Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer
During the long-term operation of proton exchange membrane water electrolyzers (PEMWEs), Formation of localized hotspots in the catalyst-coated membrane (CCM) will seriously threaten the safe and efficient operation of the electrolyzer. This paper adopts a combination of dynamic experiments and nume...
Ausführliche Beschreibung
Autor*in: |
Su, Chao [verfasserIn] Chen, Zhidong [verfasserIn] Wu, Zexuan [verfasserIn] Zhang, Jing [verfasserIn] Li, Kaiyang [verfasserIn] Hao, Junhong [verfasserIn] Kong, Yanqiang [verfasserIn] Zhang, Naiqiang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
Proton exchange membrane water electrolyzer |
---|
Übergeordnetes Werk: |
Enthalten in: Applied energy - Amsterdam [u.a.] : Elsevier Science, 1975, 357 |
---|---|
Übergeordnetes Werk: |
volume:357 |
DOI / URN: |
10.1016/j.apenergy.2023.122442 |
---|
Katalog-ID: |
ELV066773857 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV066773857 | ||
003 | DE-627 | ||
005 | 20240130093102.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240130s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.apenergy.2023.122442 |2 doi | |
035 | |a (DE-627)ELV066773857 | ||
035 | |a (ELSEVIER)S0306-2619(23)01806-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
084 | |a 52.50 |2 bkl | ||
100 | 1 | |a Su, Chao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a During the long-term operation of proton exchange membrane water electrolyzers (PEMWEs), Formation of localized hotspots in the catalyst-coated membrane (CCM) will seriously threaten the safe and efficient operation of the electrolyzer. This paper adopts a combination of dynamic experiments and numerical simulation analysis, aiming to develop the in-situ characterization technology of the thermal characteristics as well as the theoretical analysis of the multiphysics field for the·PEMWE. Based on both experimental and theoretical results, it is concluded that: (1) The high current density leads to an extremely uneven temperature distribution on the surface of the CCM. High temperature difference (as high as 34.04 °C) and high local temperature (up to 98.08 °C) are observed; (2) 30–50% of the electrical energy during the electrolyzer is converted into heat, of which the polarization heat accounts for the major part, followed by proton-conductive Joule heat; (3) The accumulation of gas phase during the transfer process of gas-liquid two phases is the primary cause of the deterioration of heat transfer, which further leads to local overheating. This study provides an experimental and theoretical basis for the safe and efficient operation of proton exchange membrane water electrolysis technology. | ||
650 | 4 | |a Proton exchange membrane water electrolyzer | |
650 | 4 | |a Catalyst-coated membrane | |
650 | 4 | |a Thermal coupling characteristic | |
650 | 4 | |a Experimental analysis | |
650 | 4 | |a Multiphysics field | |
700 | 1 | |a Chen, Zhidong |e verfasserin |4 aut | |
700 | 1 | |a Wu, Zexuan |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Jing |e verfasserin |4 aut | |
700 | 1 | |a Li, Kaiyang |e verfasserin |4 aut | |
700 | 1 | |a Hao, Junhong |e verfasserin |4 aut | |
700 | 1 | |a Kong, Yanqiang |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Naiqiang |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied energy |d Amsterdam [u.a.] : Elsevier Science, 1975 |g 357 |h Online-Ressource |w (DE-627)320406709 |w (DE-600)2000772-3 |w (DE-576)256140251 |x 1872-9118 |7 nnns |
773 | 1 | 8 | |g volume:357 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 52.50 |j Energietechnik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 357 |
author_variant |
c s cs z c zc z w zw j z jz k l kl j h jh y k yk n z nz |
---|---|
matchkey_str |
article:18729118:2023----::xeietlnnmrcltdotemlopignaaytotdebaeopooeca |
hierarchy_sort_str |
2023 |
bklnumber |
52.50 |
publishDate |
2023 |
allfields |
10.1016/j.apenergy.2023.122442 doi (DE-627)ELV066773857 (ELSEVIER)S0306-2619(23)01806-8 DE-627 ger DE-627 rda eng 620 VZ 52.50 bkl Su, Chao verfasserin aut Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier During the long-term operation of proton exchange membrane water electrolyzers (PEMWEs), Formation of localized hotspots in the catalyst-coated membrane (CCM) will seriously threaten the safe and efficient operation of the electrolyzer. This paper adopts a combination of dynamic experiments and numerical simulation analysis, aiming to develop the in-situ characterization technology of the thermal characteristics as well as the theoretical analysis of the multiphysics field for the·PEMWE. Based on both experimental and theoretical results, it is concluded that: (1) The