A multi-dimensional approach for analyzing risk-related decision problems to enhance decision making and prevent accidents
Risk-related decision problems are the problems that influence the risk of accidents. In most cases, the probability of major accidents is very low, but their consequences can be extreme, resulting in numerous fatalities and extensive environmental damage. An example is the Deepwater Horizon disaste...
Ausführliche Beschreibung
Autor*in: |
Zhu, Tiantian [verfasserIn] Yang, Xue [verfasserIn] Haugen, Stein [verfasserIn] Liu, Yiliu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of loss prevention in the process industries - Amsterdam [u.a.] : Elsevier Science, 1988, 87 |
---|---|
Übergeordnetes Werk: |
volume:87 |
DOI / URN: |
10.1016/j.jlp.2023.105235 |
---|
Katalog-ID: |
ELV066816815 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV066816815 | ||
003 | DE-627 | ||
005 | 20240202093248.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240202s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jlp.2023.105235 |2 doi | |
035 | |a (DE-627)ELV066816815 | ||
035 | |a (ELSEVIER)S0950-4230(23)00265-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
084 | |a 58.18 |2 bkl | ||
100 | 1 | |a Zhu, Tiantian |e verfasserin |0 (orcid)0000-0002-3401-8482 |4 aut | |
245 | 1 | 0 | |a A multi-dimensional approach for analyzing risk-related decision problems to enhance decision making and prevent accidents |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Risk-related decision problems are the problems that influence the risk of accidents. In most cases, the probability of major accidents is very low, but their consequences can be extreme, resulting in numerous fatalities and extensive environmental damage. An example is the Deepwater Horizon disaster in the Gulf of Mexico in 2010. Decision making under such circumstances (i.e., under high stake and complexity) is challenging, where expected utility calculations typically are not sufficient to provide a robust foundation. This article focuses on this specific category of risk-related decision problems, aiming to develop a decision analysis approach to enhance decision makers’ understanding on the features of their decision problems. This can in turn form the basis for tailoring the information needed for decision making. The proposed approach is a multi-dimensional approach, which includes seven dimensions: criticality, uniqueness, structuredness, complicatedness, dynamic, residual uncertainty, and problem trigger. Real-life examples are analyzed to illustrate and assess the proposed multi-dimensional approach. Overall, an improved understanding of risk-related decisions problem can be aided by the proposed approach, which indirectly helps to prevent accidents and maintain safety by predicting the human decision-making process, potential decision-making errors, and identifying decision support requirements. | ||
650 | 4 | |a Problem feature | |
650 | 4 | |a Risk-related decision problem | |
650 | 4 | |a Decision-making process | |
650 | 4 | |a Decision problem analysis | |
650 | 4 | |a Accident prevention | |
650 | 4 | |a Multi-dimensional approach | |
700 | 1 | |a Yang, Xue |e verfasserin |0 (orcid)0000-0002-7552-0495 |4 aut | |
700 | 1 | |a Haugen, Stein |e verfasserin |4 aut | |
700 | 1 | |a Liu, Yiliu |e verfasserin |0 (orcid)0000-0002-0612-2231 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of loss prevention in the process industries |d Amsterdam [u.a.] : Elsevier Science, 1988 |g 87 |h Online-Ressource |w (DE-627)320605469 |w (DE-600)2020695-1 |w (DE-576)271585269 |x 0950-4230 |7 nnns |
773 | 1 | 8 | |g volume:87 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 58.18 |j Chemische Betriebstechnik |q VZ |
951 | |a AR | ||
952 | |d 87 |
author_variant |
t z tz x y xy s h sh y l yl |
---|---|
matchkey_str |
article:09504230:2023----::mliiesoaapocfrnlznrsrltdeiinrbesonacdcs |
hierarchy_sort_str |
2023 |
bklnumber |
58.18 |
publishDate |
2023 |
allfields |
10.1016/j.jlp.2023.105235 doi (DE-627)ELV066816815 (ELSEVIER)S0950-4230(23)00265-6 DE-627 ger DE-627 rda eng 670 VZ 58.18 bkl Zhu, Tiantian verfasserin (orcid)0000-0002-3401-8482 aut A multi-dimensional approach for analyzing risk-related decision problems to enhance decision making and prevent accidents 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Risk-related decision problems are the problems that influence the risk of accidents. In most cases, the probability of major accidents is very low, but their consequences can be extreme, resulting in numerous fatalities and extensive environmental damage. An example is the Deepwater Horizon disaster in the Gulf of Mexico in 2010. Decision making under such circumstances (i.e., under high stake and complexity) is challenging, where expected utility calculations typically are not sufficient to provide a robust foundation. This article focuses on this specific category of risk-related decision problems, aiming to develop a decision analysis approach to enhance decision makers’ understanding on the features of their decision problems. This can in turn form the basis for tailoring the information needed for decision making. The proposed approach is a multi-dimensional approach, which includes