfasserIn] Lee, Kangjae [verfasserIn] Alkan, Gözde [verfasserIn] Mechnich, Peter [verfasserIn] Pein, Mathias [verfasserIn] Agrafiotis, Christos [verfasserIn] Roeb, Martin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Solid state ionics - Amsterdam [u.a.] : Elsevier Science, 1980, 405 |
---|---|
Übergeordnetes Werk: |
volume:405 |
DOI / URN: |
10.1016/j.ssi.2023.116451 |
---|
Katalog-ID: |
ELV06666716X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV06666716X | ||
003 | DE-627 | ||
005 | 20240121093100.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240121s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ssi.2023.116451 |2 doi | |
035 | |a (DE-627)ELV06666716X | ||
035 | |a (ELSEVIER)S0167-2738(23)00309-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 33.61 |2 bkl | ||
100 | 1 | |a Knoblauch, Nicole |e verfasserin |4 aut | |
245 | 1 | 0 | |a Chemical expansion of La 3+ and Yb 3+ incorporated Zr-doped ceria ceramics for concentrated solar energy-driven thermochemical production of fuels |
264 | 1 | |c 2024 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Redox studies on Zr, La, Yb doped ceria (Ce0.9M3+/4+ 0.1O2-x, M3+/4+ = Zr4+, La3+, Yb3+ and CeZr0.05 M3+ 0.05O1.95, M3+ = La3+, Yb3+) ceramics were performed using dilatometry and mass change measurements to analyze the chemical and thermal volume changes depending on reduction state which can have dramatic effects on the long-term stability of these ceramics in Concentrated Solar Energy (CSE)–driven applications relevant to the synthesis of fuels. The reduction extents determined by both methods under vacuum (p = 2 × 10−5 mbar) are similar up to 1673 K. At higher temperatures, CeO2, which has a higher vapor pressure than the oxides of the dopant ions, evaporates. As a result, there is an accumulation of doping ions, which leads to a porous surface zone. Surface enrichment of dopants, especially that of Zr4+, is crucial for re-oxidation kinetics. Co-doping with trivalent doping ions such as La3+ and Yb3+ reduces the extent of selective evaporation materializing it into a thinner porous surface layer. Trivalent dopants and their additional oxygen vacancies also influence the chemical expansion/contraction of the Zr4+ doped ceria crystal lattice during the redox reaction and thus lead to a reduction of mechanical stresses. We assume that additional oxygen vacancies from trivalent dopant ions promote the disordering of intrinsic oxygen vacancies, while smaller tetravalent ions such as Zr4+ compensates this effect. This explains that doped ceria with trivalent and tetravalent ions show almost the same chemical expansion as pure ceria. The new results on alteration, thermal and chemical expansions/contractions at high temperature are particularly important for the development of metal oxide ceramic components exposed to cyclic reducing and oxidizing atmospheres at elevated temperatures achieved via CSE. | ||
650 | 4 | |a Doped ceria | |
650 | 4 | |a Thermochemical redox cycling | |
650 | 4 | |a Chemical expansion | |
650 | 4 | |a Chemical contraction | |
650 | 4 | |a Co-doping | |
700 | 1 | |a Lee, Kangjae |e verfasserin |4 aut | |
700 | 1 | |a Alkan, Gözde |e verfasserin |4 aut | |
700 | 1 | |a Mechnich, Peter |e verfasserin |4 aut | |
700 | 1 | |a Pein, Mathias |e verfasserin |4 aut | |
700 | 1 | |a Agrafiotis, Christos |e verfasserin |4 aut | |
700 | 1 | |a Roeb, Martin |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Solid state ionics |d Amsterdam [u.a.] : Elsevier Science, 1980 |g 405 |h Online-Ressource |w (DE-627)306710544 |w (DE-600)1500750-9 |w (DE-576)25193814X |x 0167-2738 |7 nnns |
773 | 1 | 8 | |g volume:405 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 33.61 |j Festkörperphysik |q VZ |
951 | |a AR | ||
952 | |d 405 |
author_variant |
n k nk k l kl g a ga p m pm m p mp c a ca m r mr |
---|---|
matchkey_str |
article:01672738:2024----::hmclxasool3ny3noprtdroecraeaisocnetaeslrnryrv |
hierarchy_sort_str |
2024 |
bklnumber |
33.61 |
publishDate |
2024 |
allfields |
