Predicting and decarbonizing carbon emissions from building energy use in Hong Kong: A LASSO regression approach
This study examines the total carbon emissions of Hong Kong, which ranked 74th among 218 countries in 2021, with a focus on the contribution of building energy use. Using data from open sources at ourworldindata.org and data.gov.hk from 2001 to 2020, a Least Absolute Shrinkage and Selection Operator...
Ausführliche Beschreibung
Autor*in: |
Yu, Fu-Wing [verfasserIn] Ho, Wai-Tung [verfasserIn] Wong, Chak-Fung Jeff [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Energy for sustainable development - Oxford : Elsevier, 1994, 78 |
---|---|
Übergeordnetes Werk: |
volume:78 |
DOI / URN: |
10.1016/j.esd.2023.101374 |
---|
Katalog-ID: |
ELV066747082 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV066747082 | ||
003 | DE-627 | ||
005 | 20240127093046.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240127s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.esd.2023.101374 |2 doi | |
035 | |a (DE-627)ELV066747082 | ||
035 | |a (ELSEVIER)S0973-0826(23)00231-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
100 | 1 | |a Yu, Fu-Wing |e verfasserin |4 aut | |
245 | 1 | 0 | |a Predicting and decarbonizing carbon emissions from building energy use in Hong Kong: A LASSO regression approach |
264 | 1 | |c 2024 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This study examines the total carbon emissions of Hong Kong, which ranked 74th among 218 countries in 2021, with a focus on the contribution of building energy use. Using data from open sources at ourworldindata.org and data.gov.hk from 2001 to 2020, a Least Absolute Shrinkage and Selection Operator (LASSO) regression model is developed to predict the trajectory of carbon emissions. The significance of regression coefficients is tested using bootstrap confidence intervals, and jackknife cross-validation is employed to evaluate the model's performance. The study identifies nine significant predictors, including commercial electricity consumption, private office area, and private commercial building area, among others. The findings indicate that the current carbon reduction trend is insufficient to meet the target in 2030. To achieve carbon neutrality by 2050, the study proposes a decarbonization roadmap involving a 30–40 % reduction in commercial building electricity consumption and a decreased carbon emission factor. The study underscores the importance of strategic energy management for air conditioning systems and the promotion of green building projects in effectively decarbonizing Hong Kong. | ||
650 | 4 | |a Carbon neutrality | |
650 | 4 | |a Commercial buildings | |
650 | 4 | |a Energy management | |
650 | 4 | |a Office buildings | |
650 | 4 | |a LASSO regression | |
700 | 1 | |a Ho, Wai-Tung |e verfasserin |4 aut | |
700 | 1 | |a Wong, Chak-Fung Jeff |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Energy for sustainable development |d Oxford : Elsevier, 1994 |g 78 |h Online-Ressource |w (DE-627)589901648 |w (DE-600)2473368-4 |w (DE-576)302178740 |x 0973-0826 |7 nnns |
773 | 1 | 8 | |g volume:78 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 78 |
author_variant |
f w y fwy w t h wth c f j w cfj cfjw |
---|---|
matchkey_str |
article:09730826:2024----::rdcigndcroiigabnmsinfobidneeguenogog |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1016/j.esd.2023.101374 doi (DE-627)ELV066747082 (ELSEVIER)S0973-0826(23)00231-4 DE-627 ger DE-627 rda eng 620 VZ Yu, Fu-Wing verfasserin aut Predicting and decarbonizing carbon emissions from building energy use in Hong Kong: A LASSO regression approach 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study examines the total carbon emissions of Hong Kong, which ranked 74th among 218 countries in 2021, with a focus on the contribution of building energy use. Using data from open sources at ourworldindata.org and data.gov.hk from 2001 to 2020, a Least Absolute Shrinkage and Selection Operator (LASSO) regression model is developed to predict the trajectory of carbon emissions. The significance of regression coefficients is tested using bootstrap confidence intervals, and jackknife cross-validation is employed to evaluate the model's performance. The study identifies nine significant predictors, including commercial electricity consumption, private office area, and private commercial building area, among others. The findings indicate that the current carbon reduction trend is insufficient to meet the target in 2030. To achieve carbon neutrality by 2050, the study proposes a decarbonization roadmap involving a 30–40 % reduction in commercial building electricity consumption and a decreased carbon emission factor. The study underscores the importance of strategic energy management for air conditioning systems and the promotion of green building projects in effectively decarbonizing Hong Kong. Carbon neutrality Commercial buildings Energy management Office buildings LASSO regression Ho, Wai-Tung verfasserin aut Wong, Chak-Fung Jeff verfasserin aut Enthalten in Energy for sustainable development Oxford : Elsevier, 1994 78 Online-Ressource (DE-627)589901648 (DE-600)2473368-4 (DE-576)302178740 0973-0826 nnns volume:78 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 78 |