seven dimensions: criticality, uniqueness, structuredness, complicatedness, dynamic, residual uncertainty, and problem trigger. Real-life examples are analyzed to illustrate and assess the proposed multi-dimensional approach. Overall, an improved understanding of risk-related decisions problem can be aided by the proposed approach, which indirectly helps to prevent accidents and maintain safety by predicting the human decision-making process, potential decision-making errors, and identifying decision support requirements. Problem feature Risk-related decision problem Decision-making process Decision problem analysis Accident prevention Multi-dimensional approach Yang, Xue verfasserin (orcid)0000-0002-7552-0495 aut Haugen, Stein verfasserin aut Liu, Yiliu verfasserin (orcid)0000-0002-0612-2231 aut Enthalten in Journal of loss prevention in the process industries Amsterdam [u.a.] : Elsevier Science, 1988 87 Online-Ressource (DE-627)320605469 (DE-600)2020695-1 (DE-576)271585269 0950-4230 nnns volume:87 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.18 Chemische Betriebstechnik VZ AR 87 |
spelling |
10.1016/j.jlp.2023.105235 doi (DE-627)ELV066816815 (ELSEVIER)S0950-4230(23)00265-6 DE-627 ger DE-627 rda eng 670 VZ 58.18 bkl Zhu, Tiantian verfasserin (orcid)0000-0002-3401-8482 aut A multi-dimensional approach for analyzing risk-related decision problems to enhance decision making and prevent accidents 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Risk-related decision problems are the problems that influence the risk of accidents. In most cases, the probability of major accidents is very low, but their consequences can be extreme, resulting in numerous fatalities and extensive environmental damage. An example is the Deepwater Horizon disaster in the Gulf of Mexico in 2010. Decision making under such circumstances (i.e., under high stake and complexity) is challenging, where expected utility calculations typically are not sufficient to provide a robust foundation. This article focuses on this specific category of risk-related decision problems, aiming to develop a decision analysis approach to enhance decision makers’ understanding on the features of their decision problems. This can in turn form the basis for tailoring the information needed for decision making. The proposed approach is a multi-dimensional approach, which includes seven dimensions: criticality, uniqueness, structuredness, complicatedness, dynamic, residual uncertainty, and problem trigger. Real-life examples are analyzed to illustrate and assess the proposed multi-dimensional approach. Overall, an improved understanding of risk-related decisions problem can be aided by the proposed approach, which indirectly helps to prevent accidents and maintain safety by predicting the human decision-making process, potential decision-making errors, and identifying decision support requirements. Problem feature Risk-related decision problem Decision-making process Decision problem analysis Accident prevention Multi-dimensional approach Yang, Xue verfasserin (orcid)0000-0002-7552-0495 aut Haugen, Stein verfasserin aut Liu, Yiliu verfasserin (orcid)0000-0002-0612-2231 aut Enthalten in Journal of loss prevention in the process industries Amsterdam [u.a.] : Elsevier Science, 1988 87 Online-Ressource (DE-627)320605469 (DE-600)2020695-1 (DE-576)271585269 0950-4230 nnns volume:87 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.18 Chemische Betriebstechnik VZ AR 87 |
allfields_unstemmed |
10.1016/j.jlp.2023.105235 doi (DE-627)ELV066816815 (ELSEVIER)S0950-4230(23)00265-6 DE-627 ger DE-627 rda eng 670 VZ 58.18 bkl Zhu, Tiantian verfasserin (orcid)0000-0002-3401-8482 aut A multi-dimensional approach for analyzing risk-related decision problems to enhance decision making and prevent accidents 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Risk-related decision problems are the problems that influence the risk of accidents. In most cases, the probability of major accidents is very low, but their consequences can be extreme, resulting in numerous fatalities and extensive environmental damage. An example is the Deepwater Horizon disaster in the Gulf of Mexico in 2010. Decision making under such circumstances (i.e., under high stake and complexity) is challenging, where expected utility calculations typically are not sufficient to provide a robust foundation. This article focuses on this specific category of risk-related decision problems, aiming to develop a decision analysis approach to enhance decision makers’ understanding on the features of their decision problems. This can in turn form the basis for tailoring the information needed for decision making. The proposed approach is a multi-dimensional approach, which includes seven dimensions: criticality, uniqueness, structuredness, complicatedness, dynamic, residual uncertainty, and problem trigger. Real-life examples are analyzed to illustrate and assess the proposed multi-dimensional approach. Overall, an improved understanding of risk-related decisions problem can be aided by the proposed approach, which indirectly helps to prevent accidents and maintain safety by predicting the human decision-making process, potential decision-making errors, and identifying decision support requirements. Problem feature Risk-related decision problem Decision-making process Decision problem analysis Accident prevention Multi-dimensional approach Yang, Xue verfasserin (orcid)0000-0002-7552-0495 aut Haugen, Stein verfasserin aut Liu, Yiliu verfasserin (orcid)0000-0002-0612-2231 aut Enthalten in Journal of loss prevention in the process industries Amsterdam [u.a.] : Elsevier Science, 1988 87 Online-Ressource (DE-627)320605469 (DE-600)2020695-1 (DE-576)271585269 0950-4230 nnns volume:87 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.18 Chemische Betriebstechnik VZ AR 87 |