10.1016/j.ssi.2023.116451 doi (DE-627)ELV06666716X (ELSEVIER)S0167-2738(23)00309-0 DE-627 ger DE-627 rda eng 530 VZ 33.61 bkl Knoblauch, Nicole verfasserin aut Chemical expansion of La 3+ and Yb 3+ incorporated Zr-doped ceria ceramics for concentrated solar energy-driven thermochemical production of fuels 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Redox studies on Zr, La, Yb doped ceria (Ce0.9M3+/4+ 0.1O2-x, M3+/4+ = Zr4+, La3+, Yb3+ and CeZr0.05 M3+ 0.05O1.95, M3+ = La3+, Yb3+) ceramics were performed using dilatometry and mass change measurements to analyze the chemical and thermal volume changes depending on reduction state which can have dramatic effects on the long-term stability of these ceramics in Concentrated Solar Energy (CSE)–driven applications relevant to the synthesis of fuels. The reduction extents determined by both methods under vacuum (p = 2 × 10−5 mbar) are similar up to 1673 K. At higher temperatures, CeO2, which has a higher vapor pressure than the oxides of the dopant ions, evaporates. As a result, there is an accumulation of doping ions, which leads to a porous surface zone. Surface enrichment of dopants, especially that of Zr4+, is crucial for re-oxidation kinetics. Co-doping with trivalent doping ions such as La3+ and Yb3+ reduces the extent of selective evaporation materializing it into a thinner porous surface layer. Trivalent dopants and their additional oxygen vacancies also influence the chemical expansion/contraction of the Zr4+ doped ceria crystal lattice during the redox reaction and thus lead to a reduction of mechanical stresses. We assume that additional oxygen vacancies from trivalent dopant ions promote the disordering of intrinsic oxygen vacancies, while smaller tetravalent ions such as Zr4+ compensates this effect. This explains that doped ceria with trivalent and tetravalent ions show almost the same chemical expansion as pure ceria. The new results on alteration, thermal and chemical expansions/contractions at high temperature are particularly important for the development of metal oxide ceramic components exposed to cyclic reducing and oxidizing atmospheres at elevated temperatures achieved via CSE. Doped ceria Thermochemical redox cycling Chemical expansion Chemical contraction Co-doping Lee, Kangjae verfasserin aut Alkan, Gözde verfasserin aut Mechnich, Peter verfasserin aut Pein, Mathias verfasserin aut Agrafiotis, Christos verfasserin aut Roeb, Martin verfasserin aut Enthalten in Solid state ionics Amsterdam [u.a.] : Elsevier Science, 1980 405 Online-Ressource (DE-627)306710544 (DE-600)1500750-9 (DE-576)25193814X 0167-2738 nnns volume:405 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.61 Festkörperphysik VZ AR 405 |
spelling |
10.1016/j.ssi.2023.116451 doi (DE-627)ELV06666716X (ELSEVIER)S0167-2738(23)00309-0 DE-627 ger DE-627 rda eng 530 VZ 33.61 bkl Knoblauch, Nicole verfasserin aut Chemical expansion of La 3+ and Yb 3+ incorporated Zr-doped ceria ceramics for concentrated solar energy-driven thermochemical production of fuels 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Redox studies on Zr, La, Yb doped ceria (Ce0.9M3+/4+ 0.1O2-x, M3+/4+ = Zr4+, La3+, Yb3+ and CeZr0.05 M3+ 0.05O1.95, M3+ = La3+, Yb3+) ceramics were performed using dilatometry and mass change measurements to analyze the chemical and thermal volume changes depending on reduction state which can have dramatic effects on the long-term stability of these ceramics in Concentrated Solar Energy (CSE)–driven applications relevant to the synthesis of fuels. The reduction extents determined by both methods under vacuum (p = 2 × 10−5 mbar) are similar up to 1673 K. At higher temperatures, CeO2, which has a higher vapor pressure than the oxides of the dopant ions, evaporates. As a result, there is an accumulation of doping ions, which leads to a porous surface zone. Surface enrichment of dopants, especially that of Zr4+, is crucial for re-oxidation kinetics. Co-doping with trivalent doping ions such as La3+ and Yb3+ reduces the extent of selective evaporation materializing it into a thinner porous surface layer. Trivalent dopants and their additional oxygen vacancies also influence the chemical expansion/contraction of the Zr4+ doped ceria crystal lattice during the redox reaction and thus lead to a reduction of mechanical stresses. We assume that additional oxygen vacancies from trivalent dopant ions promote the disordering of intrinsic oxygen vacancies, while smaller tetravalent ions such as Zr4+ compensates this effect. This explains that doped ceria with trivalent and tetravalent ions show almost the same chemical expansion as pure ceria. The new results on alteration, thermal and chemical expansions/contractions at high temperature are particularly