spelling |
10.1016/j.esd.2023.101374 doi (DE-627)ELV066747082 (ELSEVIER)S0973-0826(23)00231-4 DE-627 ger DE-627 rda eng 620 VZ Yu, Fu-Wing verfasserin aut Predicting and decarbonizing carbon emissions from building energy use in Hong Kong: A LASSO regression approach 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study examines the total carbon emissions of Hong Kong, which ranked 74th among 218 countries in 2021, with a focus on the contribution of building energy use. Using data from open sources at ourworldindata.org and data.gov.hk from 2001 to 2020, a Least Absolute Shrinkage and Selection Operator (LASSO) regression model is developed to predict the trajectory of carbon emissions. The significance of regression coefficients is tested using bootstrap confidence intervals, and jackknife cross-validation is employed to evaluate the model's performance. The study identifies nine significant predictors, including commercial electricity consumption, private office area, and private commercial building area, among others. The findings indicate that the current carbon reduction trend is insufficient to meet the target in 2030. To achieve carbon neutrality by 2050, the study proposes a decarbonization roadmap involving a 30–40 % reduction in commercial building electricity consumption and a decreased carbon emission factor. The study underscores the importance of strategic energy management for air conditioning systems and the promotion of green building projects in effectively decarbonizing Hong Kong. Carbon neutrality Commercial buildings Energy management Office buildings LASSO regression Ho, Wai-Tung verfasserin aut Wong, Chak-Fung Jeff verfasserin aut Enthalten in Energy for sustainable development Oxford : Elsevier, 1994 78 Online-Ressource (DE-627)589901648 (DE-600)2473368-4 (DE-576)302178740 0973-0826 nnns volume:78 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 78 |
allfields_unstemmed |
10.1016/j.esd.2023.101374 doi (DE-627)ELV066747082 (ELSEVIER)S0973-0826(23)00231-4 DE-627 ger DE-627 rda eng 620 VZ Yu, Fu-Wing verfasserin aut Predicting and decarbonizing carbon emissions from building energy use in Hong Kong: A LASSO regression approach 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study examines the total carbon emissions of Hong Kong, which ranked 74th among 218 countries in 2021, with a focus on the contribution of building energy use. Using data from open sources at ourworldindata.org and data.gov.hk from 2001 to 2020, a Least Absolute Shrinkage and Selection Operator (LASSO) regression model is developed to predict the trajectory of carbon emissions. The significance of regression coefficients is tested using bootstrap confidence intervals, and jackknife cross-validation is employed to evaluate the model's performance. The study identifies nine significant predictors, including commercial electricity consumption, private office area, and private commercial building area, among others. The findings indicate that the current carbon reduction trend is insufficient to meet the target in 2030. To achieve carbon neutrality by 2050, the study proposes a decarbonization roadmap involving a 30–40 % reduction in commercial building electricity consumption and a decreased carbon emission factor. The study underscores the importance of strategic energy management for air conditioning systems and the promotion of green building projects in effectively decarbonizing Hong Kong. Carbon neutrality Commercial buildings Energy management Office buildings LASSO regression Ho, Wai-Tung verfasserin aut Wong, Chak-Fung Jeff verfasserin aut Enthalten in Energy for sustainable development Oxford : Elsevier, 1994 78 Online-Ressource (DE-627)589901648 (DE-600)2473368-4 (DE-576)302178740 0973-0826 nnns volume:78 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 78 |
allfieldsGer |
10.1016/j.esd.2023.101374 doi (DE-627)ELV066747082 (ELSEVIER)S0973-0826(23)00231-4 DE-627 ger DE-627 rda eng 620 VZ Yu, Fu-Wing verfasserin aut Predicting and decarbonizing carbon emissions from building energy use in Hong Kong: A LASSO regression approach 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study examines the total carbon emissions of Hong Kong, which ranked 74th among 218 countries in 2021, with a focus on the contribution of building energy use. Using data from open sources at ourworldindata.org and data.gov.hk from 2001 to 2020, a Least Absolute Shrinkage and Selection Operator (LASSO) regression model is developed to predict the trajectory of carbon emissions. The significance of regression coefficients is tested using bootstrap confidence intervals, and jackknife cross-validation is employed to evaluate the model's performance. The study identifies nine significant predictors, including commercial electricity consumption, private office area, and private commercial building area, among others. The findings indicate that the current carbon reduction trend is insufficient to meet the target in 2030. To achieve carbon neutrality by 2050, the study proposes a decarbonization roadmap involving a 30–40 % reduction in commercial building electricity consumption and a decreased carbon emission factor. The study underscores the importance of strategic energy management for air conditioning systems and the promotion of green building projects in effectively decarbonizing Hong Kong. Carbon neutrality Commercial buildings Energy management Office buildings LASSO regression Ho, Wai-Tung verfasserin aut Wong, Chak-Fung Jeff verfasserin aut Enthalten in Energy for sustainable development Oxford : Elsevier, 1994 78 Online-Ressource (DE-627)589901648 (DE-600)2473368-4 (DE-576)302178740 0973-0826 nnns volume:78 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 78 |