allfieldsGer |
10.1016/j.jlp.2023.105235 doi (DE-627)ELV066816815 (ELSEVIER)S0950-4230(23)00265-6 DE-627 ger DE-627 rda eng 670 VZ 58.18 bkl Zhu, Tiantian verfasserin (orcid)0000-0002-3401-8482 aut A multi-dimensional approach for analyzing risk-related decision problems to enhance decision making and prevent accidents 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Risk-related decision problems are the problems that influence the risk of accidents. In most cases, the probability of major accidents is very low, but their consequences can be extreme, resulting in numerous fatalities and extensive environmental damage. An example is the Deepwater Horizon disaster in the Gulf of Mexico in 2010. Decision making under such circumstances (i.e., under high stake and complexity) is challenging, where expected utility calculations typically are not sufficient to provide a robust foundation. This article focuses on this specific category of risk-related decision problems, aiming to develop a decision analysis approach to enhance decision makers’ understanding on the features of their decision problems. This can in turn form the basis for tailoring the information needed for decision making. The proposed approach is a multi-dimensional approach, which includes seven dimensions: criticality, uniqueness, structuredness, complicatedness, dynamic, residual uncertainty, and problem trigger. Real-life examples are analyzed to illustrate and assess the proposed multi-dimensional approach. Overall, an improved understanding of risk-related decisions problem can be aided by the proposed approach, which indirectly helps to prevent accidents and maintain safety by predicting the human decision-making process, potential decision-making errors, and identifying decision support requirements. Problem feature Risk-related decision problem Decision-making process Decision problem analysis Accident prevention Multi-dimensional approach Yang, Xue verfasserin (orcid)0000-0002-7552-0495 aut Haugen, Stein verfasserin aut Liu, Yiliu verfasserin (orcid)0000-0002-0612-2231 aut Enthalten in Journal of loss prevention in the process industries Amsterdam [u.a.] : Elsevier Science, 1988 87 Online-Ressource (DE-627)320605469 (DE-600)2020695-1 (DE-576)271585269 0950-4230 nnns volume:87 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.18 Chemische Betriebstechnik VZ AR 87 |
allfieldsSound |
10.1016/j.jlp.2023.105235 doi (DE-627)ELV066816815 (ELSEVIER)S0950-4230(23)00265-6 DE-627 ger DE-627 rda eng 670 VZ 58.18 bkl Zhu, Tiantian verfasserin (orcid)0000-0002-3401-8482 aut A multi-dimensional approach for analyzing risk-related decision problems to enhance decision making and prevent accidents 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Risk-related decision problems are the problems that influence the risk of accidents. In most cases, the probability of major accidents is very low, but their consequences can be extreme, resulting in numerous fatalities and extensive environmental damage. An example is the Deepwater Horizon disaster in the Gulf of Mexico in 2010. Decision making under such circumstances (i.e., under high stake and complexity) is challenging, where expected utility calculations typically are not sufficient to provide a robust foundation. This article focuses on this specific category of risk-related decision problems, aiming to develop a decision analysis approach to enhance decision makers’ understanding on the features of their decision problems. This can in turn form the basis for tailoring the information needed for decision making. The proposed approach is a multi-dimensional approach, which includes seven dimensions: criticality, uniqueness, structuredness, complicatedness, dynamic, residual uncertainty, and problem trigger. Real-life examples are analyzed to illustrate and assess the proposed multi-dimensional approach. Overall, an improved understanding of risk-related decisions problem can be aided by the proposed approach, which indirectly helps to prevent accidents and maintain safety by predicting the human decision-making process, potential decision-making errors, and identifying decision support requirements. Problem feature Risk-related decision problem Decision-making process Decision problem analysis Accident prevention Multi-dimensional approach Yang, Xue verfasserin (orcid)0000-0002-7552-0495 aut Haugen, Stein verfasserin aut Liu, Yiliu verfasserin (orcid)0000-0002-0612-2231 aut Enthalten in Journal of loss prevention in the process industries Amsterdam [u.a.] : Elsevier Science, 1988 87 Online-Ressource (DE-627)320605469 (DE-600)2020695-1 (DE-576)271585269 0950-4230 nnns volume:87 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.18 Chemische Betriebstechnik VZ AR 87 |