high current density leads to an extremely uneven temperature distribution on the surface of the CCM. High temperature difference (as high as 34.04 °C) and high local temperature (up to 98.08 °C) are observed; (2) 30–50% of the electrical energy during the electrolyzer is converted into heat, of which the polarization heat accounts for the major part, followed by proton-conductive Joule heat; (3) The accumulation of gas phase during the transfer process of gas-liquid two phases is the primary cause of the deterioration of heat transfer, which further leads to local overheating. This study provides an experimental and theoretical basis for the safe and efficient operation of proton exchange membrane water electrolysis technology. Proton exchange membrane water electrolyzer Catalyst-coated membrane Thermal coupling characteristic Experimental analysis Multiphysics field Chen, Zhidong verfasserin aut Wu, Zexuan verfasserin aut Zhang, Jing verfasserin aut Li, Kaiyang verfasserin aut Hao, Junhong verfasserin aut Kong, Yanqiang verfasserin aut Zhang, Naiqiang verfasserin aut Enthalten in Applied energy Amsterdam [u.a.] : Elsevier Science, 1975 357 Online-Ressource (DE-627)320406709 (DE-600)2000772-3 (DE-576)256140251 1872-9118 nnns volume:357 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.50 Energietechnik: Allgemeines VZ AR 357 |
spelling |
10.1016/j.apenergy.2023.122442 doi (DE-627)ELV066773857 (ELSEVIER)S0306-2619(23)01806-8 DE-627 ger DE-627 rda eng 620 VZ 52.50 bkl Su, Chao verfasserin aut Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier During the long-term operation of proton exchange membrane water electrolyzers (PEMWEs), Formation of localized hotspots in the catalyst-coated membrane (CCM) will seriously threaten the safe and efficient operation of the electrolyzer. This paper adopts a combination of dynamic experiments and numerical simulation analysis, aiming to develop the in-situ characterization technology of the thermal characteristics as well as the theoretical analysis of the multiphysics field for the·PEMWE. Based on both experimental and theoretical results, it is concluded that: (1) The high current density leads to an extremely uneven temperature distribution on the surface of the CCM. High temperature difference (as high as 34.04 °C) and high local temperature (up to 98.08 °C) are observed; (2) 30–50% of the electrical energy during the electrolyzer is converted into heat, of which the polarization heat accounts for the major part, followed by proton-conductive Joule heat; (3) The accumulation of gas phase during the transfer process of gas-liquid two phases is the primary cause of the deterioration of heat transfer, which further leads to local overheating. This study provides an experimental and theoretical basis for the safe and efficient operation of proton exchange membrane water electrolysis technology. Proton exchange membrane water electrolyzer Catalyst-coated membrane Thermal coupling characteristic Experimental analysis Multiphysics field Chen, Zhidong verfasserin aut Wu, Zexuan verfasserin aut Zhang, Jing verfasserin aut Li, Kaiyang verfasserin aut Hao, Junhong verfasserin aut Kong, Yanqiang verfasserin aut Zhang, Naiqiang verfasserin aut Enthalten in Applied energy Amsterdam [u.a.] : Elsevier Science, 1975 357 Online-Ressource (DE-627)320406709 (DE-600)2000772-3 (DE-576)256140251 1872-9118 nnns volume:357 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.50 Energietechnik: Allgemeines VZ AR 357 |
allfields_unstemmed |
10.1016/j.apenergy.2023.122442 doi (DE-627)ELV066773857 (ELSEVIER)S0306-2619(23)01806-8 DE-627 ger DE-627 rda eng 620 VZ 52.50 bkl Su, Chao verfasserin aut Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier During the long-term operation of proton exchange membrane water electrolyzers (PEMWEs), Formation of localized hotspots in the catalyst-coated membrane (CCM) will seriously threaten the safe and efficient operation of the electrolyzer. This paper adopts a combination of dynamic experiments and numerical simulation analysis, aiming to develop the in-situ characterization technology of the thermal characteristics as well as the theoretical analysis of the multiphysics field for the·PEMWE. Based on both experimental and theoretical results, it is concluded that: (1) The high current density leads to an extremely uneven temperature distribution on the surface of the CCM. High temperature difference (as high as 34.04 °C) and high local temperature (up to 98.08 °C) are observed; (2) 30–50% of the electrical energy during the electrolyzer is converted into heat, of which the polarization heat accounts for the major part, followed by proton-conductive Joule heat; (3) The accumulation of gas