Real-time energy management strategy for flexible traction power supply system
Energy management strategies (EMS) for the flexible traction power supply system (FTPSS) typically depend on the accurate predictive model or probabilistic estimation of traction load and renewable energy generation. However, it can be challenging due to the ultra-short-term dramatic fluctuation in...
Ausführliche Beschreibung
Autor*in: |
Zhang, Shanshan [verfasserIn] Yang, Shaobing [verfasserIn] He, Tingting [verfasserIn] Liu, Qiujiang [verfasserIn] Wu, Mingli [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of electrical power & energy systems - Amsterdam [u.a.] : Elsevier Science, 1979, 156 |
---|---|
Übergeordnetes Werk: |
volume:156 |
DOI / URN: |
10.1016/j.ijepes.2023.109768 |
---|
Katalog-ID: |
ELV06677036X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV06677036X | ||
003 | DE-627 | ||
005 | 20240214093019.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240130s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijepes.2023.109768 |2 doi | |
035 | |a (DE-627)ELV06677036X | ||
035 | |a (ELSEVIER)S0142-0615(23)00825-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
084 | |a 53.30 |2 bkl | ||
100 | 1 | |a Zhang, Shanshan |e verfasserin |0 (orcid)0000-0003-2270-9865 |4 aut | |
245 | 1 | 0 | |a Real-time energy management strategy for flexible traction power supply system |
264 | 1 | |c 2024 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Energy management strategies (EMS) for the flexible traction power supply system (FTPSS) typically depend on the accurate predictive model or probabilistic estimation of traction load and renewable energy generation. However, it can be challenging due to the ultra-short-term dramatic fluctuation in traction load profile. To address the issue, a model-free EMS is proposed to achieve the power dispatch in real time based on the current state. Firstly, a sequential stochastic optimization model is built to optimize the long-term operating cost and load fluctuation. Through the relaxation of time-coupling constraints and incorporation of the Lyapunov optimization technique, the problem is decomposed into individual optimization problems at each time slot. Considering the complementary characteristic of hybrid energy storage system, a bi-level optimization framework is constructed to separately control powers of the supercapacitor and battery with the hierarchical sequence method. More importantly, a fully informative control strategy with the known future load profile and renewable energy generation is adopted as the evaluation benchmark. The gap between the proposed method and the benchmark can be demonstrated to fall within a certain range of below 10% by mathematical derivation and extensive cases. | ||
650 | 4 | |a Energy management strategy | |
650 | 4 | |a Hybrid energy storage system | |
650 | 4 | |a Lyapunov optimization technique | |
650 | 4 | |a Stochastic optimization | |
650 | 4 | |a Traction power supply system | |
700 | 1 | |a Yang, Shaobing |e verfasserin |4 aut | |
700 | 1 | |a He, Tingting |e verfasserin |4 aut | |
700 | 1 | |a Liu, Qiujiang |e verfasserin |4 aut | |
700 | 1 | |a Wu, Mingli |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of electrical power & energy systems |d Amsterdam [u.a.] : Elsevier Science, 1979 |g 156 |h Online-Ressource |w (DE-627)320411907 |w (DE-600)2001425-9 |w (DE-576)259271101 |x 0142-0615 |7 nnns |
773 | 1 | 8 | |g volume:156 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 53.30 |j Elektrische Energietechnik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 156 |
author_variant |
s z sz s y sy t h th q l ql m w mw |
---|---|
matchkey_str |
article:01420615:2024----::elienryaaeettaeyofeiltato |
hierarchy_sort_str |
2024 |
bklnumber |
53.30 |
publishDate |
2024 |
allfields |
10.1016/j.ijepes.2023.109768 doi (DE-627)ELV06677036X (ELSEVIER)S0142-0615(23)00825-6 DE-627 ger DE-627 rda eng 620 VZ 53.30 bkl Zhang, Shanshan verfasserin (orcid)0000-0003-2270-9865 aut Real-time energy management strategy for flexible traction power supply system 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Energy management strategies (EMS) for the flexible traction power supply system (FTPSS) typically depend on the accurate predictive model or probabilistic estimation of traction load and renewable energy generation. However, it can be challenging due to the ultra-short-term dramatic fluctuation in traction load profile. To address the issue, a model-free EMS is proposed to achieve the power dispatch in real time based on the current state. Firstly, a sequential stochastic optimization model is built to optimize the long-term operating cost and load fluctuation. Through the relaxation of time-coupling constraints and incorporation of the Lyapunov optimization technique, the problem is decomposed into individual optimization problems at each time