Optimal design of hydrogen-based storage with a hybrid renewable energy system considering economic and environmental uncertainties
Hydrogen and electricity derived from renewable sources present feasible alternative energy options for the decarbonisation of the transportation and power sectors. This study presents the utilisation of hydrogen generated from solar and wind energy resources as a clean fuel for mobility and backup...
Ausführliche Beschreibung
Autor*in: |
Oyewole, Oladimeji Lawrence [verfasserIn] Nwulu, Nnamdi Ikechi [verfasserIn] Okampo, Ewaoche John [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
Green hydrogen for mobility sector |
---|
Übergeordnetes Werk: |
Enthalten in: Energy conversion and management - Amsterdam [u.a.] : Elsevier Science, 1980, 300 |
---|---|
Übergeordnetes Werk: |
volume:300 |
DOI / URN: |
10.1016/j.enconman.2023.117991 |
---|
Katalog-ID: |
ELV066674514 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV066674514 | ||
003 | DE-627 | ||
005 | 20240121093218.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240121s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.enconman.2023.117991 |2 doi | |
035 | |a (DE-627)ELV066674514 | ||
035 | |a (ELSEVIER)S0196-8904(23)01337-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
084 | |a 50.70 |2 bkl | ||
084 | |a 83.65 |2 bkl | ||
084 | |a 52.57 |2 bkl | ||
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Oyewole, Oladimeji Lawrence |e verfasserin |0 (orcid)0000-0002-7353-5052 |4 aut | |
245 | 1 | 0 | |a Optimal design of hydrogen-based storage with a hybrid renewable energy system considering economic and environmental uncertainties |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Hydrogen and electricity derived from renewable sources present feasible alternative energy options for the decarbonisation of the transportation and power sectors. This study presents the utilisation of hydrogen generated from solar and wind energy resources as a clean fuel for mobility and backup storage for stationary applications under economic and environmental uncertainties. This is achieved by developing a detailed techno-economic model of an integrated system consisting of a hydrogen refuelling station and an electric power generation system using Mixed Integer Quadratic Constrained Programming (MIQCP), which is further relaxed to Mixed Integer Linear Programming (MILP). The model is implemented in the Advanced Interactive Multidimensional Modelling Software (AIMMS) and considering the inherent uncertainties in the wind resource, solar resource, costs and discount rate, the total cost of the three configurations (Hybrid PV-Wind, Standalone PV, and Standalone wind energy system) was minimised using robust optimisation technique, and the corresponding optimal sizes of the components, levelised cost of energy (LCOE), excess energy, greenhouse emission avoided, and carbon tax were evaluated. The levelised cost of the deterministic optimisation solution for all the configuration ranges between 0.0702 $/kWh to 0.0786 $/kWh, while the levelised cost of the robust optimisation solution ranges between 0.07188 $/kWh to 0.1125 $/kWh. The proposed integration has the advantages of affordable hydrogen and electricity prices, minimisation of carbon emissions and grid export of excess energy. | ||
650 | 4 | |a Hydrogen Refuelling Station | |
650 | 4 | |a Green hydrogen for mobility sector | |
650 | 4 | |a Renewable Power System | |
650 | 4 | |a Robust Optimal Sizing | |
650 | 4 | |a Mixed Integer Linear Programming | |
650 | 4 | |a Mixed Integer Quadratic Constrained Programming | |
700 | 1 | |a Nwulu, Nnamdi Ikechi |e verfasserin |4 aut | |
700 | 1 | |a Okampo, Ewaoche John |e verfasserin |0 (orcid)0000-0001-6416-6809 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Energy conversion and management |d Amsterdam [u.a.] : Elsevier Science, 1980 |g 300 |h Online-Ressource |w (DE-627)320407659 |w (DE-600)2000891-0 |w (DE-576)12088352X |7 nnns |
773 | 1 | 8 | |g volume:300 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.70 |j Energie: Allgemeines |q VZ |
936 | b | k | |a 83.65 |j Versorgungswirtschaft |q VZ |
936 | b | k | |a 52.57 |j Energiespeicherung |q VZ |
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |q VZ |
951 | |a AR | ||
952 | |d 300 |
author_variant |
o l o ol olo n i n ni nin e j o ej ejo |
---|---|
matchkey_str |
oyewoleoladimejilawrencenwulunnamdiikech:2023----:piadsgohdoebsdtrgwtayrdeealeegssecnieigcnm |
hierarchy_sort_str |
2023 |
bklnumber |
50.70 83.65 52.57 52.56 |
publishDate |
2023 |
allfields |