phase during the transfer process of gas-liquid two phases is the primary cause of the deterioration of heat transfer, which further leads to local overheating. This study provides an experimental and theoretical basis for the safe and efficient operation of proton exchange membrane water electrolysis technology. Proton exchange membrane water electrolyzer Catalyst-coated membrane Thermal coupling characteristic Experimental analysis Multiphysics field Chen, Zhidong verfasserin aut Wu, Zexuan verfasserin aut Zhang, Jing verfasserin aut Li, Kaiyang verfasserin aut Hao, Junhong verfasserin aut Kong, Yanqiang verfasserin aut Zhang, Naiqiang verfasserin aut Enthalten in Applied energy Amsterdam [u.a.] : Elsevier Science, 1975 357 Online-Ressource (DE-627)320406709 (DE-600)2000772-3 (DE-576)256140251 1872-9118 nnns volume:357 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.50 Energietechnik: Allgemeines VZ AR 357 |
allfieldsGer |
10.1016/j.apenergy.2023.122442 doi (DE-627)ELV066773857 (ELSEVIER)S0306-2619(23)01806-8 DE-627 ger DE-627 rda eng 620 VZ 52.50 bkl Su, Chao verfasserin aut Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier During the long-term operation of proton exchange membrane water electrolyzers (PEMWEs), Formation of localized hotspots in the catalyst-coated membrane (CCM) will seriously threaten the safe and efficient operation of the electrolyzer. This paper adopts a combination of dynamic experiments and numerical simulation analysis, aiming to develop the in-situ characterization technology of the thermal characteristics as well as the theoretical analysis of the multiphysics field for the·PEMWE. Based on both experimental and theoretical results, it is concluded that: (1) The high current density leads to an extremely uneven temperature distribution on the surface of the CCM. High temperature difference (as high as 34.04 °C) and high local temperature (up to 98.08 °C) are observed; (2) 30–50% of the electrical energy during the electrolyzer is converted into heat, of which the polarization heat accounts for the major part, followed by proton-conductive Joule heat; (3) The accumulation of gas phase during the transfer process of gas-liquid two phases is the primary cause of the deterioration of heat transfer, which further leads to local overheating. This study provides an experimental and theoretical basis for the safe and efficient operation of proton exchange membrane water electrolysis technology. Proton exchange membrane water electrolyzer Catalyst-coated membrane Thermal coupling characteristic Experimental analysis Multiphysics field Chen, Zhidong verfasserin aut Wu, Zexuan verfasserin aut Zhang, Jing verfasserin aut Li, Kaiyang verfasserin aut Hao, Junhong verfasserin aut Kong, Yanqiang verfasserin aut Zhang, Naiqiang verfasserin aut Enthalten in Applied energy Amsterdam [u.a.] : Elsevier Science, 1975 357 Online-Ressource (DE-627)320406709 (DE-600)2000772-3 (DE-576)256140251 1872-9118 nnns volume:357 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.50 Energietechnik: Allgemeines VZ AR 357 |
allfieldsSound |
10.1016/j.apenergy.2023.122442 doi (DE-627)ELV066773857 (ELSEVIER)S0306-2619(23)01806-8 DE-627 ger DE-627 rda eng 620 VZ 52.50 bkl Su, Chao verfasserin aut Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier During the long-term operation of proton exchange membrane water electrolyzers (PEMWEs), Formation of localized hotspots in the catalyst-coated membrane (CCM) will seriously threaten the safe and efficient operation of the electrolyzer. This paper adopts a combination of dynamic experiments and numerical simulation analysis, aiming to develop the in-situ characterization technology of the thermal characteristics as well as the theoretical analysis of the multiphysics field for the·PEMWE. Based on both experimental and theoretical results, it is concluded that: (1) The high current density leads to an extremely uneven temperature distribution on the surface of the CCM. High temperature difference (as high as 34.04 °C) and high local temperature (up to 98.08 °C) are observed; (2) 30–50% of the electrical energy during the electrolyzer is converted into heat, of which the polarization heat accounts for the major part, followed by proton-conductive Joule heat; (3) The accumulation of gas phase during the transfer process of gas-liquid two phases is the primary cause of the deterioration of heat transfer, which further leads to local overheating. This study provides an experimental and theoretical basis for the safe and efficient operation of proton exchange membrane water electrolysis technology. Proton exchange membrane water electrolyzer Catalyst-coated membrane Thermal coupling characteristic Experimental analysis Multiphysics field Chen, Zhidong verfasserin aut Wu, Zexuan verfasserin aut Zhang, Jing verfasserin aut Li, Kaiyang verfasserin aut Hao, Junhong verfasserin aut Kong, Yanqiang verfasserin aut Zhang, Naiqiang verfasserin aut Enthalten in Applied energy Amsterdam [u.a.] : Elsevier Science, 1975 357 Online-Ressource (DE-627)320406709 (DE-600)2000772-3 (DE-576)256140251 1872-9118 nnns volume:357 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.50 Energietechnik: Allgemeines VZ AR 357 |