slot. Considering the complementary characteristic of hybrid energy storage system, a bi-level optimization framework is constructed to separately control powers of the supercapacitor and battery with the hierarchical sequence method. More importantly, a fully informative control strategy with the known future load profile and renewable energy generation is adopted as the evaluation benchmark. The gap between the proposed method and the benchmark can be demonstrated to fall within a certain range of below 10% by mathematical derivation and extensive cases. Energy management strategy Hybrid energy storage system Lyapunov optimization technique Stochastic optimization Traction power supply system Yang, Shaobing verfasserin aut He, Tingting verfasserin aut Liu, Qiujiang verfasserin aut Wu, Mingli verfasserin aut Enthalten in International journal of electrical power & energy systems Amsterdam [u.a.] : Elsevier Science, 1979 156 Online-Ressource (DE-627)320411907 (DE-600)2001425-9 (DE-576)259271101 0142-0615 nnns volume:156 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.30 Elektrische Energietechnik: Allgemeines VZ AR 156 |
spelling |
10.1016/j.ijepes.2023.109768 doi (DE-627)ELV06677036X (ELSEVIER)S0142-0615(23)00825-6 DE-627 ger DE-627 rda eng 620 VZ 53.30 bkl Zhang, Shanshan verfasserin (orcid)0000-0003-2270-9865 aut Real-time energy management strategy for flexible traction power supply system 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Energy management strategies (EMS) for the flexible traction power supply system (FTPSS) typically depend on the accurate predictive model or probabilistic estimation of traction load and renewable energy generation. However, it can be challenging due to the ultra-short-term dramatic fluctuation in traction load profile. To address the issue, a model-free EMS is proposed to achieve the power dispatch in real time based on the current state. Firstly, a sequential stochastic optimization model is built to optimize the long-term operating cost and load fluctuation. Through the relaxation of time-coupling constraints and incorporation of the Lyapunov optimization technique, the problem is decomposed into individual optimization problems at each time slot. Considering the complementary characteristic of hybrid energy storage system, a bi-level optimization framework is constructed to separately control powers of the supercapacitor and battery with the hierarchical sequence method. More importantly, a fully informative control strategy with the known future load profile and renewable energy generation is adopted as the evaluation benchmark. The gap between the proposed method and the benchmark can be demonstrated to fall within a certain range of below 10% by mathematical derivation and extensive cases. Energy management strategy Hybrid energy storage system Lyapunov optimization technique Stochastic optimization Traction power supply system Yang, Shaobing verfasserin aut He, Tingting verfasserin aut Liu, Qiujiang verfasserin aut Wu, Mingli verfasserin aut Enthalten in International journal of electrical power & energy systems Amsterdam [u.a.] : Elsevier Science, 1979 156 Online-Ressource (DE-627)320411907 (DE-600)2001425-9 (DE-576)259271101 0142-0615 nnns volume:156 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.30 Elektrische Energietechnik: Allgemeines VZ AR 156 |
allfields_unstemmed |
10.1016/j.ijepes.2023.109768 doi (DE-627)ELV06677036X (ELSEVIER)S0142-0615(23)00825-6 DE-627 ger DE-627 rda eng 620 VZ 53.30 bkl Zhang, Shanshan verfasserin (orcid)0000-0003-2270-9865 aut Real-time energy management strategy for flexible traction power supply system 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Energy management strategies (EMS) for the flexible traction power supply system (FTPSS) typically depend on the accurate predictive model or probabilistic estimation of traction load and renewable energy generation. However, it can be challenging due to the ultra-short-term dramatic fluctuation in traction load profile. To address the issue, a model-free EMS is proposed to achieve the power dispatch in real time based on the current state. Firstly, a sequential stochastic optimization model is built to optimize the long-term operating cost and load fluctuation. Through the relaxation of time-coupling constraints and incorporation of the Lyapunov optimization technique, the problem is decomposed into individual optimization problems at each time slot. Considering the complementary characteristic of hybrid energy storage system, a bi-level optimization framework is constructed to separately control powers of the supercapacitor and battery with the hierarchical sequence method. More importantly, a fully informative control strategy with the known future load profile and renewable energy generation is adopted as the evaluation benchmark. The gap between the proposed method and the benchmark can be demonstrated to fall within a certain range of below 10% by mathematical derivation and extensive cases. Energy management strategy Hybrid energy storage system Lyapunov optimization technique Stochastic optimization Traction power supply system Yang, Shaobing verfasserin aut He, Tingting verfasserin aut Liu, Qiujiang verfasserin aut Wu, Mingli verfasserin aut Enthalten in International journal of electrical power & energy systems Amsterdam [u.a.] : Elsevier Science, 1979 156 Online-Ressource (DE-627)320411907 (DE-600)2001425-9 (DE-576)259271101 0142-0615 nnns volume:156 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.30 Elektrische Energietechnik: Allgemeines VZ AR 156 |