allfieldsSound |
10.1016/j.esd.2023.101374 doi (DE-627)ELV066747082 (ELSEVIER)S0973-0826(23)00231-4 DE-627 ger DE-627 rda eng 620 VZ Yu, Fu-Wing verfasserin aut Predicting and decarbonizing carbon emissions from building energy use in Hong Kong: A LASSO regression approach 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study examines the total carbon emissions of Hong Kong, which ranked 74th among 218 countries in 2021, with a focus on the contribution of building energy use. Using data from open sources at ourworldindata.org and data.gov.hk from 2001 to 2020, a Least Absolute Shrinkage and Selection Operator (LASSO) regression model is developed to predict the trajectory of carbon emissions. The significance of regression coefficients is tested using bootstrap confidence intervals, and jackknife cross-validation is employed to evaluate the model's performance. The study identifies nine significant predictors, including commercial electricity consumption, private office area, and private commercial building area, among others. The findings indicate that the current carbon reduction trend is insufficient to meet the target in 2030. To achieve carbon neutrality by 2050, the study proposes a decarbonization roadmap involving a 30–40 % reduction in commercial building electricity consumption and a decreased carbon emission factor. The study underscores the importance of strategic energy management for air conditioning systems and the promotion of green building projects in effectively decarbonizing Hong Kong. Carbon neutrality Commercial buildings Energy management Office buildings LASSO regression Ho, Wai-Tung verfasserin aut Wong, Chak-Fung Jeff verfasserin aut Enthalten in Energy for sustainable development Oxford : Elsevier, 1994 78 Online-Ressource (DE-627)589901648 (DE-600)2473368-4 (DE-576)302178740 0973-0826 nnns volume:78 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 78 |
language |
English |
source |
Enthalten in Energy for sustainable development 78 volume:78 |
sourceStr |
Enthalten in Energy for sustainable development 78 volume:78 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Carbon neutrality Commercial buildings Energy management Office buildings LASSO regression |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Energy for sustainable development |
authorswithroles_txt_mv |
Yu, Fu-Wing @@aut@@ Ho, Wai-Tung @@aut@@ Wong, Chak-Fung Jeff @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
589901648 |
dewey-sort |
3620 |
id |
ELV066747082 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066747082</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240127093046.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240127s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.esd.2023.101374</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066747082</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0973-0826(23)00231-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yu, Fu-Wing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicting and decarbonizing carbon emissions from building energy use in Hong Kong: A LASSO regression approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study examines the total carbon emissions of Hong Kong, which ranked 74th among 218 countries in 2021, with a focus on the contribution of building energy use. Using data from open sources at ourworldindata.org and data.gov.hk from 2001 to 2020, a Least Absolute Shrinkage and Selection Operator (LASSO) regression model is developed to predict the trajectory of carbon emissions. The significance of regression coefficients is tested using bootstrap confidence intervals, and jackknife cross-validation is employed to evaluate the model's performance. The study identifies nine significant predictors, including commercial electricity consumption, private office area, and private commercial building area, among others. The findings indicate that the current carbon reduction trend is insufficient to meet the target in 2030. To achieve carbon neutrality by 2050, the study proposes a decarbonization roadmap involving a 30–40 % reduction in commercial building electricity consumption and a decreased carbon emission factor. The study underscores the importance of strategic energy management for air conditioning systems and the promotion of green building projects in effectively decarbonizing Hong Kong.