language |
English |
source |
Enthalten in Applied energy 357 volume:357 |
sourceStr |
Enthalten in Applied energy 357 volume:357 |
format_phy_str_mv |
Article |
bklname |
Energietechnik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Proton exchange membrane water electrolyzer Catalyst-coated membrane Thermal coupling characteristic Experimental analysis Multiphysics field |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Applied energy |
authorswithroles_txt_mv |
Su, Chao @@aut@@ Chen, Zhidong @@aut@@ Wu, Zexuan @@aut@@ Zhang, Jing @@aut@@ Li, Kaiyang @@aut@@ Hao, Junhong @@aut@@ Kong, Yanqiang @@aut@@ Zhang, Naiqiang @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320406709 |
dewey-sort |
3620 |
id |
ELV066773857 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066773857</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240130093102.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240130s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.apenergy.2023.122442</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066773857</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0306-2619(23)01806-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Su, Chao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">During the long-term operation of proton exchange membrane water electrolyzers (PEMWEs), Formation of localized hotspots in the catalyst-coated membrane (CCM) will seriously threaten the safe and efficient operation of the electrolyzer. This paper adopts a combination of dynamic experiments and numerical simulation analysis, aiming to develop the in-situ characterization technology of the thermal characteristics as well as the theoretical analysis of the multiphysics field for the·PEMWE. Based on both experimental and theoretical results, it is concluded that: (1) The high current density leads to an extremely uneven temperature distribution on the surface of the CCM. High temperature difference (as high as 34.04 °C) and high local temperature (up to 98.08 °C) are observed; (2) 30–50% of the electrical energy during the electrolyzer is converted into heat, of which the polarization heat accounts for the major part, followed by proton-conductive Joule heat; (3) The accumulation of gas phase during the transfer process of gas-liquid two phases is the primary cause of the deterioration of heat transfer, which further leads to local overheating. This study provides an experimental and theoretical basis for the safe and efficient operation of proton exchange membrane water electrolysis technology.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proton exchange membrane water electrolyzer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Catalyst-coated membrane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal coupling characteristic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Experimental analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiphysics field</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Zhidong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Zexuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Kaiyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hao, Junhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kong, Yanqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Naiqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1975</subfield><subfield code="g">357</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320406709</subfield><subfield code="w">(DE-600)2000772-3</subfield><subfield code="w">(DE-576)256140251</subfield><subfield code="x">1872-9118</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:357</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.50</subfield><subfield code="j">Energietechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">357</subfield></datafield></record></collection>
|
author |
Su, Chao |
spellingShingle |
Su, Chao ddc 620 bkl 52.50 misc Proton exchange membrane water electrolyzer misc Catalyst-coated membrane misc Thermal coupling characteristic misc Experimental analysis misc Multiphysics field Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer |
authorStr |