important for the development of metal oxide ceramic components exposed to cyclic reducing and oxidizing atmospheres at elevated temperatures achieved via CSE. Doped ceria Thermochemical redox cycling Chemical expansion Chemical contraction Co-doping Lee, Kangjae verfasserin aut Alkan, Gözde verfasserin aut Mechnich, Peter verfasserin aut Pein, Mathias verfasserin aut Agrafiotis, Christos verfasserin aut Roeb, Martin verfasserin aut Enthalten in Solid state ionics Amsterdam [u.a.] : Elsevier Science, 1980 405 Online-Ressource (DE-627)306710544 (DE-600)1500750-9 (DE-576)25193814X 0167-2738 nnns volume:405 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.61 Festkörperphysik VZ AR 405 |
allfields_unstemmed |
10.1016/j.ssi.2023.116451 doi (DE-627)ELV06666716X (ELSEVIER)S0167-2738(23)00309-0 DE-627 ger DE-627 rda eng 530 VZ 33.61 bkl Knoblauch, Nicole verfasserin aut Chemical expansion of La 3+ and Yb 3+ incorporated Zr-doped ceria ceramics for concentrated solar energy-driven thermochemical production of fuels 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Redox studies on Zr, La, Yb doped ceria (Ce0.9M3+/4+ 0.1O2-x, M3+/4+ = Zr4+, La3+, Yb3+ and CeZr0.05 M3+ 0.05O1.95, M3+ = La3+, Yb3+) ceramics were performed using dilatometry and mass change measurements to analyze the chemical and thermal volume changes depending on reduction state which can have dramatic effects on the long-term stability of these ceramics in Concentrated Solar Energy (CSE)–driven applications relevant to the synthesis of fuels. The reduction extents determined by both methods under vacuum (p = 2 × 10−5 mbar) are similar up to 1673 K. At higher temperatures, CeO2, which has a higher vapor pressure than the oxides of the dopant ions, evaporates. As a result, there is an accumulation of doping ions, which leads to a porous surface zone. Surface enrichment of dopants, especially that of Zr4+, is crucial for re-oxidation kinetics. Co-doping with trivalent doping ions such as La3+ and Yb3+ reduces the extent of selective evaporation materializing it into a thinner porous surface layer. Trivalent dopants and their additional oxygen vacancies also influence the chemical expansion/contraction of the Zr4+ doped ceria crystal lattice during the redox reaction and thus lead to a reduction of mechanical stresses. We assume that additional oxygen vacancies from trivalent dopant ions promote the disordering of intrinsic oxygen vacancies, while smaller tetravalent ions such as Zr4+ compensates this effect. This explains that doped ceria with trivalent and tetravalent ions show almost the same chemical expansion as pure ceria. The new results on alteration, thermal and chemical expansions/contractions at high temperature are particularly important for the development of metal oxide ceramic components exposed to cyclic reducing and oxidizing atmospheres at elevated temperatures achieved via CSE. Doped ceria Thermochemical redox cycling Chemical expansion Chemical contraction Co-doping Lee, Kangjae verfasserin aut Alkan, Gözde verfasserin aut Mechnich, Peter verfasserin aut Pein, Mathias verfasserin aut Agrafiotis, Christos verfasserin aut Roeb, Martin verfasserin aut Enthalten in Solid state ionics Amsterdam [u.a.] : Elsevier Science, 1980 405 Online-Ressource (DE-627)306710544 (DE-600)1500750-9 (DE-576)25193814X 0167-2738 nnns volume:405 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.61 Festkörperphysik VZ AR 405 |
allfieldsGer |
10.1016/j.ssi.2023.116451 doi (DE-627)ELV06666716X (ELSEVIER)S0167-2738(23)00309-0 DE-627 ger DE-627 rda eng 530 VZ 33.61 bkl Knoblauch, Nicole verfasserin aut Chemical expansion of La 3+ and Yb 3+ incorporated Zr-doped ceria ceramics for concentrated solar energy-driven thermochemical production of fuels 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Redox studies on Zr, La, Yb doped ceria (Ce0.9M3+/4+ 0.1O2-x, M3+/4+ = Zr4+, La3+, Yb3+ and CeZr0.05 M3+ 0.05O1.95, M3+ = La3+, Yb3+) ceramics were performed using dilatometry and mass change measurements to analyze the chemical and thermal volume changes depending on reduction state which can have dramatic effects on the long-term stability of these ceramics in Concentrated Solar Energy (CSE)–driven applications relevant to the synthesis of fuels. The reduction extents determined by both methods under vacuum (p = 2 × 10−5 mbar) are similar up to 1673 K. At higher