10.1016/j.enconman.2023.117991 doi (DE-627)ELV066674514 (ELSEVIER)S0196-8904(23)01337-7 DE-627 ger DE-627 rda eng 620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl Oyewole, Oladimeji Lawrence verfasserin (orcid)0000-0002-7353-5052 aut Optimal design of hydrogen-based storage with a hybrid renewable energy system considering economic and environmental uncertainties 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrogen and electricity derived from renewable sources present feasible alternative energy options for the decarbonisation of the transportation and power sectors. This study presents the utilisation of hydrogen generated from solar and wind energy resources as a clean fuel for mobility and backup storage for stationary applications under economic and environmental uncertainties. This is achieved by developing a detailed techno-economic model of an integrated system consisting of a hydrogen refuelling station and an electric power generation system using Mixed Integer Quadratic Constrained Programming (MIQCP), which is further relaxed to Mixed Integer Linear Programming (MILP). The model is implemented in the Advanced Interactive Multidimensional Modelling Software (AIMMS) and considering the inherent uncertainties in the wind resource, solar resource, costs and discount rate, the total cost of the three configurations (Hybrid PV-Wind, Standalone PV, and Standalone wind energy system) was minimised using robust optimisation technique, and the corresponding optimal sizes of the components, levelised cost of energy (LCOE), excess energy, greenhouse emission avoided, and carbon tax were evaluated. The levelised cost of the deterministic optimisation solution for all the configuration ranges between 0.0702 $/kWh to 0.0786 $/kWh, while the levelised cost of the robust optimisation solution ranges between 0.07188 $/kWh to 0.1125 $/kWh. The proposed integration has the advantages of affordable hydrogen and electricity prices, minimisation of carbon emissions and grid export of excess energy. Hydrogen Refuelling Station Green hydrogen for mobility sector Renewable Power System Robust Optimal Sizing Mixed Integer Linear Programming Mixed Integer Quadratic Constrained Programming Nwulu, Nnamdi Ikechi verfasserin aut Okampo, Ewaoche John verfasserin (orcid)0000-0001-6416-6809 aut Enthalten in Energy conversion and management Amsterdam [u.a.] : Elsevier Science, 1980 300 Online-Ressource (DE-627)320407659 (DE-600)2000891-0 (DE-576)12088352X nnns volume:300 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.70 Energie: Allgemeines VZ 83.65 Versorgungswirtschaft VZ 52.57 Energiespeicherung VZ 52.56 Regenerative Energieformen alternative Energieformen VZ AR 300 |
spelling |
10.1016/j.enconman.2023.117991 doi (DE-627)ELV066674514 (ELSEVIER)S0196-8904(23)01337-7 DE-627 ger DE-627 rda eng 620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl Oyewole, Oladimeji Lawrence verfasserin (orcid)0000-0002-7353-5052 aut Optimal design of hydrogen-based storage with a hybrid renewable energy system considering economic and environmental uncertainties 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrogen and electricity derived from renewable sources present feasible alternative energy options for the decarbonisation of the transportation and power sectors. This study presents the utilisation of hydrogen generated from solar and wind energy resources as a clean fuel for mobility and backup storage for stationary applications under economic and environmental uncertainties. This is achieved by developing a detailed techno-economic model of an integrated system consisting of a hydrogen refuelling station and an electric power generation system using Mixed Integer Quadratic Constrained Programming (MIQCP), which is further relaxed to Mixed Integer Linear Programming (MILP). The model is implemented in the Advanced Interactive Multidimensional Modelling Software (AIMMS) and considering the inherent uncertainties in the wind resource, solar resource, costs and discount rate, the total cost of the three configurations (Hybrid PV-Wind, Standalone PV, and Standalone wind energy system) was minimised using robust optimisation technique, and the corresponding optimal sizes of the components, levelised cost of energy (LCOE), excess energy, greenhouse emission avoided, and carbon tax were evaluated. The levelised cost of the deterministic optimisation solution for all the configuration ranges between 0.0702 $/kWh to 0.0786 $/kWh, while the levelised cost of the robust optimisation solution ranges between 0.07188 $/kWh to 0.1125 $/kWh. The proposed integration has the advantages of affordable hydrogen and electricity prices, minimisation of carbon emissions and grid export of excess energy. Hydrogen Refuelling Station Green hydrogen for mobility sector Renewable Power System Robust Optimal Sizing Mixed Integer Linear Programming Mixed Integer Quadratic Constrained Programming Nwulu, Nnamdi Ikechi verfasserin aut Okampo, Ewaoche John verfasserin (orcid)0000-0001-6416-6809 aut Enthalten in Energy conversion and management Amsterdam [u.a.] : Elsevier Science, 1980 300 Online-Ressource (DE-627)320407659 (DE-600)2000891-0 (DE-576)12088352X nnns volume:300 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.70 Energie: Allgemeines VZ 83.65 Versorgungswirtschaft VZ 52.57 Energiespeicherung VZ 52.56 Regenerative Energieformen alternative Energieformen VZ AR 300 |
allfields_unstemmed |