allfieldsGer |
10.1016/j.ijepes.2023.109768 doi (DE-627)ELV06677036X (ELSEVIER)S0142-0615(23)00825-6 DE-627 ger DE-627 rda eng 620 VZ 53.30 bkl Zhang, Shanshan verfasserin (orcid)0000-0003-2270-9865 aut Real-time energy management strategy for flexible traction power supply system 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Energy management strategies (EMS) for the flexible traction power supply system (FTPSS) typically depend on the accurate predictive model or probabilistic estimation of traction load and renewable energy generation. However, it can be challenging due to the ultra-short-term dramatic fluctuation in traction load profile. To address the issue, a model-free EMS is proposed to achieve the power dispatch in real time based on the current state. Firstly, a sequential stochastic optimization model is built to optimize the long-term operating cost and load fluctuation. Through the relaxation of time-coupling constraints and incorporation of the Lyapunov optimization technique, the problem is decomposed into individual optimization problems at each time slot. Considering the complementary characteristic of hybrid energy storage system, a bi-level optimization framework is constructed to separately control powers of the supercapacitor and battery with the hierarchical sequence method. More importantly, a fully informative control strategy with the known future load profile and renewable energy generation is adopted as the evaluation benchmark. The gap between the proposed method and the benchmark can be demonstrated to fall within a certain range of below 10% by mathematical derivation and extensive cases. Energy management strategy Hybrid energy storage system Lyapunov optimization technique Stochastic optimization Traction power supply system Yang, Shaobing verfasserin aut He, Tingting verfasserin aut Liu, Qiujiang verfasserin aut Wu, Mingli verfasserin aut Enthalten in International journal of electrical power & energy systems Amsterdam [u.a.] : Elsevier Science, 1979 156 Online-Ressource (DE-627)320411907 (DE-600)2001425-9 (DE-576)259271101 0142-0615 nnns volume:156 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.30 Elektrische Energietechnik: Allgemeines VZ AR 156 |
allfieldsSound |
10.1016/j.ijepes.2023.109768 doi (DE-627)ELV06677036X (ELSEVIER)S0142-0615(23)00825-6 DE-627 ger DE-627 rda eng 620 VZ 53.30 bkl Zhang, Shanshan verfasserin (orcid)0000-0003-2270-9865 aut Real-time energy management strategy for flexible traction power supply system 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Energy management strategies (EMS) for the flexible traction power supply system (FTPSS) typically depend on the accurate predictive model or probabilistic estimation of traction load and renewable energy generation. However, it can be challenging due to the ultra-short-term dramatic fluctuation in traction load profile. To address the issue, a model-free EMS is proposed to achieve the power dispatch in real time based on the current state. Firstly, a sequential stochastic optimization model is built to optimize the long-term operating cost and load fluctuation. Through the relaxation of time-coupling constraints and incorporation of the Lyapunov optimization technique, the problem is decomposed into individual optimization problems at each time slot. Considering the complementary characteristic of hybrid energy storage system, a bi-level optimization framework is constructed to separately control powers of the supercapacitor and battery with the hierarchical sequence method. More importantly, a fully informative control strategy with the known future load profile and renewable energy generation is adopted as the evaluation benchmark. The gap between the proposed method and the benchmark can be demonstrated to fall within a certain range of below 10% by mathematical derivation and extensive cases. Energy management strategy Hybrid energy storage system Lyapunov optimization technique Stochastic optimization Traction power supply system Yang, Shaobing verfasserin aut He, Tingting verfasserin aut Liu, Qiujiang verfasserin aut Wu, Mingli verfasserin aut Enthalten in International journal of electrical power & energy systems Amsterdam [u.a.] : Elsevier Science, 1979 156 Online-Ressource (DE-627)320411907 (DE-600)2001425-9 (DE-576)259271101 0142-0615 nnns volume:156 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.30 Elektrische Energietechnik: Allgemeines VZ AR 156 |