language |
English |
source |
Enthalten in Journal of loss prevention in the process industries 87 volume:87 |
sourceStr |
Enthalten in Journal of loss prevention in the process industries 87 volume:87 |
format_phy_str_mv |
Article |
bklname |
Chemische Betriebstechnik |
institution |
findex.gbv.de |
topic_facet |
Problem feature Risk-related decision problem Decision-making process Decision problem analysis Accident prevention Multi-dimensional approach |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of loss prevention in the process industries |
authorswithroles_txt_mv |
Zhu, Tiantian @@aut@@ Yang, Xue @@aut@@ Haugen, Stein @@aut@@ Liu, Yiliu @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320605469 |
dewey-sort |
3670 |
id |
ELV066816815 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066816815</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240202093248.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240202s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jlp.2023.105235</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066816815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0950-4230(23)00265-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhu, Tiantian</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3401-8482</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A multi-dimensional approach for analyzing risk-related decision problems to enhance decision making and prevent accidents</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Risk-related decision problems are the problems that influence the risk of accidents. In most cases, the probability of major accidents is very low, but their consequences can be extreme, resulting in numerous fatalities and extensive environmental damage. An example is the Deepwater Horizon disaster in the Gulf of Mexico in 2010. Decision making under such circumstances (i.e., under high stake and complexity) is challenging, where expected utility calculations typically are not sufficient to provide a robust foundation. This article focuses on this specific category of risk-related decision problems, aiming to develop a decision analysis approach to enhance decision makers’ understanding on the features of their decision problems. This can in turn form the basis for tailoring the information needed for decision making. The proposed approach is a multi-dimensional approach, which includes seven dimensions: criticality, uniqueness, structuredness, complicatedness, dynamic, residual uncertainty, and problem trigger. Real-life examples are analyzed to illustrate and assess the proposed multi-dimensional approach. Overall, an improved understanding of risk-related decisions problem can be aided by the proposed approach, which indirectly helps to prevent accidents and maintain safety by predicting the human decision-making process, potential decision-making errors, and identifying decision support requirements.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Problem feature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Risk-related decision problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision-making process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision problem analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accident prevention</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-dimensional approach</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7552-0495</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Haugen, Stein</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yiliu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0612-2231</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of loss prevention in the process industries</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1988</subfield><subfield code="g">87</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320605469</subfield><subfield code="w">(DE-600)2020695-1</subfield><subfield code="w">(DE-576)271585269</subfield><subfield code="x">0950-4230</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:87</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.18</subfield><subfield code="j">Chemische Betriebstechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">87</subfield></datafield></record></collection>
|
author |
Zhu, Tiantian |
spellingShingle |
Zhu, Tiantian ddc 670 bkl 58.18 misc Problem feature misc Risk-related decision problem misc Decision-making process misc Decision problem analysis misc Accident prevention misc Multi-dimensional approach A multi-dimensional approach for analyzing risk-related decision problems to enhance decision making and prevent accidents |
authorStr |
Zhu, Tiantian |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320605469 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0950-4230 |
topic_title |
670 VZ 58.18 bkl A multi-dimensional approach for analyzing risk-related decision problems to enhance decision making and prevent accidents Problem feature Risk-related decision problem Decision-making process Decision problem analysis Accident prevention Multi-dimensional approach |
topic |