10.1016/j.enconman.2023.117991 doi (DE-627)ELV066674514 (ELSEVIER)S0196-8904(23)01337-7 DE-627 ger DE-627 rda eng 620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl Oyewole, Oladimeji Lawrence verfasserin (orcid)0000-0002-7353-5052 aut Optimal design of hydrogen-based storage with a hybrid renewable energy system considering economic and environmental uncertainties 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrogen and electricity derived from renewable sources present feasible alternative energy options for the decarbonisation of the transportation and power sectors. This study presents the utilisation of hydrogen generated from solar and wind energy resources as a clean fuel for mobility and backup storage for stationary applications under economic and environmental uncertainties. This is achieved by developing a detailed techno-economic model of an integrated system consisting of a hydrogen refuelling station and an electric power generation system using Mixed Integer Quadratic Constrained Programming (MIQCP), which is further relaxed to Mixed Integer Linear Programming (MILP). The model is implemented in the Advanced Interactive Multidimensional Modelling Software (AIMMS) and considering the inherent uncertainties in the wind resource, solar resource, costs and discount rate, the total cost of the three configurations (Hybrid PV-Wind, Standalone PV, and Standalone wind energy system) was minimised using robust optimisation technique, and the corresponding optimal sizes of the components, levelised cost of energy (LCOE), excess energy, greenhouse emission avoided, and carbon tax were evaluated. The levelised cost of the deterministic optimisation solution for all the configuration ranges between 0.0702 $/kWh to 0.0786 $/kWh, while the levelised cost of the robust optimisation solution ranges between 0.07188 $/kWh to 0.1125 $/kWh. The proposed integration has the advantages of affordable hydrogen and electricity prices, minimisation of carbon emissions and grid export of excess energy. Hydrogen Refuelling Station Green hydrogen for mobility sector Renewable Power System Robust Optimal Sizing Mixed Integer Linear Programming Mixed Integer Quadratic Constrained Programming Nwulu, Nnamdi Ikechi verfasserin aut Okampo, Ewaoche John verfasserin (orcid)0000-0001-6416-6809 aut Enthalten in Energy conversion and management Amsterdam [u.a.] : Elsevier Science, 1980 300 Online-Ressource (DE-627)320407659 (DE-600)2000891-0 (DE-576)12088352X nnns volume:300 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.70 Energie: Allgemeines VZ 83.65 Versorgungswirtschaft VZ 52.57 Energiespeicherung VZ 52.56 Regenerative Energieformen alternative Energieformen VZ AR 300 |
allfieldsGer |
10.1016/j.enconman.2023.117991 doi (DE-627)ELV066674514 (ELSEVIER)S0196-8904(23)01337-7 DE-627 ger DE-627 rda eng 620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl Oyewole, Oladimeji Lawrence verfasserin (orcid)0000-0002-7353-5052 aut Optimal design of hydrogen-based storage with a hybrid renewable energy system considering economic and environmental uncertainties 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrogen and electricity derived from renewable sources present feasible alternative energy options for the decarbonisation of the transportation and power sectors. This study presents the utilisation of hydrogen generated from solar and wind energy resources as a clean fuel for mobility and backup storage for stationary applications under economic and environmental uncertainties. This is achieved by developing a detailed techno-economic model of an integrated system consisting of a hydrogen refuelling station and an electric power generation system using Mixed Integer Quadratic Constrained Programming (MIQCP), which is further relaxed to Mixed Integer Linear Programming (MILP). The model is implemented in the Advanced Interactive Multidimensional Modelling Software (AIMMS) and considering the inherent uncertainties in the wind resource, solar resource, costs and discount rate, the total cost of the three configurations (Hybrid PV-Wind, Standalone PV, and Standalone wind energy system) was minimised using robust optimisation technique, and the corresponding optimal sizes of the components, levelised cost of energy (LCOE), excess energy, greenhouse emission avoided, and carbon tax were evaluated. The levelised cost of the deterministic optimisation solution for all the configuration ranges between 0.0702 $/kWh to 0.0786 $/kWh, while the levelised cost of the robust optimisation solution ranges between 0.07188 $/kWh to 0.1125 $/kWh. The proposed integration has the advantages of affordable hydrogen and electricity prices, minimisation of carbon emissions and grid export of excess energy. Hydrogen Refuelling Station Green hydrogen for mobility sector Renewable Power System Robust Optimal Sizing Mixed Integer Linear Programming Mixed Integer Quadratic Constrained Programming Nwulu, Nnamdi Ikechi verfasserin aut Okampo, Ewaoche John verfasserin (orcid)0000-0001-6416-6809 aut Enthalten in Energy conversion and management Amsterdam [u.a.] : Elsevier Science, 1980 300 Online-Ressource (DE-627)320407659 (DE-600)2000891-0 (DE-576)12088352X nnns volume:300 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.70 Energie: Allgemeines VZ 83.65 Versorgungswirtschaft VZ 52.57 Energiespeicherung VZ 52.56 Regenerative Energieformen alternative Energieformen VZ AR 300 |