language |
English |
source |
Enthalten in International journal of electrical power & energy systems 156 volume:156 |
sourceStr |
Enthalten in International journal of electrical power & energy systems 156 volume:156 |
format_phy_str_mv |
Article |
bklname |
Elektrische Energietechnik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Energy management strategy Hybrid energy storage system Lyapunov optimization technique Stochastic optimization Traction power supply system |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
International journal of electrical power & energy systems |
authorswithroles_txt_mv |
Zhang, Shanshan @@aut@@ Yang, Shaobing @@aut@@ He, Tingting @@aut@@ Liu, Qiujiang @@aut@@ Wu, Mingli @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
320411907 |
dewey-sort |
3620 |
id |
ELV06677036X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV06677036X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240214093019.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240130s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijepes.2023.109768</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV06677036X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0142-0615(23)00825-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Shanshan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2270-9865</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Real-time energy management strategy for flexible traction power supply system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Energy management strategies (EMS) for the flexible traction power supply system (FTPSS) typically depend on the accurate predictive model or probabilistic estimation of traction load and renewable energy generation. However, it can be challenging due to the ultra-short-term dramatic fluctuation in traction load profile. To address the issue, a model-free EMS is proposed to achieve the power dispatch in real time based on the current state. Firstly, a sequential stochastic optimization model is built to optimize the long-term operating cost and load fluctuation. Through the relaxation of time-coupling constraints and incorporation of the Lyapunov optimization technique, the problem is decomposed into individual optimization problems at each time slot. Considering the complementary characteristic of hybrid energy storage system, a bi-level optimization framework is constructed to separately control powers of the supercapacitor and battery with the hierarchical sequence method. More importantly, a fully informative control strategy with the known future load profile and renewable energy generation is adopted as the evaluation benchmark. The gap between the proposed method and the benchmark can be demonstrated to fall within a certain range of below 10% by mathematical derivation and extensive cases.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy management strategy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hybrid energy storage system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lyapunov optimization technique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traction power supply system</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Shaobing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Tingting</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Qiujiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Mingli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of electrical power & energy systems</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1979</subfield><subfield code="g">156</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320411907</subfield><subfield code="w">(DE-600)2001425-9</subfield><subfield code="w">(DE-576)259271101</subfield><subfield code="x">0142-0615</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:156</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.30</subfield><subfield code="j">Elektrische Energietechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">156</subfield></datafield></record></collection>
|
author |
Zhang, Shanshan |
spellingShingle |
Zhang, Shanshan ddc 620 bkl 53.30 misc Energy management strategy misc Hybrid energy storage system misc Lyapunov optimization technique misc Stochastic optimization misc Traction power supply system Real-time energy management strategy for flexible traction power supply system |
authorStr |
Zhang, Shanshan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320411907 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0142-0615 |
topic_title |