ddc 670 bkl 58.18 misc Problem feature misc Risk-related decision problem misc Decision-making process misc Decision problem analysis misc Accident prevention misc Multi-dimensional approach |
topic_unstemmed |
ddc 670 bkl 58.18 misc Problem feature misc Risk-related decision problem misc Decision-making process misc Decision problem analysis misc Accident prevention misc Multi-dimensional approach |
topic_browse |
ddc 670 bkl 58.18 misc Problem feature misc Risk-related decision problem misc Decision-making process misc Decision problem analysis misc Accident prevention misc Multi-dimensional approach |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of loss prevention in the process industries |
hierarchy_parent_id |
320605469 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of loss prevention in the process industries |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320605469 (DE-600)2020695-1 (DE-576)271585269 |
title |
A multi-dimensional approach for analyzing risk-related decision problems to enhance decision making and prevent accidents |
ctrlnum |
(DE-627)ELV066816815 (ELSEVIER)S0950-4230(23)00265-6 |
title_full |
A multi-dimensional approach for analyzing risk-related decision problems to enhance decision making and prevent accidents |
author_sort |
Zhu, Tiantian |
journal |
Journal of loss prevention in the process industries |
journalStr |
Journal of loss prevention in the process industries |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Zhu, Tiantian Yang, Xue Haugen, Stein Liu, Yiliu |
container_volume |
87 |
class |
670 VZ 58.18 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhu, Tiantian |
doi_str_mv |
10.1016/j.jlp.2023.105235 |
normlink |
(ORCID)0000-0002-3401-8482 (ORCID)0000-0002-7552-0495 (ORCID)0000-0002-0612-2231 |
normlink_prefix_str_mv |
(orcid)0000-0002-3401-8482 (orcid)0000-0002-7552-0495 (orcid)0000-0002-0612-2231 |
dewey-full |
670 |
author2-role |
verfasserin |
title_sort |
a multi-dimensional approach for analyzing risk-related decision problems to enhance decision making and prevent accidents |
title_auth |
A multi-dimensional approach for analyzing risk-related decision problems to enhance decision making and prevent accidents |
abstract |
Risk-related decision problems are the problems that influence the risk of accidents. In most cases, the probability of major accidents is very low, but their consequences can be extreme, resulting in numerous fatalities and extensive environmental damage. An example is the Deepwater Horizon disaster in the Gulf of Mexico in 2010. Decision making under such circumstances (i.e., under high stake and complexity) is challenging, where expected utility calculations typically are not sufficient to provide a robust foundation. This article focuses on this specific category of risk-related decision problems, aiming to develop a decision analysis approach to enhance decision makers’ understanding on the features of their decision problems. This can in turn form the basis for tailoring the information needed for decision making. The proposed approach is a multi-dimensional approach, which includes seven dimensions: criticality, uniqueness, structuredness, complicatedness, dynamic, residual uncertainty, and problem trigger. Real-life examples are analyzed to illustrate and assess the proposed multi-dimensional approach. Overall, an improved understanding of risk-related decisions problem can be aided by the proposed approach, which indirectly helps to prevent accidents and maintain safety by predicting the human decision-making process, potential decision-making errors, and identifying decision support requirements. |
abstractGer |
Risk-related decision problems are the problems that influence the risk of accidents. In most cases, the probability of major accidents is very low, but their consequences can be extreme, resulting in numerous fatalities and extensive environmental damage. An example is the Deepwater Horizon disaster in the Gulf of Mexico in 2010. Decision making under such circumstances (i.e., under high stake and complexity) is challenging, where expected utility calculations typically are not sufficient to provide a robust foundation. This article focuses on this specific category of risk-related decision problems, aiming to develop a decision analysis approach to enhance decision makers’ understanding on the features of their decision problems. This can in turn form the basis for tailoring the information needed for decision making. The proposed approach is a multi-dimensional approach, which includes seven dimensions: criticality, uniqueness, structuredness, complicatedness, dynamic, residual uncertainty, and problem trigger. Real-life examples are analyzed to illustrate and assess the proposed multi-dimensional approach. Overall, an improved understanding of risk-related decisions problem can be aided by the proposed approach, which indirectly helps to prevent accidents and maintain safety by predicting the human decision-making process, potential decision-making errors, and identifying decision support requirements. |
abstract_unstemmed |