allfieldsSound |
10.1016/j.enconman.2023.117991 doi (DE-627)ELV066674514 (ELSEVIER)S0196-8904(23)01337-7 DE-627 ger DE-627 rda eng 620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl Oyewole, Oladimeji Lawrence verfasserin (orcid)0000-0002-7353-5052 aut Optimal design of hydrogen-based storage with a hybrid renewable energy system considering economic and environmental uncertainties 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrogen and electricity derived from renewable sources present feasible alternative energy options for the decarbonisation of the transportation and power sectors. This study presents the utilisation of hydrogen generated from solar and wind energy resources as a clean fuel for mobility and backup storage for stationary applications under economic and environmental uncertainties. This is achieved by developing a detailed techno-economic model of an integrated system consisting of a hydrogen refuelling station and an electric power generation system using Mixed Integer Quadratic Constrained Programming (MIQCP), which is further relaxed to Mixed Integer Linear Programming (MILP). The model is implemented in the Advanced Interactive Multidimensional Modelling Software (AIMMS) and considering the inherent uncertainties in the wind resource, solar resource, costs and discount rate, the total cost of the three configurations (Hybrid PV-Wind, Standalone PV, and Standalone wind energy system) was minimised using robust optimisation technique, and the corresponding optimal sizes of the components, levelised cost of energy (LCOE), excess energy, greenhouse emission avoided, and carbon tax were evaluated. The levelised cost of the deterministic optimisation solution for all the configuration ranges between 0.0702 $/kWh to 0.0786 $/kWh, while the levelised cost of the robust optimisation solution ranges between 0.07188 $/kWh to 0.1125 $/kWh. The proposed integration has the advantages of affordable hydrogen and electricity prices, minimisation of carbon emissions and grid export of excess energy. Hydrogen Refuelling Station Green hydrogen for mobility sector Renewable Power System Robust Optimal Sizing Mixed Integer Linear Programming Mixed Integer Quadratic Constrained Programming Nwulu, Nnamdi Ikechi verfasserin aut Okampo, Ewaoche John verfasserin (orcid)0000-0001-6416-6809 aut Enthalten in Energy conversion and management Amsterdam [u.a.] : Elsevier Science, 1980 300 Online-Ressource (DE-627)320407659 (DE-600)2000891-0 (DE-576)12088352X nnns volume:300 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.70 Energie: Allgemeines VZ 83.65 Versorgungswirtschaft VZ 52.57 Energiespeicherung VZ 52.56 Regenerative Energieformen alternative Energieformen VZ AR 300 |
language |
English |
source |
Enthalten in Energy conversion and management 300 volume:300 |
sourceStr |
Enthalten in Energy conversion and management 300 volume:300 |
format_phy_str_mv |
Article |
bklname |
Energie: Allgemeines Versorgungswirtschaft Energiespeicherung Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
topic_facet |
Hydrogen Refuelling Station Green hydrogen for mobility sector Renewable Power System Robust Optimal Sizing Mixed Integer Linear Programming Mixed Integer Quadratic Constrained Programming |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Energy conversion and management |
authorswithroles_txt_mv |
Oyewole, Oladimeji Lawrence @@aut@@ Nwulu, Nnamdi Ikechi @@aut@@ Okampo, Ewaoche John @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320407659 |
dewey-sort |
3620 |
id |
ELV066674514 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066674514</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240121093218.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240121s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.enconman.2023.117991</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066674514</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0196-8904(23)01337-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83.65</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.57</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Oyewole, Oladimeji Lawrence</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7353-5052</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimal design of hydrogen-based storage with a hybrid renewable energy system considering economic and environmental uncertainties</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hydrogen and electricity derived from renewable sources present feasible alternative energy options for the decarbonisation of the transportation and power sectors. This study presents the utilisation of hydrogen generated from solar and wind energy resources as a clean fuel for mobility and backup storage for stationary applications under economic and environmental uncertainties. This is achieved by developing a detailed techno-economic