Su, Chao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320406709 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1872-9118 |
topic_title |
620 VZ 52.50 bkl Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer Proton exchange membrane water electrolyzer Catalyst-coated membrane Thermal coupling characteristic Experimental analysis Multiphysics field |
topic |
ddc 620 bkl 52.50 misc Proton exchange membrane water electrolyzer misc Catalyst-coated membrane misc Thermal coupling characteristic misc Experimental analysis misc Multiphysics field |
topic_unstemmed |
ddc 620 bkl 52.50 misc Proton exchange membrane water electrolyzer misc Catalyst-coated membrane misc Thermal coupling characteristic misc Experimental analysis misc Multiphysics field |
topic_browse |
ddc 620 bkl 52.50 misc Proton exchange membrane water electrolyzer misc Catalyst-coated membrane misc Thermal coupling characteristic misc Experimental analysis misc Multiphysics field |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied energy |
hierarchy_parent_id |
320406709 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Applied energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320406709 (DE-600)2000772-3 (DE-576)256140251 |
title |
Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer |
ctrlnum |
(DE-627)ELV066773857 (ELSEVIER)S0306-2619(23)01806-8 |
title_full |
Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer |
author_sort |
Su, Chao |
journal |
Applied energy |
journalStr |
Applied energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Su, Chao Chen, Zhidong Wu, Zexuan Zhang, Jing Li, Kaiyang Hao, Junhong Kong, Yanqiang Zhang, Naiqiang |
container_volume |
357 |
class |
620 VZ 52.50 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Su, Chao |
doi_str_mv |
10.1016/j.apenergy.2023.122442 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer |
title_auth |
Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer |
abstract |
During the long-term operation of proton exchange membrane water electrolyzers (PEMWEs), Formation of localized hotspots in the catalyst-coated membrane (CCM) will seriously threaten the safe and efficient operation of the electrolyzer. This paper adopts a combination of dynamic experiments and numerical simulation analysis, aiming to develop the in-situ characterization technology of the thermal characteristics as well as the theoretical analysis of the multiphysics field for the·PEMWE. Based on both experimental and theoretical results, it is concluded that: (1) The high current density leads to an extremely uneven temperature distribution on the surface of the CCM. High temperature difference (as high as 34.04 °C) and high local temperature (up to 98.08 °C) are observed; (2) 30–50% of the electrical energy during the electrolyzer is converted into heat, of which the polarization heat accounts for the major part, followed by proton-conductive Joule heat; (3) The accumulation of gas phase during the transfer process of gas-liquid two phases is the primary cause of the deterioration of heat transfer, which further leads to local overheating. This study provides an experimental and theoretical basis for the safe and efficient operation of proton exchange membrane water electrolysis technology. |
abstractGer |
During the long-term operation of proton exchange membrane water electrolyzers (PEMWEs), Formation of localized hotspots in the catalyst-coated membrane (CCM) will seriously threaten the safe and efficient operation of the electrolyzer. This paper adopts a combination of dynamic experiments and numerical simulation analysis, aiming to develop the in-situ characterization technology of the thermal characteristics as well as the theoretical analysis of the multiphysics field for the·PEMWE. Based on both experimental and theoretical results, it is concluded that: (1) The high current density leads to an extremely uneven temperature distribution on the surface of the CCM. High temperature difference (as high as 34.04 °C) and high local temperature (up to 98.08 °C) are observed; (2) 30–50% of the electrical energy during the electrolyzer is converted into heat, of which the polarization heat accounts for the major part, followed by proton-conductive Joule heat; (3) The accumulation of gas phase during the transfer process of gas-liquid two phases is the primary cause of the deterioration of heat transfer, which further leads to local overheating. This study provides an experimental and theoretical basis for the safe and efficient operation of proton exchange membrane water electrolysis technology. |
abstract_unstemmed |