temperatures, CeO2, which has a higher vapor pressure than the oxides of the dopant ions, evaporates. As a result, there is an accumulation of doping ions, which leads to a porous surface zone. Surface enrichment of dopants, especially that of Zr4+, is crucial for re-oxidation kinetics. Co-doping with trivalent doping ions such as La3+ and Yb3+ reduces the extent of selective evaporation materializing it into a thinner porous surface layer. Trivalent dopants and their additional oxygen vacancies also influence the chemical expansion/contraction of the Zr4+ doped ceria crystal lattice during the redox reaction and thus lead to a reduction of mechanical stresses. We assume that additional oxygen vacancies from trivalent dopant ions promote the disordering of intrinsic oxygen vacancies, while smaller tetravalent ions such as Zr4+ compensates this effect. This explains that doped ceria with trivalent and tetravalent ions show almost the same chemical expansion as pure ceria. The new results on alteration, thermal and chemical expansions/contractions at high temperature are particularly important for the development of metal oxide ceramic components exposed to cyclic reducing and oxidizing atmospheres at elevated temperatures achieved via CSE. Doped ceria Thermochemical redox cycling Chemical expansion Chemical contraction Co-doping Lee, Kangjae verfasserin aut Alkan, Gözde verfasserin aut Mechnich, Peter verfasserin aut Pein, Mathias verfasserin aut Agrafiotis, Christos verfasserin aut Roeb, Martin verfasserin aut Enthalten in Solid state ionics Amsterdam [u.a.] : Elsevier Science, 1980 405 Online-Ressource (DE-627)306710544 (DE-600)1500750-9 (DE-576)25193814X 0167-2738 nnns volume:405 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.61 Festkörperphysik VZ AR 405 |
allfieldsSound |
10.1016/j.ssi.2023.116451 doi (DE-627)ELV06666716X (ELSEVIER)S0167-2738(23)00309-0 DE-627 ger DE-627 rda eng 530 VZ 33.61 bkl Knoblauch, Nicole verfasserin aut Chemical expansion of La 3+ and Yb 3+ incorporated Zr-doped ceria ceramics for concentrated solar energy-driven thermochemical production of fuels 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Redox studies on Zr, La, Yb doped ceria (Ce0.9M3+/4+ 0.1O2-x, M3+/4+ = Zr4+, La3+, Yb3+ and CeZr0.05 M3+ 0.05O1.95, M3+ = La3+, Yb3+) ceramics were performed using dilatometry and mass change measurements to analyze the chemical and thermal volume changes depending on reduction state which can have dramatic effects on the long-term stability of these ceramics in Concentrated Solar Energy (CSE)–driven applications relevant to the synthesis of fuels. The reduction extents determined by both methods under vacuum (p = 2 × 10−5 mbar) are similar up to 1673 K. At higher temperatures, CeO2, which has a higher vapor pressure than the oxides of the dopant ions, evaporates. As a result, there is an accumulation of doping ions, which leads to a porous surface zone. Surface enrichment of dopants, especially that of Zr4+, is crucial for re-oxidation kinetics. Co-doping with trivalent doping ions such as La3+ and Yb3+ reduces the extent of selective evaporation materializing it into a thinner porous surface layer. Trivalent dopants and their additional oxygen vacancies also influence the chemical expansion/contraction of the Zr4+ doped ceria crystal lattice during the redox reaction and thus lead to a reduction of mechanical stresses. We assume that additional oxygen vacancies from trivalent dopant ions promote the disordering of intrinsic oxygen vacancies, while smaller tetravalent ions such as Zr4+ compensates this effect. This explains that doped ceria with trivalent and tetravalent ions show almost the same chemical expansion as pure ceria. The new results on alteration, thermal and chemical expansions/contractions at high temperature are particularly important for the development of metal oxide ceramic components exposed to cyclic reducing and oxidizing atmospheres at elevated temperatures achieved via CSE. Doped ceria Thermochemical redox cycling Chemical expansion Chemical contraction Co-doping Lee, Kangjae verfasserin aut Alkan, Gözde verfasserin aut Mechnich, Peter verfasserin aut Pein, Mathias verfasserin aut Agrafiotis, Christos verfasserin aut Roeb, Martin verfasserin aut Enthalten in Solid state ionics Amsterdam [u.a.] : Elsevier Science, 1980 405 Online-Ressource (DE-627)306710544 (DE-600)1500750-9 (DE-576)25193814X 0167-2738 nnns volume:405 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.61 Festkörperphysik VZ AR 405 |