Risk-related decision problems are the problems that influence the risk of accidents. In most cases, the probability of major accidents is very low, but their consequences can be extreme, resulting in numerous fatalities and extensive environmental damage. An example is the Deepwater Horizon disaster in the Gulf of Mexico in 2010. Decision making under such circumstances (i.e., under high stake and complexity) is challenging, where expected utility calculations typically are not sufficient to provide a robust foundation. This article focuses on this specific category of risk-related decision problems, aiming to develop a decision analysis approach to enhance decision makers’ understanding on the features of their decision problems. This can in turn form the basis for tailoring the information needed for decision making. The proposed approach is a multi-dimensional approach, which includes seven dimensions: criticality, uniqueness, structuredness, complicatedness, dynamic, residual uncertainty, and problem trigger. Real-life examples are analyzed to illustrate and assess the proposed multi-dimensional approach. Overall, an improved understanding of risk-related decisions problem can be aided by the proposed approach, which indirectly helps to prevent accidents and maintain safety by predicting the human decision-making process, potential decision-making errors, and identifying decision support requirements. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
A multi-dimensional approach for analyzing risk-related decision problems to enhance decision making and prevent accidents |
remote_bool |
true |
author2 |
Yang, Xue Haugen, Stein Liu, Yiliu |
author2Str |
Yang, Xue Haugen, Stein Liu, Yiliu |
ppnlink |
320605469 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jlp.2023.105235 |
up_date |
2024-07-06T19:06:12.493Z |
_version_ |
1803857714210668544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066816815</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240202093248.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240202s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jlp.2023.105235</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066816815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0950-4230(23)00265-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhu, Tiantian</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3401-8482</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A multi-dimensional approach for analyzing risk-related decision problems to enhance decision making and prevent accidents</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Risk-related decision problems are the problems that influence the risk of accidents. In most cases, the probability of major accidents is very low, but their consequences can be extreme, resulting in numerous fatalities and extensive environmental damage. An example is the Deepwater Horizon disaster in the Gulf of Mexico in 2010. Decision making under such circumstances (i.e., under high stake and complexity) is challenging, where expected utility calculations typically are not sufficient to provide a robust foundation. This article focuses on this specific category of risk-related decision problems, aiming to develop a decision analysis approach to enhance decision makers’ understanding on the features of their decision problems. This can in turn form the basis for tailoring the information needed for decision making. The proposed approach is a multi-dimensional approach, which includes seven dimensions: criticality, uniqueness, structuredness, complicatedness, dynamic, residual uncertainty, and problem trigger. Real-life examples are analyzed to illustrate and assess the proposed multi-dimensional approach. Overall, an improved understanding of risk-related decisions problem can be aided by the proposed approach, which indirectly helps to prevent accidents and maintain safety by predicting the human decision-making process, potential decision-making errors, and identifying decision support requirements.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Problem feature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Risk-related decision problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision-making process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision problem analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accident prevention</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-dimensional approach</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7552-0495</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Haugen, Stein</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yiliu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0612-2231</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of loss prevention in the process industries</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1988</subfield><subfield code="g">87</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320605469</subfield><subfield code="w">(DE-600)2020695-1</subfield><subfield code="w">(DE-576)271585269</subfield><subfield code="x">0950-4230</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:87</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.18</subfield><subfield code="j">Chemische Betriebstechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">87</subfield></datafield></record></collection>
|
score |
7.4020147 |