620 VZ 53.30 bkl Real-time energy management strategy for flexible traction power supply system Energy management strategy Hybrid energy storage system Lyapunov optimization technique Stochastic optimization Traction power supply system |
topic |
ddc 620 bkl 53.30 misc Energy management strategy misc Hybrid energy storage system misc Lyapunov optimization technique misc Stochastic optimization misc Traction power supply system |
topic_unstemmed |
ddc 620 bkl 53.30 misc Energy management strategy misc Hybrid energy storage system misc Lyapunov optimization technique misc Stochastic optimization misc Traction power supply system |
topic_browse |
ddc 620 bkl 53.30 misc Energy management strategy misc Hybrid energy storage system misc Lyapunov optimization technique misc Stochastic optimization misc Traction power supply system |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of electrical power & energy systems |
hierarchy_parent_id |
320411907 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
International journal of electrical power & energy systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320411907 (DE-600)2001425-9 (DE-576)259271101 |
title |
Real-time energy management strategy for flexible traction power supply system |
ctrlnum |
(DE-627)ELV06677036X (ELSEVIER)S0142-0615(23)00825-6 |
title_full |
Real-time energy management strategy for flexible traction power supply system |
author_sort |
Zhang, Shanshan |
journal |
International journal of electrical power & energy systems |
journalStr |
International journal of electrical power & energy systems |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
zzz |
author_browse |
Zhang, Shanshan Yang, Shaobing He, Tingting Liu, Qiujiang Wu, Mingli |
container_volume |
156 |
class |
620 VZ 53.30 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Shanshan |
doi_str_mv |
10.1016/j.ijepes.2023.109768 |
normlink |
(ORCID)0000-0003-2270-9865 |
normlink_prefix_str_mv |
(orcid)0000-0003-2270-9865 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
real-time energy management strategy for flexible traction power supply system |
title_auth |
Real-time energy management strategy for flexible traction power supply system |
abstract |
Energy management strategies (EMS) for the flexible traction power supply system (FTPSS) typically depend on the accurate predictive model or probabilistic estimation of traction load and renewable energy generation. However, it can be challenging due to the ultra-short-term dramatic fluctuation in traction load profile. To address the issue, a model-free EMS is proposed to achieve the power dispatch in real time based on the current state. Firstly, a sequential stochastic optimization model is built to optimize the long-term operating cost and load fluctuation. Through the relaxation of time-coupling constraints and incorporation of the Lyapunov optimization technique, the problem is decomposed into individual optimization problems at each time slot. Considering the complementary characteristic of hybrid energy storage system, a bi-level optimization framework is constructed to separately control powers of the supercapacitor and battery with the hierarchical sequence method. More importantly, a fully informative control strategy with the known future load profile and renewable energy generation is adopted as the evaluation benchmark. The gap between the proposed method and the benchmark can be demonstrated to fall within a certain range of below 10% by mathematical derivation and extensive cases. |
abstractGer |
Energy management strategies (EMS) for the flexible traction power supply system (FTPSS) typically depend on the accurate predictive model or probabilistic estimation of traction load and renewable energy generation. However, it can be challenging due to the ultra-short-term dramatic fluctuation in traction load profile. To address the issue, a model-free EMS is proposed to achieve the power dispatch in real time based on the current state. Firstly, a sequential stochastic optimization model is built to optimize the long-term operating cost and load fluctuation. Through the relaxation of time-coupling constraints and incorporation of the Lyapunov optimization technique, the problem is decomposed into individual optimization problems at each time slot. Considering the complementary characteristic of hybrid energy storage system, a bi-level optimization framework is constructed to separately control powers of the supercapacitor and battery with the hierarchical sequence method. More importantly, a fully informative control strategy with the known future load profile and renewable energy generation is adopted as the evaluation benchmark. The gap between the proposed method and the benchmark can be demonstrated to fall within a certain range of below 10% by mathematical derivation and extensive cases. |
abstract_unstemmed |