language |
English |
source |
Enthalten in Solid state ionics 405 volume:405 |
sourceStr |
Enthalten in Solid state ionics 405 volume:405 |
format_phy_str_mv |
Article |
bklname |
Festkörperphysik |
institution |
findex.gbv.de |
topic_facet |
Doped ceria Thermochemical redox cycling Chemical expansion Chemical contraction Co-doping |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Solid state ionics |
authorswithroles_txt_mv |
Knoblauch, Nicole @@aut@@ Lee, Kangjae @@aut@@ Alkan, Gözde @@aut@@ Mechnich, Peter @@aut@@ Pein, Mathias @@aut@@ Agrafiotis, Christos @@aut@@ Roeb, Martin @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
306710544 |
dewey-sort |
3530 |
id |
ELV06666716X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV06666716X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240121093100.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240121s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ssi.2023.116451</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV06666716X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-2738(23)00309-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.61</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Knoblauch, Nicole</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chemical expansion of La 3+ and Yb 3+ incorporated Zr-doped ceria ceramics for concentrated solar energy-driven thermochemical production of fuels</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Redox studies on Zr, La, Yb doped ceria (Ce0.9M3+/4+ 0.1O2-x, M3+/4+ = Zr4+, La3+, Yb3+ and CeZr0.05 M3+ 0.05O1.95, M3+ = La3+, Yb3+) ceramics were performed using dilatometry and mass change measurements to analyze the chemical and thermal volume changes depending on reduction state which can have dramatic effects on the long-term stability of these ceramics in Concentrated Solar Energy (CSE)–driven applications relevant to the synthesis of fuels. The reduction extents determined by both methods under vacuum (p = 2 × 10−5 mbar) are similar up to 1673 K. At higher temperatures, CeO2, which has a higher vapor pressure than the oxides of the dopant ions, evaporates. As a result, there is an accumulation of doping ions, which leads to a porous surface zone. Surface enrichment of dopants, especially that of Zr4+, is crucial for re-oxidation kinetics. Co-doping with trivalent doping ions such as La3+ and Yb3+ reduces the extent of selective evaporation materializing it into a thinner porous surface layer. Trivalent dopants and their additional oxygen vacancies also influence the chemical expansion/contraction of the Zr4+ doped ceria crystal lattice during the redox reaction and thus lead to a reduction of mechanical stresses. We assume that additional oxygen vacancies from trivalent dopant ions promote the disordering of intrinsic oxygen vacancies, while smaller tetravalent ions such as Zr4+ compensates this effect. This explains that doped ceria with trivalent and tetravalent ions show almost the same chemical expansion as pure ceria. The new results on alteration, thermal and chemical expansions/contractions at high temperature are particularly important for the development of metal oxide ceramic components exposed to cyclic reducing and oxidizing atmospheres at elevated temperatures achieved via CSE.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Doped ceria</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermochemical redox cycling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical expansion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical contraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Co-doping</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Kangjae</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alkan, Gözde</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mechnich, Peter</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pein, Mathias</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Agrafiotis, Christos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roeb, Martin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Solid state ionics</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1980</subfield><subfield code="g">405</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306710544</subfield><subfield code="w">(DE-600)1500750-9</subfield><subfield code="w">(DE-576)25193814X</subfield><subfield code="x">0167-2738</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:405</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.61</subfield><subfield code="j">Festkörperphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">405</subfield></datafield></record></collection>