model of an integrated system consisting of a hydrogen refuelling station and an electric power generation system using Mixed Integer Quadratic Constrained Programming (MIQCP), which is further relaxed to Mixed Integer Linear Programming (MILP). The model is implemented in the Advanced Interactive Multidimensional Modelling Software (AIMMS) and considering the inherent uncertainties in the wind resource, solar resource, costs and discount rate, the total cost of the three configurations (Hybrid PV-Wind, Standalone PV, and Standalone wind energy system) was minimised using robust optimisation technique, and the corresponding optimal sizes of the components, levelised cost of energy (LCOE), excess energy, greenhouse emission avoided, and carbon tax were evaluated. The levelised cost of the deterministic optimisation solution for all the configuration ranges between 0.0702 $/kWh to 0.0786 $/kWh, while the levelised cost of the robust optimisation solution ranges between 0.07188 $/kWh to 0.1125 $/kWh. The proposed integration has the advantages of affordable hydrogen and electricity prices, minimisation of carbon emissions and grid export of excess energy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen Refuelling Station</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Green hydrogen for mobility sector</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Renewable Power System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robust Optimal Sizing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixed Integer Linear Programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixed Integer Quadratic Constrained Programming</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nwulu, Nnamdi Ikechi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Okampo, Ewaoche John</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6416-6809</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Energy conversion and management</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1980</subfield><subfield code="g">300</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320407659</subfield><subfield code="w">(DE-600)2000891-0</subfield><subfield code="w">(DE-576)12088352X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:300</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">83.65</subfield><subfield code="j">Versorgungswirtschaft</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.57</subfield><subfield code="j">Energiespeicherung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">300</subfield></datafield></record></collection>
|
author |
Oyewole, Oladimeji Lawrence |
spellingShingle |
Oyewole, Oladimeji Lawrence ddc 620 bkl 50.70 bkl 83.65 bkl 52.57 bkl 52.56 misc Hydrogen Refuelling Station misc Green hydrogen for mobility sector misc Renewable Power System misc Robust Optimal Sizing misc Mixed Integer Linear Programming misc Mixed Integer Quadratic Constrained Programming Optimal design of hydrogen-based storage with a hybrid renewable energy system considering economic and environmental uncertainties |
authorStr |
Oyewole, Oladimeji Lawrence |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320407659 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl Optimal design of hydrogen-based storage with a hybrid renewable energy system considering economic and environmental uncertainties Hydrogen Refuelling Station Green hydrogen for mobility sector Renewable Power System Robust Optimal Sizing Mixed Integer Linear Programming Mixed Integer Quadratic Constrained Programming |
topic |
ddc 620 bkl 50.70 bkl 83.65 bkl 52.57 bkl 52.56 misc Hydrogen Refuelling Station misc Green hydrogen for mobility sector misc Renewable Power System misc Robust Optimal Sizing misc Mixed Integer Linear Programming misc Mixed Integer Quadratic Constrained Programming |
topic_unstemmed |
ddc 620 bkl 50.70 bkl 83.65 bkl 52.57 bkl 52.56 misc Hydrogen Refuelling Station misc Green hydrogen for mobility sector misc Renewable Power System misc Robust Optimal Sizing misc Mixed Integer Linear Programming misc Mixed Integer Quadratic Constrained Programming |
topic_browse |
ddc 620 bkl 50.70 bkl 83.65 bkl 52.57 bkl 52.56 misc Hydrogen Refuelling Station misc Green hydrogen for mobility sector misc Renewable Power System misc Robust Optimal Sizing misc Mixed Integer Linear Programming misc Mixed Integer Quadratic Constrained Programming |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energy conversion and management |
hierarchy_parent_id |
320407659 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Energy conversion and management |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320407659 (DE-600)2000891-0 (DE-576)12088352X |
title |
Optimal design of hydrogen-based storage with a hybrid renewable energy system considering economic and environmental uncertainties |
ctrlnum |
(DE-627)ELV066674514 (ELSEVIER)S0196-8904(23)01337-7 |
title_full |
Optimal design of hydrogen-based storage with a hybrid renewable energy system considering economic and environmental uncertainties |
author_sort |