During the long-term operation of proton exchange membrane water electrolyzers (PEMWEs), Formation of localized hotspots in the catalyst-coated membrane (CCM) will seriously threaten the safe and efficient operation of the electrolyzer. This paper adopts a combination of dynamic experiments and numerical simulation analysis, aiming to develop the in-situ characterization technology of the thermal characteristics as well as the theoretical analysis of the multiphysics field for the·PEMWE. Based on both experimental and theoretical results, it is concluded that: (1) The high current density leads to an extremely uneven temperature distribution on the surface of the CCM. High temperature difference (as high as 34.04 °C) and high local temperature (up to 98.08 °C) are observed; (2) 30–50% of the electrical energy during the electrolyzer is converted into heat, of which the polarization heat accounts for the major part, followed by proton-conductive Joule heat; (3) The accumulation of gas phase during the transfer process of gas-liquid two phases is the primary cause of the deterioration of heat transfer, which further leads to local overheating. This study provides an experimental and theoretical basis for the safe and efficient operation of proton exchange membrane water electrolysis technology. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer |
remote_bool |
true |
author2 |
Chen, Zhidong Wu, Zexuan Zhang, Jing Li, Kaiyang Hao, Junhong Kong, Yanqiang Zhang, Naiqiang |
author2Str |
Chen, Zhidong Wu, Zexuan Zhang, Jing Li, Kaiyang Hao, Junhong Kong, Yanqiang Zhang, Naiqiang |
ppnlink |
320406709 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.apenergy.2023.122442 |
up_date |
2024-07-06T18:56:50.524Z |
_version_ |
1803857124944510976 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066773857</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240130093102.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240130s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.apenergy.2023.122442</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066773857</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0306-2619(23)01806-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Su, Chao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">During the long-term operation of proton exchange membrane water electrolyzers (PEMWEs), Formation of localized hotspots in the catalyst-coated membrane (CCM) will seriously threaten the safe and efficient operation of the electrolyzer. This paper adopts a combination of dynamic experiments and numerical simulation analysis, aiming to develop the in-situ characterization technology of the thermal characteristics as well as the theoretical analysis of the multiphysics field for the·PEMWE. Based on both experimental and theoretical results, it is concluded that: (1) The high current density leads to an extremely uneven temperature distribution on the surface of the CCM. High temperature difference (as high as 34.04 °C) and high local temperature (up to 98.08 °C) are observed; (2) 30–50% of the electrical energy during the electrolyzer is converted into heat, of which the polarization heat accounts for the major part, followed by proton-conductive Joule heat; (3) The accumulation of gas phase during the transfer process of gas-liquid two phases is the primary cause of the deterioration of heat transfer, which further leads to local overheating. This study provides an experimental and theoretical basis for the safe and efficient operation of proton exchange membrane water electrolysis technology.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proton exchange membrane water electrolyzer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Catalyst-coated membrane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal coupling characteristic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Experimental analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiphysics field</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Zhidong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Zexuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Kaiyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hao, Junhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kong, Yanqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Naiqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1975</subfield><subfield code="g">357</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320406709</subfield><subfield code="w">(DE-600)2000772-3</subfield><subfield code="w">(DE-576)256140251</subfield><subfield code="x">1872-9118</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:357</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.50</subfield><subfield code="j">Energietechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">357</subfield></datafield></record></collection>
|
score |
7.401457 |