|
author |
Knoblauch, Nicole |
spellingShingle |
Knoblauch, Nicole ddc 530 bkl 33.61 misc Doped ceria misc Thermochemical redox cycling misc Chemical expansion misc Chemical contraction misc Co-doping Chemical expansion of La 3+ and Yb 3+ incorporated Zr-doped ceria ceramics for concentrated solar energy-driven thermochemical production of fuels |
authorStr |
Knoblauch, Nicole |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306710544 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0167-2738 |
topic_title |
530 VZ 33.61 bkl Chemical expansion of La 3+ and Yb 3+ incorporated Zr-doped ceria ceramics for concentrated solar energy-driven thermochemical production of fuels Doped ceria Thermochemical redox cycling Chemical expansion Chemical contraction Co-doping |
topic |
ddc 530 bkl 33.61 misc Doped ceria misc Thermochemical redox cycling misc Chemical expansion misc Chemical contraction misc Co-doping |
topic_unstemmed |
ddc 530 bkl 33.61 misc Doped ceria misc Thermochemical redox cycling misc Chemical expansion misc Chemical contraction misc Co-doping |
topic_browse |
ddc 530 bkl 33.61 misc Doped ceria misc Thermochemical redox cycling misc Chemical expansion misc Chemical contraction misc Co-doping |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Solid state ionics |
hierarchy_parent_id |
306710544 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Solid state ionics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306710544 (DE-600)1500750-9 (DE-576)25193814X |
title |
Chemical expansion of La 3+ and Yb 3+ incorporated Zr-doped ceria ceramics for concentrated solar energy-driven thermochemical production of fuels |
ctrlnum |
(DE-627)ELV06666716X (ELSEVIER)S0167-2738(23)00309-0 |
title_full |
Chemical expansion of La 3+ and Yb 3+ incorporated Zr-doped ceria ceramics for concentrated solar energy-driven thermochemical production of fuels |
author_sort |
Knoblauch, Nicole |
journal |
Solid state ionics |
journalStr |
Solid state ionics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
zzz |
author_browse |
Knoblauch, Nicole Lee, Kangjae Alkan, Gözde Mechnich, Peter Pein, Mathias Agrafiotis, Christos Roeb, Martin |
container_volume |
405 |
class |
530 VZ 33.61 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Knoblauch, Nicole |
doi_str_mv |
10.1016/j.ssi.2023.116451 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
chemical expansion of la 3+ and yb 3+ incorporated zr-doped ceria ceramics for concentrated solar energy-driven thermochemical production of fuels |
title_auth |
Chemical expansion of La 3+ and Yb 3+ incorporated Zr-doped ceria ceramics for concentrated solar energy-driven thermochemical production of fuels |
abstract |
Redox studies on Zr, La, Yb doped ceria (Ce0.9M3+/4+ 0.1O2-x, M3+/4+ = Zr4+, La3+, Yb3+ and CeZr0.05 M3+ 0.05O1.95, M3+ = La3+, Yb3+) ceramics were performed using dilatometry and mass change measurements to analyze the chemical and thermal volume changes depending on reduction state which can have dramatic effects on the long-term stability of these ceramics in Concentrated Solar Energy (CSE)–driven applications relevant to the synthesis of fuels. The reduction extents determined by both methods under vacuum (p = 2 × 10−5 mbar) are similar up to 1673 K. At higher temperatures, CeO2, which has a higher vapor pressure than the oxides of the dopant ions, evaporates. As a result, there is an accumulation of doping ions, which leads to a porous surface zone. Surface enrichment of dopants, especially that of Zr4+, is crucial for re-oxidation kinetics. Co-doping with trivalent doping ions such as La3+ and Yb3+ reduces the extent of selective evaporation materializing it into a thinner porous surface layer. Trivalent dopants and their additional oxygen vacancies also influence the chemical expansion/contraction of the Zr4+ doped ceria crystal lattice during the redox reaction and thus lead to a reduction of mechanical stresses. We assume that additional oxygen vacancies from trivalent dopant ions promote the disordering of intrinsic oxygen vacancies, while smaller tetravalent ions such as Zr4+ compensates this effect. This explains that doped ceria with trivalent and tetravalent ions show almost the same chemical expansion as pure ceria. The new results on alteration, thermal and chemical expansions/contractions at high temperature are particularly important for the development of metal oxide ceramic components exposed to cyclic reducing and oxidizing atmospheres at elevated temperatures achieved via CSE. |