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon neutrality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commercial buildings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Office buildings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LASSO regression</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ho, Wai-Tung</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wong, Chak-Fung Jeff</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Energy for sustainable development</subfield><subfield code="d">Oxford : Elsevier, 1994</subfield><subfield code="g">78</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)589901648</subfield><subfield code="w">(DE-600)2473368-4</subfield><subfield code="w">(DE-576)302178740</subfield><subfield code="x">0973-0826</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:78</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">78</subfield></datafield></record></collection>
|
author |
Yu, Fu-Wing |
spellingShingle |
Yu, Fu-Wing ddc 620 misc Carbon neutrality misc Commercial buildings misc Energy management misc Office buildings misc LASSO regression Predicting and decarbonizing carbon emissions from building energy use in Hong Kong: A LASSO regression approach |
authorStr |
Yu, Fu-Wing |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)589901648 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0973-0826 |
topic_title |
620 VZ Predicting and decarbonizing carbon emissions from building energy use in Hong Kong: A LASSO regression approach Carbon neutrality Commercial buildings Energy management Office buildings LASSO regression |
topic |
ddc 620 misc Carbon neutrality misc Commercial buildings misc Energy management misc Office buildings misc LASSO regression |
topic_unstemmed |
ddc 620 misc Carbon neutrality misc Commercial buildings misc Energy management misc Office buildings misc LASSO regression |
topic_browse |
ddc 620 misc Carbon neutrality misc Commercial buildings misc Energy management misc Office buildings misc LASSO regression |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energy for sustainable development |
hierarchy_parent_id |
589901648 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Energy for sustainable development |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)589901648 (DE-600)2473368-4 (DE-576)302178740 |
title |
Predicting and decarbonizing carbon emissions from building energy use in Hong Kong: A LASSO regression approach |
ctrlnum |
(DE-627)ELV066747082 (ELSEVIER)S0973-0826(23)00231-4 |
title_full |
Predicting and decarbonizing carbon emissions from building energy use in Hong Kong: A LASSO regression approach |
author_sort |
Yu, Fu-Wing |
journal |
Energy for sustainable development |
journalStr |
Energy for sustainable development |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
zzz |
author_browse |
Yu, Fu-Wing Ho, Wai-Tung Wong, Chak-Fung Jeff |
container_volume |
78 |
class |
620 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Yu, Fu-Wing |
doi_str_mv |
10.1016/j.esd.2023.101374 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
predicting and decarbonizing carbon emissions from building energy use in hong kong: a lasso regression approach |
title_auth |
Predicting and decarbonizing carbon emissions from building energy use in Hong Kong: A LASSO regression approach |
abstract |
This study examines the total carbon emissions of Hong Kong, which ranked 74th among 218 countries in 2021, with a focus on the contribution of building energy use. Using data from open sources at ourworldindata.org and data.gov.hk from 2001 to 2020, a Least Absolute Shrinkage and Selection Operator (LASSO) regression model is developed to predict the trajectory of carbon emissions. The significance of regression coefficients is tested using bootstrap confidence intervals, and jackknife cross-validation is employed to evaluate the model's performance. The study identifies nine significant predictors, including commercial electricity consumption, private office area, and private commercial building area, among others. The findings indicate that the current carbon reduction trend is insufficient to meet the target in 2030. To achieve carbon neutrality by 2050, the study proposes a decarbonization roadmap involving a 30–40 % reduction in commercial building electricity consumption and a decreased carbon emission factor. The study underscores the importance of strategic energy management for air conditioning systems and the promotion of green building projects in effectively decarbonizing Hong Kong. |
abstractGer |