Oyewole, Oladimeji Lawrence |
journal |
Energy conversion and management |
journalStr |
Energy conversion and management |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Oyewole, Oladimeji Lawrence Nwulu, Nnamdi Ikechi Okampo, Ewaoche John |
container_volume |
300 |
class |
620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Oyewole, Oladimeji Lawrence |
doi_str_mv |
10.1016/j.enconman.2023.117991 |
normlink |
(ORCID)0000-0002-7353-5052 (ORCID)0000-0001-6416-6809 |
normlink_prefix_str_mv |
(orcid)0000-0002-7353-5052 (orcid)0000-0001-6416-6809 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
optimal design of hydrogen-based storage with a hybrid renewable energy system considering economic and environmental uncertainties |
title_auth |
Optimal design of hydrogen-based storage with a hybrid renewable energy system considering economic and environmental uncertainties |
abstract |
Hydrogen and electricity derived from renewable sources present feasible alternative energy options for the decarbonisation of the transportation and power sectors. This study presents the utilisation of hydrogen generated from solar and wind energy resources as a clean fuel for mobility and backup storage for stationary applications under economic and environmental uncertainties. This is achieved by developing a detailed techno-economic model of an integrated system consisting of a hydrogen refuelling station and an electric power generation system using Mixed Integer Quadratic Constrained Programming (MIQCP), which is further relaxed to Mixed Integer Linear Programming (MILP). The model is implemented in the Advanced Interactive Multidimensional Modelling Software (AIMMS) and considering the inherent uncertainties in the wind resource, solar resource, costs and discount rate, the total cost of the three configurations (Hybrid PV-Wind, Standalone PV, and Standalone wind energy system) was minimised using robust optimisation technique, and the corresponding optimal sizes of the components, levelised cost of energy (LCOE), excess energy, greenhouse emission avoided, and carbon tax were evaluated. The levelised cost of the deterministic optimisation solution for all the configuration ranges between 0.0702 $/kWh to 0.0786 $/kWh, while the levelised cost of the robust optimisation solution ranges between 0.07188 $/kWh to 0.1125 $/kWh. The proposed integration has the advantages of affordable hydrogen and electricity prices, minimisation of carbon emissions and grid export of excess energy. |
abstractGer |
Hydrogen and electricity derived from renewable sources present feasible alternative energy options for the decarbonisation of the transportation and power sectors. This study presents the utilisation of hydrogen generated from solar and wind energy resources as a clean fuel for mobility and backup storage for stationary applications under economic and environmental uncertainties. This is achieved by developing a detailed techno-economic model of an integrated system consisting of a hydrogen refuelling station and an electric power generation system using Mixed Integer Quadratic Constrained Programming (MIQCP), which is further relaxed to Mixed Integer Linear Programming (MILP). The model is implemented in the Advanced Interactive Multidimensional Modelling Software (AIMMS) and considering the inherent uncertainties in the wind resource, solar resource, costs and discount rate, the total cost of the three configurations (Hybrid PV-Wind, Standalone PV, and Standalone wind energy system) was minimised using robust optimisation technique, and the corresponding optimal sizes of the components, levelised cost of energy (LCOE), excess energy, greenhouse emission avoided, and carbon tax were evaluated. The levelised cost of the deterministic optimisation solution for all the configuration ranges between 0.0702 $/kWh to 0.0786 $/kWh, while the levelised cost of the robust optimisation solution ranges between 0.07188 $/kWh to 0.1125 $/kWh. The proposed integration has the advantages of affordable hydrogen and electricity prices, minimisation of carbon emissions and grid export of excess energy. |
abstract_unstemmed |
Hydrogen and electricity derived from renewable sources present feasible alternative energy options for the decarbonisation of the transportation and power sectors. This study presents the utilisation of hydrogen generated from solar and wind energy resources as a clean fuel for mobility and backup storage for stationary applications under economic and environmental uncertainties. This is achieved by developing a detailed techno-economic model of an integrated system consisting of a hydrogen refuelling station and an electric power generation system using Mixed Integer Quadratic Constrained Programming (MIQCP), which is further relaxed to Mixed Integer Linear Programming (MILP). The model is implemented in the Advanced Interactive Multidimensional Modelling Software (AIMMS) and considering the inherent uncertainties in the wind resource, solar resource, costs and discount rate, the total cost of the three configurations (Hybrid PV-Wind, Standalone PV, and Standalone wind energy system) was minimised using robust optimisation technique, and the corresponding optimal sizes of the components, levelised cost of energy (LCOE), excess energy, greenhouse emission avoided, and carbon tax were evaluated. The levelised cost of the deterministic optimisation solution for all the configuration ranges between 0.0702 $/kWh to 0.0786 $/kWh, while the levelised cost of the robust optimisation solution ranges between 0.07188 $/kWh to 0.1125 $/kWh. The proposed integration has the advantages of affordable hydrogen and electricity prices, minimisation of carbon emissions and grid export of excess energy. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Optimal design of hydrogen-based storage with a hybrid renewable energy system considering economic and environmental uncertainties |
remote_bool |
true |
author2 |
Nwulu, Nnamdi Ikechi Okampo, Ewaoche John |
author2Str |
Nwulu, Nnamdi Ikechi Okampo, Ewaoche John |
ppnlink |
320407659 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.enconman.2023.117991 |
up_date |
2024-07-06T18:35:28.976Z |
_version_ |
1803855781145083904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066674514</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240121093218.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240121s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.enconman.2023.117991</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066674514</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0196-8904(23)01337-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83.65</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.57</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Oyewole, Oladimeji Lawrence</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7353-5052</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimal design of hydrogen-based storage with a hybrid renewable energy system considering economic and environmental uncertainties</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hydrogen and electricity derived from renewable sources present feasible alternative energy options for the decarbonisation of the transportation and power sectors. This study presents the utilisation of hydrogen generated from solar and wind energy resources as a clean fuel for mobility and backup storage for stationary applications under economic and environmental uncertainties. This is achieved by developing a detailed techno-economic model of an integrated system consisting of a hydrogen refuelling station and an electric power generation system using Mixed Integer Quadratic Constrained Programming (MIQCP), which is further relaxed to Mixed Integer Linear Programming (MILP). The model is implemented in the Advanced Interactive Multidimensional Modelling Software (AIMMS) and considering the inherent uncertainties in the wind resource, solar resource, costs and discount rate, the total cost of the three configurations (Hybrid PV-Wind, Standalone PV, and Standalone wind energy system) was minimised using robust optimisation technique, and the corresponding optimal sizes of the components, levelised cost of energy (LCOE), excess energy, greenhouse emission avoided, and carbon tax were evaluated. The levelised cost of the deterministic optimisation solution for all the configuration ranges between 0.0702 $/kWh to 0.0786 $/kWh, while the levelised cost of the robust optimisation solution ranges between 0.07188 $/kWh to 0.1125 $/kWh. The proposed integration has the advantages of affordable hydrogen and electricity prices, minimisation of carbon emissions and grid export of excess energy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen Refuelling Station</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Green hydrogen for mobility sector</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Renewable Power System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robust Optimal Sizing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixed Integer Linear Programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixed Integer Quadratic Constrained Programming</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nwulu, Nnamdi Ikechi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Okampo, Ewaoche John</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6416-6809</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Energy conversion and management</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1980</subfield><subfield code="g">300</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320407659</subfield><subfield code="w">(DE-600)2000891-0</subfield><subfield code="w">(DE-576)12088352X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:300</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">83.65</subfield><subfield code="j">Versorgungswirtschaft</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.57</subfield><subfield code="j">Energiespeicherung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">300</subfield></datafield></record></collection>
|
score |
7.4021635 |