abstractGer |
Redox studies on Zr, La, Yb doped ceria (Ce0.9M3+/4+ 0.1O2-x, M3+/4+ = Zr4+, La3+, Yb3+ and CeZr0.05 M3+ 0.05O1.95, M3+ = La3+, Yb3+) ceramics were performed using dilatometry and mass change measurements to analyze the chemical and thermal volume changes depending on reduction state which can have dramatic effects on the long-term stability of these ceramics in Concentrated Solar Energy (CSE)–driven applications relevant to the synthesis of fuels. The reduction extents determined by both methods under vacuum (p = 2 × 10−5 mbar) are similar up to 1673 K. At higher temperatures, CeO2, which has a higher vapor pressure than the oxides of the dopant ions, evaporates. As a result, there is an accumulation of doping ions, which leads to a porous surface zone. Surface enrichment of dopants, especially that of Zr4+, is crucial for re-oxidation kinetics. Co-doping with trivalent doping ions such as La3+ and Yb3+ reduces the extent of selective evaporation materializing it into a thinner porous surface layer. Trivalent dopants and their additional oxygen vacancies also influence the chemical expansion/contraction of the Zr4+ doped ceria crystal lattice during the redox reaction and thus lead to a reduction of mechanical stresses. We assume that additional oxygen vacancies from trivalent dopant ions promote the disordering of intrinsic oxygen vacancies, while smaller tetravalent ions such as Zr4+ compensates this effect. This explains that doped ceria with trivalent and tetravalent ions show almost the same chemical expansion as pure ceria. The new results on alteration, thermal and chemical expansions/contractions at high temperature are particularly important for the development of metal oxide ceramic components exposed to cyclic reducing and oxidizing atmospheres at elevated temperatures achieved via CSE. |
abstract_unstemmed |
Redox studies on Zr, La, Yb doped ceria (Ce0.9M3+/4+ 0.1O2-x, M3+/4+ = Zr4+, La3+, Yb3+ and CeZr0.05 M3+ 0.05O1.95, M3+ = La3+, Yb3+) ceramics were performed using dilatometry and mass change measurements to analyze the chemical and thermal volume changes depending on reduction state which can have dramatic effects on the long-term stability of these ceramics in Concentrated Solar Energy (CSE)–driven applications relevant to the synthesis of fuels. The reduction extents determined by both methods under vacuum (p = 2 × 10−5 mbar) are similar up to 1673 K. At higher temperatures, CeO2, which has a higher vapor pressure than the oxides of the dopant ions, evaporates. As a result, there is an accumulation of doping ions, which leads to a porous surface zone. Surface enrichment of dopants, especially that of Zr4+, is crucial for re-oxidation kinetics. Co-doping with trivalent doping ions such as La3+ and Yb3+ reduces the extent of selective evaporation materializing it into a thinner porous surface layer. Trivalent dopants and their additional oxygen vacancies also influence the chemical expansion/contraction of the Zr4+ doped ceria crystal lattice during the redox reaction and thus lead to a reduction of mechanical stresses. We assume that additional oxygen vacancies from trivalent dopant ions promote the disordering of intrinsic oxygen vacancies, while smaller tetravalent ions such as Zr4+ compensates this effect. This explains that doped ceria with trivalent and tetravalent ions show almost the same chemical expansion as pure ceria. The new results on alteration, thermal and chemical expansions/contractions at high temperature are particularly important for the development of metal oxide ceramic components exposed to cyclic reducing and oxidizing atmospheres at elevated temperatures achieved via CSE. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Chemical expansion of La 3+ and Yb 3+ incorporated Zr-doped ceria ceramics for concentrated solar energy-driven thermochemical production of fuels |