Energy management strategies (EMS) for the flexible traction power supply system (FTPSS) typically depend on the accurate predictive model or probabilistic estimation of traction load and renewable energy generation. However, it can be challenging due to the ultra-short-term dramatic fluctuation in traction load profile. To address the issue, a model-free EMS is proposed to achieve the power dispatch in real time based on the current state. Firstly, a sequential stochastic optimization model is built to optimize the long-term operating cost and load fluctuation. Through the relaxation of time-coupling constraints and incorporation of the Lyapunov optimization technique, the problem is decomposed into individual optimization problems at each time slot. Considering the complementary characteristic of hybrid energy storage system, a bi-level optimization framework is constructed to separately control powers of the supercapacitor and battery with the hierarchical sequence method. More importantly, a fully informative control strategy with the known future load profile and renewable energy generation is adopted as the evaluation benchmark. The gap between the proposed method and the benchmark can be demonstrated to fall within a certain range of below 10% by mathematical derivation and extensive cases. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Real-time energy management strategy for flexible traction power supply system |
remote_bool |
true |
author2 |
Yang, Shaobing He, Tingting Liu, Qiujiang Wu, Mingli |
author2Str |
Yang, Shaobing He, Tingting Liu, Qiujiang Wu, Mingli |
ppnlink |
320411907 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijepes.2023.109768 |
up_date |
2024-07-06T18:56:05.121Z |
_version_ |
1803857077334966272 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV06677036X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240214093019.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240130s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijepes.2023.109768</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV06677036X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0142-0615(23)00825-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Shanshan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2270-9865</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Real-time energy management strategy for flexible traction power supply system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Energy management strategies (EMS) for the flexible traction power supply system (FTPSS) typically depend on the accurate predictive model or probabilistic estimation of traction load and renewable energy generation. However, it can be challenging due to the ultra-short-term dramatic fluctuation in traction load profile. To address the issue, a model-free EMS is proposed to achieve the power dispatch in real time based on the current state. Firstly, a sequential stochastic optimization model is built to optimize the long-term operating cost and load fluctuation. Through the relaxation of time-coupling constraints and incorporation of the Lyapunov optimization technique, the problem is decomposed into individual optimization problems at each time slot. Considering the complementary characteristic of hybrid energy storage system, a bi-level optimization framework is constructed to separately control powers of the supercapacitor and battery with the hierarchical sequence method. More importantly, a fully informative control strategy with the known future load profile and renewable energy generation is adopted as the evaluation benchmark. The gap between the proposed method and the benchmark can be demonstrated to fall within a certain range of below 10% by mathematical derivation and extensive cases.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy management strategy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hybrid energy storage system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lyapunov optimization technique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traction power supply system</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Shaobing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Tingting</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Qiujiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Mingli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of electrical power & energy systems</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1979</subfield><subfield code="g">156</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320411907</subfield><subfield code="w">(DE-600)2001425-9</subfield><subfield code="w">(DE-576)259271101</subfield><subfield code="x">0142-0615</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:156</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.30</subfield><subfield code="j">Elektrische Energietechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">156</subfield></datafield></record></collection>
|
score |
7.4012613 |