This study examines the total carbon emissions of Hong Kong, which ranked 74th among 218 countries in 2021, with a focus on the contribution of building energy use. Using data from open sources at ourworldindata.org and data.gov.hk from 2001 to 2020, a Least Absolute Shrinkage and Selection Operator (LASSO) regression model is developed to predict the trajectory of carbon emissions. The significance of regression coefficients is tested using bootstrap confidence intervals, and jackknife cross-validation is employed to evaluate the model's performance. The study identifies nine significant predictors, including commercial electricity consumption, private office area, and private commercial building area, among others. The findings indicate that the current carbon reduction trend is insufficient to meet the target in 2030. To achieve carbon neutrality by 2050, the study proposes a decarbonization roadmap involving a 30–40 % reduction in commercial building electricity consumption and a decreased carbon emission factor. The study underscores the importance of strategic energy management for air conditioning systems and the promotion of green building projects in effectively decarbonizing Hong Kong. |
abstract_unstemmed |
This study examines the total carbon emissions of Hong Kong, which ranked 74th among 218 countries in 2021, with a focus on the contribution of building energy use. Using data from open sources at ourworldindata.org and data.gov.hk from 2001 to 2020, a Least Absolute Shrinkage and Selection Operator (LASSO) regression model is developed to predict the trajectory of carbon emissions. The significance of regression coefficients is tested using bootstrap confidence intervals, and jackknife cross-validation is employed to evaluate the model's performance. The study identifies nine significant predictors, including commercial electricity consumption, private office area, and private commercial building area, among others. The findings indicate that the current carbon reduction trend is insufficient to meet the target in 2030. To achieve carbon neutrality by 2050, the study proposes a decarbonization roadmap involving a 30–40 % reduction in commercial building electricity consumption and a decreased carbon emission factor. The study underscores the importance of strategic energy management for air conditioning systems and the promotion of green building projects in effectively decarbonizing Hong Kong. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Predicting and decarbonizing carbon emissions from building energy use in Hong Kong: A LASSO regression approach |
remote_bool |
true |
author2 |
Ho, Wai-Tung Wong, Chak-Fung Jeff |
author2Str |
Ho, Wai-Tung Wong, Chak-Fung Jeff |
ppnlink |
589901648 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.esd.2023.101374 |
up_date |
2024-07-06T18:51:06.320Z |
_version_ |
1803856764020457473 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066747082</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240127093046.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240127s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.esd.2023.101374</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066747082</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0973-0826(23)00231-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yu, Fu-Wing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicting and decarbonizing carbon emissions from building energy use in Hong Kong: A LASSO regression approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study examines the total carbon emissions of Hong Kong, which ranked 74th among 218 countries in 2021, with a focus on the contribution of building energy use. Using data from open sources at ourworldindata.org and data.gov.hk from 2001 to 2020, a Least Absolute Shrinkage and Selection Operator (LASSO) regression model is developed to predict the trajectory of carbon emissions. The significance of regression coefficients is tested using bootstrap confidence intervals, and jackknife cross-validation is employed to evaluate the model's performance. The study identifies nine significant predictors, including commercial electricity consumption, private office area, and private commercial building area, among others. The findings indicate that the current carbon reduction trend is insufficient to meet the target in 2030. To achieve carbon neutrality by 2050, the study proposes a decarbonization roadmap involving a 30–40 % reduction in commercial building electricity consumption and a decreased carbon emission factor. The study underscores the importance of strategic energy management for air conditioning systems and the promotion of green building projects in effectively decarbonizing Hong Kong.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon neutrality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commercial buildings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Office buildings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LASSO regression</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ho, Wai-Tung</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wong, Chak-Fung Jeff</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Energy for sustainable development</subfield><subfield code="d">Oxford : Elsevier, 1994</subfield><subfield code="g">78</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)589901648</subfield><subfield code="w">(DE-600)2473368-4</subfield><subfield code="w">(DE-576)302178740</subfield><subfield code="x">0973-0826</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:78</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">78</subfield></datafield></record></collection>
|
score |
7.401086 |