remote_bool |
true |
author2 |
Lee, Kangjae Alkan, Gözde Mechnich, Peter Pein, Mathias Agrafiotis, Christos Roeb, Martin |
author2Str |
Lee, Kangjae Alkan, Gözde Mechnich, Peter Pein, Mathias Agrafiotis, Christos Roeb, Martin |
ppnlink |
306710544 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ssi.2023.116451 |
up_date |
2024-07-06T18:33:51.169Z |
_version_ |
1803855678587011072 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV06666716X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240121093100.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240121s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ssi.2023.116451</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV06666716X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-2738(23)00309-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.61</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Knoblauch, Nicole</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chemical expansion of La 3+ and Yb 3+ incorporated Zr-doped ceria ceramics for concentrated solar energy-driven thermochemical production of fuels</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Redox studies on Zr, La, Yb doped ceria (Ce0.9M3+/4+ 0.1O2-x, M3+/4+ = Zr4+, La3+, Yb3+ and CeZr0.05 M3+ 0.05O1.95, M3+ = La3+, Yb3+) ceramics were performed using dilatometry and mass change measurements to analyze the chemical and thermal volume changes depending on reduction state which can have dramatic effects on the long-term stability of these ceramics in Concentrated Solar Energy (CSE)–driven applications relevant to the synthesis of fuels. The reduction extents determined by both methods under vacuum (p = 2 × 10−5 mbar) are similar up to 1673 K. At higher temperatures, CeO2, which has a higher vapor pressure than the oxides of the dopant ions, evaporates. As a result, there is an accumulation of doping ions, which leads to a porous surface zone. Surface enrichment of dopants, especially that of Zr4+, is crucial for re-oxidation kinetics. Co-doping with trivalent doping ions such as La3+ and Yb3+ reduces the extent of selective evaporation materializing it into a thinner porous surface layer. Trivalent dopants and their additional oxygen vacancies also influence the chemical expansion/contraction of the Zr4+ doped ceria crystal lattice during the redox reaction and thus lead to a reduction of mechanical stresses. We assume that additional oxygen vacancies from trivalent dopant ions promote the disordering of intrinsic oxygen vacancies, while smaller tetravalent ions such as Zr4+ compensates this effect. This explains that doped ceria with trivalent and tetravalent ions show almost the same chemical expansion as pure ceria. The new results on alteration, thermal and chemical expansions/contractions at high temperature are particularly important for the development of metal oxide ceramic components exposed to cyclic reducing and oxidizing atmospheres at elevated temperatures achieved via CSE.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Doped ceria</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermochemical redox cycling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical expansion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical contraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Co-doping</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Kangjae</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alkan, Gözde</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mechnich, Peter</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pein, Mathias</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Agrafiotis, Christos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roeb, Martin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Solid state ionics</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1980</subfield><subfield code="g">405</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306710544</subfield><subfield code="w">(DE-600)1500750-9</subfield><subfield code="w">(DE-576)25193814X</subfield><subfield code="x">0167-2738</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:405</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.61</subfield><subfield code="j">Festkörperphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">405</subfield></datafield></record></collection>
|
score |
7.3996477 |